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1 Introduction

We consider simple closed curves on surfaces.

Figure 1: A simple closed curve on a 2-holed torus.

We want to understand such curves. There is a cluster algebra structure related
to this, as well as other structures which look like cluster algebras but are not quite
formalized. We can study curves on four levels:

1. Tropical - the curves themselves.

2. Algebraic - the cluster algebra. This involves studying Teichmüller space - the
space of (uniform) hyperbolic metrics on the surface. Equivalently, the discrete
faithful representations of the fundamental group into PSL2(R).

3. Quantum - a noncommutative deformation of (the algebra of functions on)
Teichmüller space. Related to the Jones polynomial and quantum 3-manifold
invariants.

4. Categorical - this does not quite exist yet. Various integers should become
objects in a category (and we get the numbers back by taking dimensions,
for example). We should get 4-manifold invariants (the last frontier of low-
dimensional topology).

The first two levels have been studied for a long time, although there are still open
questions. For now we will talk about the first level.

Imagine stirring around the foam in a cup of co↵ee. The foam may look simple in
the beginning but it gradually becomes more complicated and then becomes roughly
uniformly distributed in the co↵ee. More mathematically, consider the disc with three
punctures. Begin with a loop around, say, the leftmost two punctures. Permute the
punctures and observe what happens to the curve.
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Figure 2: The curve after zero and one permutations.

Figure 3: The curve after two and three permutations.

The curve gets more complicated; what can we say about this process?
One way to describe this process is to imagine a movie describing the permutations.

The punctures trace out 3-stranded braids, and moving the curve is like trying to pull
a rubber band down through the braid. How do we keep track of the curve?

One idea is to triangulate. To do this it will be convenient to add two additional
punctures on the boundary. Then the disc can be triangulated by drawing lines
between the punctures, and we can keep track of the curve by counting the number
of intersections of the curve with the edges of the triangulation.

When we do this we get Fibonacci numbers!
These intersection numbers gives coordinates for simple closed curves up to iso-

topy which may have multiple components provided that we minimize the number
of intersections in a given isotopy class. (These might be called normal curves by
analogy with normal surfaces; the condition that the number of intersections is min-
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Figure 4: The braid traced out by the punctures over time, along with snapshots of
the curve. Down is forwards in time.

Figure 5: Counts of the number of intersections for zero and three permutations of
the curve.

imal is a combinatorial analogue of being a geodesic, and we can find such curves by
choosing a Riemannian metric with respect to which the edges of the triangulation are
geodesics and choosing geodesic representatives.) This is because, given the number
of intersections on the three edges of a triangle, there is a unique way to join them
up in such a way that they could form part of a curve if it exists. This is obtained
by pairing up intersections near corners.

Exercise 1.1. Which triples of intersection numbers can be filled in to obtain a curve?
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Figure 6: An example of intersection numbers and the corresponding unique curve.

Theorem 1.2. Coordinates as specified above are unique provided that we restrict to

curves with no null-homotopic components.

One might wonder how general the process we used above to find a triangulation
is.

Theorem 1.3. Every surface with at least one puncture and at least one puncture

on each boundary component admits a triangulation in which the punctures are the

vertices.

Triangulation here must be understood in a fairly general sense; for example, the
edges of the triangle are allowed to be glued to each other.

Question from the audience: what kind of mathematics is this? How did we know
to count the intersections without sign rather than doing the homological thing and
counting, say, intersections mod 2?

Answer: there is a braid group B3 involved which may be thought of as the
mapping class group MCG(X) = ⇡0(Di↵(X)) of the disc minus three punctures. (In
general Bn may be thought of as either the mapping class group of the n-punctured
disc or as ⇡1(Confn(R2)).) In this particular case B3 acts on certain conjugacy classes
of ⇡1 of the disc minus 3 points (the ones which are represented by simple curves).
Most conjugacy classes do not have this property. There is a nontrivial theorem we
need here:

Theorem 1.4. (Baer, Epstein, Freedman-Hass-Scott) Two simple curves are isotopic

if and only if they are homotopic.

Does this answer the question? There are a number of motivations for counting
intersections without sign (perhaps Dehn was the first one to consider this?). As an
application, we will get an algorithm for determining whether an element of the braid
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group is the identity. Such an element must fix curves around the punctures, and in
fact any element which fixes enough curves must be the identity.

We can now examine how the coordinates change when acted on by an element
of the mapping class group. If we also act on the triangulation, we will get the same
coordinates, but we want to see what the coordinates look like in the old triangulation.

Figure 7: Dragging the triangulation along with the curve.

We can do this by changing the triangulation back. We will do this by flipping
the middle edge in a quadrilateral composed of a pair of triangles (mutation?). This
operation has many names; it can be interpreted in terms of rotation or the Whitehead
move on binary trees.

Figure 8: A quadrilateral flip / rotation / Whitehead move.
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Theorem 1.5. Any two triangulations of a surface (with at least two triangles) are

related by a sequence of quadrilateral flips.

It therefore su�ces to study how coordinates change under a single flip. The only
edge whose intersection number changes is the middle. If the intersection numbers of
the outside edges are a, b, c, d and the intersection numbers of the old and new edges
are e, f , then in fact

e+ f = max(a+ c, b+ d). (1)

(There is a tropical cluster algebra here. This is a version of the Ptolemy relation.)

Figure 9: Intersection numbers before and after a quadrilateral flip.

To see this, note that there are six di↵erent types of curves: curves between two
adjacent edges (four types) and curves crossing opposite sides. The adjacent curves
add 1 to max(a + c, b + d) and to e + f while the non-adjacent curves add 2 to
max(a+c, b+d) and to e+f . Which of a+c and b+d is the maximum is determined
by which pair of opposite sides is connected by some curve, since this can only occur
for one pair.

Exercise 1.6. Verify that we obtain the Fibonacci numbers in the example. Is there

a reason why they appear?

Exercise 1.7. What is the asymptotic running time of the braid group algorithm?

Exercise 1.8. Choose coordinates for curves in the 3-punctured disc at random in

some reasonable sense with some bound. What is the probability that you obtain a

single curve? Two curves?

Possible future topic: the relationship between e + f = max(a + c, b + d) and
normal surfaces in 3-manifolds.
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2 Mapping class groups

Regarding the exercises from the previous lecture: it is cleaner to compactify and
identify the point at infinity with the top and bottom punctures, so we work instead
with a four-punctured sphere. Then there can be components of a curve which loop
around one puncture or components which loop around two punctures (circumfer-
ences). This gives five di↵erent kinds of curves, and up to the action of the mapping
class group every simple (multi)curve consists of copies of these five kinds of curves.

Figure 1: The five kinds of components of a simple multicurve on the four-punctured
sphere.

In the first exercise, the three intersection numbers on the edges of a triangle
must have the form a + b, b + c, c + a where a, b, c are non-negative integers. This
is equivalent to the three numbers summing to an even integer and satisfying the
triangle inequality. Now, if all of the triangle inequalities among the coordinates are
strict, then the curve necessarily has a component which loops around one puncture.
Removing all such loops, we can work out that the coordinates must have the form

•
p

|p�q|
q

• q • p •

•
p

p+q
q

(1)

and the mapping class group acts essentially by Euclid’s algorithm on p, q. This is
not a coincidence; the mapping class group B3 is related to SL2(Z), which is in turn
related to the Euclidean algorithm.
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An easier case to handle first is the (orientation-preserving) mapping class group
MCG+(T 2) = Di↵+(X)/Di↵0(X) of the torus (where Di↵0(X) is the connected com-
ponent of the group of di↵eomorphisms containing the identity). This is the same as
the mapping class group of the torus minus a point x, which acts on loops based at
x.

Figure 2: Two curves on a torus being acted on by the mapping class group.

This gives an action on the fundamental group, hence a homomorphism

MCG(T 2, x) ! Aut(⇡1(T
2, x)) ⇠= Aut(Z2) ⇠= GL2(Z) (2)

whose restriction to MCG+(T 2, x) lands in SL2(Z). This relies on the fact that
⇡1(T 2, x) is abelian. In general we only get an action by outer automorphisms

MCG(X) ! Out(⇡1(X)) (3)

because the mapping class group acts on unbased loops, and changing the base-
point changes the corresponding automorphism of fundamental groups (based at dif-
ferent points) by conjugation by a path connecting the basepoints.

In the special case of surfaces ⌃, the map MCG(⌃) ! Out(⇡1(⌃)) is an isomor-
phism. This is false in general. It is also false that the mapping class group of a space
is the mapping class group of a space minus a point x. There is only a commutative
diagram

MCG(X) // Out(⇡1(X))

MCG(X, x)

OO

// Aut(⇡1(X))

OO

(4)
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Figure 3: Changing basepoints on a surface with nonabelian fundamental group.

and the various maps in it are not isomorphisms in general, for example when X is
a wedge of two circles S1_S1. In this case MCG(X) has 8 elements (we can flip either
of the two circles or switch the circles), MCG(X, x0) = MCG(X) if x0 is the wedge
point, and MCG(X, x1) has two elements if x1 lies on only one of the circles. Here
⇡1 = Z⇤Z is not abelian, so the map Aut(⇡1) ! Out(⇡1) is also not an isomorphism.

Figure 4: The wedge of two circles and the generators of its mapping class group.

Theorem 2.1. MCG(T 2) ⇠= MCG(T 2, x) ⇠= GL2(Z) and MCG+(T 2) ⇠= MCG+(T 2, x) ⇠=
SL2(Z).

Regarding the distinction between Aut(⇡1(X)) and Out(⇡1(X)), we have the fol-
lowing result.

Theorem 2.2. If G is a topological group, ⇡1(G, e) is abelian.
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In particular T 2 is a topological group.

Exercise 2.3. Find out what the Birman exact sequence is and report back next week.

Back to curves. How can we describe curves on a punctured torus? We can
triangulate and then count intersections as before. There are only three coordinates
a, b, c, and there is a component around the puncture if various triangle inequalities
are strict.

Figure 5: General coordinates for a curve on a punctured torus, and a specific curve
with components around the puncture.

Removing all such components, assume WLOG that c is the greatest coordinate;
then c = a + b. In this case curves are parameterized by two numbers (a, b), which
in the universal cover R2 of the torus we can think of as given by a line with slope b

a
(when a, b are relatively prime).

The number of components of the corresponding curve is gcd(a, b) (the mapping
class group acts by the Euclidean algorithm); consequently, we get a curve with a
single component if and only if gcd(a, b) = 1, so we can identify the simple closed
curves on T 2 (not trivial, and not around the puncture) with the projective line P1(Q)
over Q. The probability that gcd(a, b) = 1 occurs asymptotically is

6

⇡2
=

 1X

n=1

1

n2

!�1

. (5)

(Heuristically this is because the probability that gcd(a, b) = n should be propor-
tional to 1

n2 .)

Exercise 2.4. Explain how running Euclid’s algorithm corresponds to changing the
triangulation.
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Figure 6: A line of slope 5
3 in R2 and the corresponding curve on the torus.

Back to the braid group. What does MCG+(T 2) have to do with the thrice-
punctured disc or the four-punctured sphere? If Y denotes the four-punctured sphere,
the double cover branched at the punctures Ỹ is a torus. Branched means that near
the punctures the map looks locally like z2 7! z in C.

Figure 7: A local picture of the map z2 7! z (given by projection down).

To obtain this double cover, skewer the torus by a line and quotient by rotation
by 180� about the line. The corresponding cover is branched at the four points where
we skewered the torus.

More algebraically, we quotiented by the element �I in the mapping class group
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Figure 8: A skewered torus and a picture of the quotient, except that we still need
to identify parts of the circles.

SL2(Z). This branched cover descends to a map of mapping class groups

MCG+(T 2) ⇠= SL2(Z) ! PSL2(Z) ⇠= MCG+(S2, 1 pt, 3 pts). (6)

The last mapping class group fixes one puncture pointwise and fixes the other
three setwise. One way to see this action on three points is to look at the quotient
SL2(Z) ! SL2(F2).

On the other hand, there is a map

B3
⇠= MCG(D2, 3 pts) ! MCG+(S2, 1 pt, 3 pts) (7)

(where the first mapping class group fixes the boundary pointwise) and the claim
is that this exhibits B3 as a central extension of PSL2(Z).
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3 More about mapping class groups

Some background reading:

1. Primer on Mapping Class Groups, Farb and Margalit. Available online.

2. Papers on Group Theory and Topology, Dehn (introduction of Dehn-Thurston
coordinates). Alex will be talking about this paper.

3. Three-Dimensional Geometry and Topology, Thurston Sr. Begins with a nice
introduction to hyperbolic geometry. Available online.

Let S be a surface with �(S) < 0 and x a marked point. The Birman exact
sequence is a short exact sequence

1 ! ⇡1(S, x) ! MCG(S, x) ! MCG(S) ! 1. (1)

It can be iterated; for example, we can write down a short exact sequence

1 ! ⇡1(S \ 5 pts) ! MCG(S, 6 pts) ! MCG(S, 5 pts) ! 1. (2)

The map from ⇡1(S, x) is the point-dragging map or push map. Given a curve
� 2 ⇡1(S, x), we want to send it to an element of MCG(S, x) which is trivial in
MCG(S), hence it needs to be isotopic to the identity. It su�ces to describe this
isotopy. This isotopy will drag a neighborhood of the marked point x along � and
will be trivial outside a neighborhood of �.

Figure 1: A marked point being pushed along a closed curve.
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Why does this describe the entire kernel of the map MCG(S, x) ! MCG(S)? The
general picture is as follows. For X any smooth manifold and x 2 X a marked point,
there is a fibration

Di↵+(X, x) ,! Di↵+(X) ! X (3)

where the map Di↵+(X) ! X sends a di↵eomorphism to the image of x. (A
fibration behaves like a fiber bundle. The crucial property is a lifting property: in
particular, any path in X lifts to a path in Di↵+(X).) This fibration induces a long
exact sequence in homotopy

...⇡1(Di↵
+(X)) ! ⇡1(X) ! ⇡0(Di↵

+(X, x)) ! ⇡0(Di↵
+(X)) ! ⇡0(X). (4)

But ⇡0(Di↵
+(X)) = MCG(X) and ⇡0(Di↵

+(X, x)) = MCG+(X, x), and ⇡0(X) is
a point when X is connected. The next term in the long exact sequence is a map
⇡1(X) ! ⇡0(Di↵

+(X, x)).

Theorem 3.1. (Hamstrom) Let S be a surface with �(S) < 0. Then ⇡1(Di↵
+(X)) is

trivial. In fact, the connected component of the identity in Di↵
+(X) is contractible.

This is an aspect of hyperbolic geometry. The same is true for higher-dimensional
hyperbolic manifolds; this is an aspect of Mostow rigidity. (But Mostow rigidity is
false for hyperbolic surfaces.)

What happens when S = T 2? We claimed that the map MCG(T 2, x) ! MCG(T 2)
is an isomorphism. The long exact sequence ends

...⇡1(Di↵
+(T 2)) ! ⇡1(T

2) ! MCG(T 2, x) ! MCG(T 2) ! 1 (5)

so the map ⇡1(T 2) ! MCG(T 2, x) needs to be trivial. There is a map T 2 !
Di↵0(T 2) given by T 2 acting on itself by translation, and it is a di�cult theorem that
this is a homotopy equivalence. (This can be proven by removing a point, which makes
the Euler characteristic �1, and applying the big theorem above.) Consequently

⇡1(Di↵
+(T 2)) = ⇡1(Di↵

0(T 2)) ⇠= ⇡1(T
2). (6)

Similarly, T 2 admits an action by a�ne linear maps, and this is a homotopy
equivalence to Di↵(T 2).

In summary, the end of the long exact sequence looks like
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⇡1(Di↵
+(T 2, x))

⇠=
✏✏

// ⇡1(Di↵
+(T 2))

⇠=
✏✏

// ⇡1(T 2)

⇠=
✏✏

//MCG(T 2, x)

⇠=
✏✏

//MCG(T 2)

⇠=
✏✏

// 1

⇠=
✏✏

1 // Z2 ⇠= // Z2 0 // SL2(Z)
⇠= // SL2(Z) // 1

(7)
where ⇠= denotes an isomorphism.
More generally, if G is a connected Lie group, we get a map G ! Di↵0(G) coming

from the action of G on itself by translation, and we also get a map in the other
direction coming from evaluation. This is not a homotopy equivalence in general.
When G = SU(2) we know that SU(2) ⇠= S3, and Di↵+(S3) is homotopy equivalent
to SO(4) (the Smale conjecture, proved by Hatcher).

Recall that last time we skewered a torus (quotiented it by the central element
�I in MCG(T 2) ⇠= SL2(Z)) to obtain a double cover T 2 ! S2 branched at 4 points.
The claim was that this showed

MCG(S2, 1 pt, 3 pts) ⇠= PSL2(Z). (8)

(The 1 point is the identity in T 2 regarded as a group and the 3 points are the
non-identity points of order 2.)

What is the mapping class group of S2 fixing four points pointwise? This is
the congruence subgroup �(2), which consists of the image of the kernel of the map
SL2(Z) ! SL2(Z/2Z) in PSL2(Z). It is in fact the free group Z⇤Z on two generators.

The relationship to the braid group B3 comes from the map

(D2, 3 pts) ! (S2, 3 pts, 1 pt) (9)

given by identifying the boundary to a point (which becomes the fourth marked
point).

Figure 2: A 3-punctured disc getting its boundary identified to form a 4-punctured
sphere.
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The mapping class group B3 of (D2, 3 pts) (fixing the boundary pointwise) has a
center generated by Dehn twist along a boundary curve. As a braid it is given by
the full twist. The image of Dehn twist in MCG(S2, 3 pts, 1 pt) is trivial (we can
untwist). Thus we obtain an exact sequence

1 ! Z ! MCG(D2, 3 pts, @D2) ! MCG(S2, 3 pts, 1 pt) ! 1 (10)

showing that B3 is a central extension of PSL2(Z).

Figure 3: A full twist and a half twist.

Recall that before we were permuting curves on the thrice-punctured disc and,
looking at Dehn-Thurston coordinates, we saw the Fibonacci numbers appear. This
can now be explained as follows. The element of the mapping class group we were

applying was a braid in B3 whose image in PSL2(Z) is given by the matrix


1 1
1 2

�
.

Exercise 3.2. Verify this.

Hint: look at how the braid group generators lift to the torus. They can be
thought of as Dehn twists.

Figure 4: Some hints.

Dehn twists in general look like the following: if C is a simple closed curve on S,
the Dehn twist TC 2 MCG(S) rotates an annular neighborhood [0, 1] ⇥ C of C as
follows: {t}⇥ C is rotated by 2⇡t.
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Figure 5: Dehn twist around a curve C.

Figure 6: Another picture of a Dehn twist.

Question from the audience: is this the same as the push map?
Answer: no. The push map gives a trivial element of the mapping class group.

However, there is a relationship. Let � is a simple closed curve and C1, C2 curves
which bound an annular neighborhood of �.

Exercise 3.3. Push(�) = TC1 � T�1
C2

.

Theorem 3.4. (Lickorish, ...) Let S be a closed surface. Then MCG
+(S) is generated

by Dehn twists.

Dehn twists cannot generate the mapping class group of a surface with marked
points because they cannot permute the marked points. With marked points, the
Dehn twists instead generate the pure mapping class group (the subgroup fixing the
marked points pointwise).

The basic invariant of an element M 2 SL2(Z) up to conjugacy is its trace (this
determines its characteristic polynomial). If tr(M) = 2 then
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Figure 7: Dehn twists and the push map.

M =


1 x
0 1

�
(11)

for some x, and similarly if tr(M) = �2 then

M =


�1 x
0 �1

�
. (12)

These are the parabolic elements, and they look like Dehn twists when acting on
the torus.

If |tr(M)| > 2 then M has 2 distinct real eigenvalues, and iterating M we obtain

exponential growth. (In the particular case above, M =


1 1
1 2

�
and the eigenvalues

are �2,'2 where �,' are the golden ratios.) These are the hyperbolic elements.
If |tr(M)| < 2 thenM is in fact torsion. These are the elliptic or periodic elements.

The two basic possibilities are

M =


0 1
�1 0

�
,


0 1
�1 �1

�
(13)

and variants.

Exercise 3.5. Which braids do these correspond to?
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4 Hyperbolic geometry

Last time there was an exercise asking for braids giving the torsion elements in
PSL2(Z). A 3-torsion element can be obtained by cyclically permuting punctures
(a one-third-twist?), and a 2-torsion element can be obtained by swapping two punc-
tures (a half-twist).

Figure 1: Braids which are torsion in PSL2(Z).

Last time we also classified elements of MCG(T 2) as either periodic, parabolic, or
hyperbolic. This classification generalizes to other surfaces; it is called the Nielsen-
Thurston classification. We will get back to this later.

First, the hyperbolic plane. It is the unique complete simply-connected Rieman-
nian surface with constant curvature �1, but this is not useful for computations.

The Poincaré disk model of the hyperbolic plane is the open disc {(x, y) 2 R
2 :

x2 + y2 < 1} with the metric

ds2 = 4
dx2 + dy2

(1� r2)2
(1)

where r2 = x2 + y2.
Since the metric is always a scalar multiple of the standard Euclidean metric, this

angle is conformal with the Euclidean metric, so angles agree with Euclidean angles
(even if lengths do not agree with Euclidean lengths). Geodesics are circles perpen-
dicular to the boundary (including circles of infinite radius, or lines); in particular,
there is a unique geodesic through any two points.

A geodesic triangle has the property that the sum of its angles is less than ⇡. In
fact,
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Figure 2: Geodesics in the disk model.

Area(triangle) = ⇡ � sum of angles. (2)

Exercise 4.1. The angle sum defect ⇡ � sum of angles is additive on triangles.

The Poincaré half-plane model is the upper half-plane {(x, y) 2 R
2 : y > 0} with

the metric

ds2 =
dx2 + dy2

y2
. (3)

Geodesics are circles perpendicular to the boundary (including circles of infinite
radius). This metric is also conformal with the Euclidean metric.

Instead of thinking directly about these metrics, it is better to think about au-
tomorphisms (that is, about isometries). The automorphisms we want should be
conformal; that is, they should preserve (Euclidean) angles. This is equivalent to
complex analytic with derivative not equal to zero anywhere. We will look for such
automorphisms within the group of Möbius transformations

z 7! az + b

cz + d
, a, b, c, d 2 C, ad� bc 6= 0. (4)

This is precisely the group of conformal automorphisms of the Riemann sphere.
Abstractly, this is the group PGL2(C) (which naturally acts on CP

1), and conse-
quently it admits a morphism from GL2(C) (so Möbius transformations compose like

matrices) sending


a b
c d

�
to the above.

2



Figure 3: Geodesics in the half-plane model.

Möbius transformations have many nice properties. For example, they preserve
circles (including of infinite radius).

Some Möbius transformations are relatively easy to understand. Those of the
form z 7! az + b describe translations, scalings, and rotations. The only additional
Möbius transformation needed to generate the entire group is z 7! 1

z , which is closely
related to circle inversion z 7! 1

z̄ . Inversion has many nice properties: it sends circles
inside the unit circle to circles outside the unit circle and sends circles intersecting
the unit circle to circles intersecting the unit circle.

Figure 4: Circle inversion.

We want to consider Möbius transformations which in addition preserve the open
disk or the upper half plane.
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Theorem 4.2. The orientation-preserving isometries of the upper half-plane are pre-
cisely PSL2(R) ⇢ PGL2(C).

Proof. Since H
2 has constant curvature, it has an isometry taking every pair of a

point and a tangent vector to another point and a tangent vector. Every orientation-
preserving isometry is conformal, hence complex-analytic, and furthermore extends
to a conformal automorphism CP

1 ! CP
1 by the Schwarz reflection principle, hence

must be a Möbius transformation. Moreover, it must preserve RP
1 ⇢ CP

1, so lies in
PGL2(R).

There is a commutative diagram of inclusions

PSL2(R)

✏✏

// PSL2(C)

✏✏

PGL2(R) // PGL2(C)

(5)

and the inclusion PSL2(C) ! PGL2(C) is an isomorphism (we can always scale
by the square root of the determinant) but the inclusion PSL2(R) ! PGL2(R) is not;
the latter has two connected components, one consisting of matrices with positive
determinant (which PSL2(R) maps to isomorphically) and one consisting of matrices
with negative determinant.

The elements of PGL2(R) of negative determinant take the upper half-plane to
the lower half-plane, so the elements of PSL2(R) are the ones we want.

We can now obtain the metric on the upper half-plane we wrote down earlier
as follows: first assume that it is ds2 = dx2 + dy2 at the point (0, 1) and find an
automorphism taking (0, 1) to another point (x, y). It su�ces to take z 7! yz + x,

and we want this to be an isometry, which in fact forces ds2 = dx2+dy2

y2 by inspecting
the Jacobian.

A similar idea works for the metric on the disk; alternately, there is a Möbius
transformation taking the upper half-plane to the disk given by

z 7! z � i

z + i
. (6)

To see this, note that it takes the boundary of the upper half-plane to the boundary
of the open disc and takes i to 0. (Multiplying by i gives a map which fixes ±1 and
which sends 1 to i.) This gives us a description of the Möbius transformations fixing
the disk by conjugating by the above map; explicitly, they have the form

z 7! ei✓
z � a

āz � 1
(7)
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where a lies in the disk.
More generally, the Riemann mapping theorem asserts that for any open simply-

connected subset U of C there exists a unique biholomorphic map from U to the open
disc sending a particular point and tangent vector to a particular point and tangent
vector in the open disc. This gives us a metric on U .

Figure 5: The Riemann mapping theorem.

Moving away from complex analysis, we can write down a di↵erent kind of model of
the hyperbolic plane which generalizes better to higher dimensions as follows. There
is an exceptional isomorphism

PSL2(R) ⇠= SO+(2, 1) (8)

where the RHS describes the group of all linear transformations of R3 preserving
the quadratic form x2+ y2� z2 which have determinant 1 and which maps the upper
half of the cone x2 + y2 = z2 to itself.

This can be seen as follows. SL2(R) has a natural representation on R
2. This gives

a representation of PSL2(R) on Sym2(R), or equivalently on 2 ⇥ 2 real symmetric
matrices as follows:


p q
q r

�
7!


a b
c d

� 
p q
q r

� 
a c
b d

�
. (9)

This action preserves the determinant pr� q2. Writing x = q, p = z+ y, q = z� y
this gives the quadratic form z2�y2�x2. Alternately, PSL2(R) has an adjoint action
on its Lie algebra sl2(R), which is 3-dimensional. This action preserves the Killing
form on sl2(R), which also has signature (2, 1) as above.
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SO(2, 1) preserves the two-sheeted hyperboloid {(x, y, z) 2 R
3 : x2+y2�z2 = �1},

and SO+(2, 1) preserves the sheet z > 0. This has an induced metric

ds2 = dx2 + dy2 � dz2 (10)

which gives another model of the hyperbolic plane, the hyperboloid model. This is
a pleasant model for computations because of the lack of division.

Figure 6: The hyperboloid model.

We need to check that the above metric is actually Riemannian; as a metric on
R

3 it is Lorentzian. SO+(2, 1) acts transitively on the hyperboloid, so to check the
signature of the metric it is enough to check the signature at a point. We will use
the point (0, 0, 1). The tangent plane at this point is the xy-plane, and the induced
metric is Riemannian as desired.

The hyperboloid may be thought of as a sphere of radius i. This is not as silly
as it sounds; it turns many trigonometric identities into hyperbolic trigonometric
identities.

We now have three models for the hyperbolic plane. To do computations in the
future, we will choose whichever model makes our computations easiest.
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5 Ideal polygons

Previously we discussed three models of the hyperbolic plane: the Poincaré disk,
the upper half-plane, and the hyperboloid. We did not describe geodesics in the
hyperboloid model, but they are given by intersections of planes through the origin.

Figure 1: A plane giving a geodesic on the hyperboloid.

This is precisely the same way we obtain geodesics on the sphere.

Figure 2: A plane giving a geodesic on the sphere.
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To relate the models, in the hyperboloid model we can look at the hyperboloid
from the tip of the other hyperboloid, and we get the disk model. (For an observer at
the origin, the corresponding model is the Klein disk model, which is not conformal.
Its geodesics are straight chords. This is analogous to how stereographic projection
is conformal on the sphere, but projection from a random point is not.)

H
2 has an ideal boundary. For example, in the disk model the boundary of the

disk is this boundary. It is often convenient to complete H2 to include this boundary,
obtaining H2. The metric does not extend, but we still get a topological space. H2

is obtained from H by adding ideal points, or equivalence classes of geodesic rays.
Most pairs of geodesics get exponentially far away from each other, but sometimes
two geodesic rays will approach each other; intuitively they are approaching the same
point of the boundary. (We do not get this behavior in the Euclidean plane, where
two geodesic rays can be parallel.)

Figure 3: Some equivalent and inequivalent geodesic rays.

A triangle in H
2 can be constructed from three geodesics. If ↵, �, � are the cor-

responding angles of the triangle, the claim was that the area of the triangle is
⇡ � (↵ + � + �). This is a corollary of the Gauss-Bonnet theorem, one intuitive
statement of which is that the total turning of a curve bounding a disk D in a Rie-
mannian manifold is

2⇡ �
Z

D

K dA (1)

where K is the curvature.

Exercise 5.1. Measure the curvature of some surface. (A leaf? An orange peel? Can
you find a leaf with positive curvature?)

The Gauss-Bonnet theorem can be used to compute the area of a sphere. Con-
sidering a great circle on a sphere of radius 1, we compute that 2⇡ is half the sur-
face area of such a sphere, hence the total surface area is 4⇡. When applied to a
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geodesic triangle, the total turning of a geodesic triangle with angles ↵, �, � is given
by (⇡ � ↵) + (⇡ � �) + (⇡ � �), which is 2⇡ plus the area of the triangle.

Figure 4: The turning angles of a hyperbolic triangle.

In particular, this area is positive, so ↵+�+� < ⇡. In addition, we conclude that
the area of a geodesic triangle is always strictly less than ⇡. As the three vertices
approach the ideal boundary, the corresponding angles become very small, so the
area approaches ⇡. In the limiting case, the three vertices are on the ideal boundary,
and we get an ideal triangle. Since geodesics meet the boundary at right angles, the
angles in an ideal triangle are all equal to 0, so an ideal triangle has area ⇡.

Figure 5: Some ideal triangles.

Ideal triangles turn out to be simpler and easier to understand than ordinary
triangles. For example:

Proposition 5.2. Any two ideal triangles are related by an orientation-preserving
isometry.
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Proof. We will work in the upper half-plane model. In this model the ideal boundary
is RP1 acted on by the isometry group PSL2(R). We know that PGL2(R) acts triply
transitively. A short way to see this is to try to send any three points a, b, c to 0, 1,1.
This gives, uniquely,

x 7! (x� a)(b� c)

(x� c)(b� a)
. (2)

By choosing an appropriate ordering of a, b, c we can arrange for this isometry to
lie in PSL2(R).

It follows that the moduli space of ideal triangles (the space of ideal triangles up
to orientation-preserving isometry) is a point. What about ideal quadrilaterals? All
of the interior angles are still 0, so by Gauss-Bonnet any ideal quadrilateral has area
2⇡; alternately, an ideal quadrilateral is the union of two ideal triangles. Now not
all ideal quadrilaterals are equivalent. By the previous proof, we can send three of
the vertices to 0, 1,1, and the fourth point cannot be moved because the pointwise
stabilizer of 0, 1,1 is the identity.

This gives an invariant of ideal quadrilaterals: take three of the points a, b, c to
0, 1,1 and look at where the fourth point d goes. This is

d 7! (d� a)(b� c)

(d� c)(b� a)
(3)

or the cross-ratio of a, b, c, d. This can be used to describe the moduli space of
ideal quadrilaterals. In general, we expect the moduli space of ideal n-gons to have
dimension n � 3. We can think of the n as the number of parameters describing
vertices and the 3 as the dimension of PSL2(R).

There is something funny going on here. If we think of an ideal quadrilateral
as being composed of two ideal triangles, we can slide the ideal triangles against
each other by moving the opposite vertex, and this does not change the triangles
themselves up to isometry. Ordinary Euclidean triangles do not have this property.

We would like to make ideal geometry look more like ordinary geometry. One way
to do this would be to associate a number to an edge of an ideal polygon, which we
want to think of as its length. It has infinite length in the hyperbolic metric, so we
will have to be clever. First, what do circles (points equidistant to a given point) look
like in the hyperbolic plane?

Proposition 5.3. Circles in the disk model or half-plane model are still ordinary
circles.

Proof. In the disk model, take the center of the circle to be the origin. Isometries
include rotational symmetries, so the circle must be an ordinary Euclidean circle.
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Figure 6: Sliding triangles in an ideal quadrilateral.

Conformal maps preserve Euclidean circles, so the same is true for any center, and
the same is true for the half-plane.

However, the Euclidean center is usually not the center. As a circle gets closer to
the boundary, its center also gets closer to the boundary.

Figure 7: Centers getting closer to the boundary.

As we send the circle to the boundary and send the radius to 1 so that the circle
continues to pass through a given point, we obtain a horocycle. In the disk and half-
plane models these look like Euclidean circles tangent to the boundary (and in the
latter case this includes circles of infinite radius). The corresponding construction in
the Euclidean plane gives a line, but horocycles are not geodesics in the hyperbolic
plane. They can be thought of as circles centered at an ideal point.
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One property of Euclidean circles is that a geodesic through the center is perpen-
dicular to the boundary. This is still true for hyperbolic circles. It is also true that a
horocycle is perpendicular to any geodesic approaching its ideal point.

We now know how to give meaning to a circle tangent to the boundary.

Exercise 5.4. What is the meaning of a circle intersecting the boundary at an arbi-
trary angle?

General hint: find the right model and put the interesting point in a convenient
place.

We now want to describe decorated ideal polygons, which are given by an ideal
polygon together with a choice of horocycle around each vertex. This gives us a way
to measure length: we can take the length of an edge of a decorated ideal polygon
to be the oriented distance between the horocycles around the corresponding vertices
(so it is negative if the horocycles overlap).

Figure 8: A decorated triangle and a length.

Lemma 5.5. Any three choices `(A), `(B), `(C) 2 R of lengths is realizable by a
unique decorated ideal triangle (up to isometry).

Proof. We first consider the case where all three lengths are equal to 0. This means
that the horocycles are all tangent to each other as well as to the ideal boundary. The
corresponding configuration of four circles is unique up to fractional linear transfor-
mations.

Alternately, we can work with an ideal triangle in the upper half-plane with one
of the vertices at infinity. One of the horocycles is then a line parallel to the x-axis,
and the other two horocycles are uniquely determined by this.
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Figure 9: Four tangent circles.

Figure 10: Three tangent horocycles in the upper half-plane.

If from here we move one of the horocycles by some distance along one geodesic, we
move it by the same distance along the other geodesic. If we move all three horocycles
by distances a, b, c, we get distances a+ b, b+ c, c+ a, and this linear transformation
is invertible.

We can also decorate ideal quadrilaterals and assign lengths to their edges. This
is equivalent to gluing decorated ideal triangles with matching lengths, and now there
is no sliding provided that all lengths are fixed. This leads to a parameterization of
decorated ideal polygons.

Theorem 5.6. Given a decorated ideal polygon and a triangulation, the lengths be-
tween horocycles of edges determine the polygon (up to isometry).

7



Figure 11: The general case.

Figure 12: A decorated and triangulated pentagon.

This gives us some number of parameters describing a decorated ideal n-gon. First
there are n edges to consider. A triangulation adds n � 3 edges, so we get 2n � 3
parameters. The moduli space of ideal n-gons has dimension n�3, and the di↵erence
between these are the n parameters describing the horocycles.

Next time we will discuss how these parameters change under change of triangu-
lations.
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6 Dehn-Thurston coordinates (Alex)

We want to study the action of the mapping class group on isotopy classes of curves

on a surface. Ideally this action should be faithful. Dehn-Thurston coordinates are a

way to parameterize isotopy classes of curves.

Let Sg be a compact orientable surface of genus g with negative Euler charac-

teristic, possibly with boundary. (The Euler characteristic condition only excludes

the sphere, the torus, the cylinder, and the disks.) We will consider multicurves on

Sg, which are 1-dimensional submanifolds such that no component bounds a disk

and such that no component is homotopic to an arc on the boundary. This gives a

collection of non-intersecting, non-self-intersecting, non-null-homotopic curves.

We parameterize multicurves by first choosing a decomposition into pairs of pants.

Figure 1: A pair of pants decomposition.

We want to know the intersections of a multicurve with the boundary of each pair

of pants. This gives a collection of intersection numbers m1, ...mn. Additionally, we

have N twisting numbers which tell us how to glue the pairs of pants together. If Sg

has no boundary, then N = 3g � 3.

Definition The geometric intersection number of two curves is

(�, �) = minc,d|c \ d| (1)

where c, d are curves isotopic to �, � respectively.

The claim we need for these intersections to determine a multicurve is that up to

isotopy preserving the boundary componentwise, a multicurve on a pair of pants is

1



determined by its intersection numbers with the boundary (except for components

parallel to a boundary component).

Fix intervals on the boundary components of the pants; these are windows. We

will require that our curves only intersect the boundaries in windows. This only gives

a few possibilities for the components of a multicurve: it can either connect adjacent

windows, loop around to connect a window with itself, or loop around a leg (parallel

to a boundary component).

Figure 2: Curves on a pair of pants.

To define twisting numbers, we will now decompose Sg into pairs of pants and

cylinders (and again fix windows).

Figure 3: Pairs of pants and cylinders.

In a given cylinder, the twisting number is then the geometric intersection of a

2



multicurve with either of two curves connecting the boundaries of the windows, with

sign determined by handedness.

Figure 4: Twisting numbers in a cylinder.

We also need twisting numbers counting components parallel to boundary com-

ponents.

In summary, we parameterize multicurves by elements of the set Z3g�3
�0 ⇥ Z3g�3

quotiented by the equivalence relation (0, x) ⇠ (0,�x).

Theorem 6.1. The mapping class group is generated by Dehn twists.

If an element of the mapping class group does not act faithfully on multicurves,

then it fixes all such curves (up to isotopy), hence commutes with all Dehn twists,

hence lies in the center. To show that the action of the mapping class group on

multicurves is faithful, it su�ces to show that the center is trivial. This will be true

whenever g > 2 and Sg does not have boundary.

To see this we will draw a suitable collection of circles on Sg. Any element of the

center preserves (up to isotopy) every circle, so it preserves the graph describing how

circles intersect.

But when g > 2 we can arrange these circles so that the corresponding graph

has no automorphisms. It follows that up to isotopy an element of the center of the

mapping class group fixes the graph pointwise.

The complement of the graph is a collection of disks, and a homeomorphism of the

disk fixing the boundary is isotopic to the identity through homeomorphisms fixing

the boundary, so we conclude.
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Figure 5: Circles on a 4-holed torus.

Figure 6: A graph describing the intersections of the circles which has no automor-

phisms.

This argument does not work when g = 2, when we can take a 180
�
rotation. This

is a reflection of the fact that when g = 2 a smooth projective algebraic curve over

C is hyperelliptic, so alwways has a hyperelliptic involution, but when g > 2 not all

curves are hyperelliptic.

Dehn-Thurston coordinates were discovered by Dehn and rediscovered by Thurston.
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7 More about ideal polygons

Last time we discussed two methods for understanding ideal polygons. One was to

send three of their vertices to 0, 1,1, and another was to choose horocycles around

the vertices and count distances. We want a more natural version of this picture

(which does not depend on a choice of triangulation).

Consider the hyperboloid model x2
+ y2 = z2 � 1. What do horocycles look like

here? First, what do circles look like? Using the projection to a plane, they come

from cones coming from the other hyperboloid.

Figure 7: A cone and the corresponding circle.

Alternatively, we can intersect the hyperboloid with a plane (analogous to what

happens with a sphere). On a sphere, the center of the corresponding circle is the

unique point whose tangent plane is parallel to the intersecting plane, and the same

is true on the hyperboloid.

This is clearest to see for the lowest point on the hyperboloid, and everything is

invariant under SO
+
(2, 1), so it follows everywhere.

To get horocycles, we take tangent planes to the cone (circles centered at infinity),

then translate them so that they intersect with the hyperboloid.

We want to describe this situation algebraically in terms of the inner product on

R3
with corresponding quadratic form x2

+ y2 � z2. The hyperboloid is the set of

vectors v such that hv, vi = �1. The (null) cone is the set of vectors v such that

hv, vi = 0 (null vectors). Planes can be described in the form
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Figure 8: A plane intersecting a sphere and the corresponding circle.

Figure 9: A plane intersecting a hyperboloid and the corresponding circle.

Pv = {w : hv, wi = k}. (2)

When v is a null vector, v 2 Pv,0. To get horocycles, we take hyperplanes of the

form Pv,�1 and intersect them with the hyperboloid. In other words, horocycles have

the form

hv = {w : hv, wi = hw,wi = �1}. (3)

We therefore have a natural correspondence between horocycles and nonzero null

vectors in the upper cone (z � 0). Now, given two vectors v1, v2 at which we have
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centered two horocycles h1, h2, we want to describe algebraically the corresponding

length. We begin by defining the �-length

�(h1, h2) =

r
�1

2
hv1, v2i. (4)

This is some function f(`(h1, h2)) of the length. To explain the factor of
1
2 , first

take v1 = (1, 0, 1). The corresponding horocycle contains x = (0, 0, 1), and so does

the horocycle corresponding to v2 = (�1, 0, 1). In fact, the horocycles are tangent

at x, so `(h1, h2) = 0 in this case. On the other hand, hv1, v2i = �2, so the above

normalization gives �(h1, h2) = 1.

Now we should talk more about the relationship between the upper half-plane

model and the hyperboloid model. In the former the isometry group is PSL2(R)
while in the latter the isometry group is SO

+
(2, 1). In the former the ideal points

are RP1
while in the latter the ideal points are rays in the null cone. We would like

a correspondence between them, hence a way to take vectors in R2
to null vectors in

R2,1
.

We can do this by thinking of R2,1
as symmetric 2⇥ 2 matrices with the negative

of the determinant as the quadratic form. Given a vector in R2
, we can now tensor

it with itself to get such a symmetric matrix, giving


a
b

�
7!


a2 ab
ab b2

�
(5)

Exercise 7.1. Check that diagonalizing this quadratic form gives a map (a, b) 7!
(a2 � b2, 2ab, a2 + b2) from R2 to null vectors in R2,1.

This gives a map from R2
to horocycles. What is the �-length in these terms?

Given (a, b) and (c, d), the dot product of the corresponding null vectors is

abcd� 1

2
(a2d2 + b2c2) = �1

2
(ad� bc)2 = �1

2
det


a c
b d

�2
. (6)

So the corresponding �-length is

1

2

����det

a c
b d

����� . (7)

Exercise 7.2. Was this detour necessary? Is there a natural way to write down
horocycles as subsets of CP1 (which contains both the disk and the half-plane models)
and do these computations there instead?
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8 Horocycles and lengths

Last time we saw that in the hyperboloid model there is a nice way to write down
horocycles: they can be given by sets of the form

hv = {w : hv, wi = hw,wi = �1} (1)

where v is a null vector. On the other hand, it is often more convenient to work
in the upper half-plane. Here the boundary is RP1 and we saw previously that there
is a way to write down from a vector (a, b) 2 R2 a null vector (2ab, a2 � b2, a2 + b2),
and this gives a map from RP1 to null vectors, which give horocycles. It would be
nice to be able to avoid this and directly describe the horocycle associated to (a, b)
in the upper half-plane.

Last time we also described the �-length

�(h1, h2) =

r
�1

2
hv1, v2i =

1

2
|det(w1, w2)| (2)

between two horocycles in terms of the inner product of the corresponding null
vectors and then in terms of the determinant of the corresponding vectors in R2.
This is some function f(`(h1, h2)) of the length which we have not yet worked out.
To compute this function, we will work in the upper half-plane with a horocycle at
0 and a horocycle at 1 (which is a horizontal line). We have one more degree of
freedom, so we will choose the diameter of the horocycle at 0 to be 1.

Figure 1: Two horocycles in the upper half-plane.

Then the horocycle at 1 is the line y = c for some c and the distance between
them is

1



Z c

1

dy

y
= log c. (3)

The nicest case is when we also have c = 1, in which case the distance is 0. We can
do this by scaling the horocycle at 1 by 1

c without scaling the horocycle at 0. This
is not an isometry, so it will change the length and �-length. In intrinsic hyperbolic
terms, we move each point of the horocycle by log c away from 1. To determine what
this does to vi or wi we need to determine the corresponding element of PSL2(R). As
a fractional linear transformation, this is x 7! x

c , which is associated to the matrix

 1p
c 0

0
p
c

�
2 SL2(R). (4)

Now we should figure out what w1 and w2 are (the elements of R2 associated to
our horocycles). We will have w1 = (0, y1) for some y1 and w2 = (x2, 0) for some x2.
Scaling by 1

c multiplies w2 by
1p
c and changes the �-length to 1 by our normalization,

so

�(h1, h2) =
p
c = exp

✓
`(h1, h2)

2

◆
. (5)

Exercise 8.1. Find �(h1, h2) in terms of the Euclidean geometry of two horocycles
in the upper half-plane.

Given a decorated and triangulated ideal polygon, we can ask about how �-lengths
change when we change triangulations. Hyperbolically this is a messy computation,
but algebraically it becomes nicer. For an ideal quadrilateral determined by four
vectors w1, w2, w3, w4, we want to compute one of the corresponding determinants in
terms of the others.

Writing the �-lengths of the four sides as A,B,C,D and writing the �-lengths of
the diagonals as E,F , we get the following result.

Lemma 8.2. (Ptolemy relation) �(F )�(E) = �(A)�(C) + �(B)�(D).

This relation is named after the corresponding relation for a quadrilateral inscribed
in a circle in Euclidean geometry.

Proof. This is really a statement about a 2⇥ 4 matrix (assembled from the wi)


x1 x2 x3 x4

y1 y2 y3 y4

�
, (6)

namely a quadratic relation between the 2⇥2 minors. Both sides of this quadratic
relation are invariant under scaling any of the columns, so assuming that the yi 6= 0
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Figure 2: �-lengths in a decorated ideal quadrilateral.

we may assume WLOG that the yi are all equal to 1. Then the quadratic relation
becomes

(x2 � x4)(x1 � x3) = (x1 � x2)(x3 � x4) + (x1 � x4)(x2 � x3). (7)

Alternatively, by a suitable change of coordinates we can arrange x1 = 1, x2 =
0, y1 = 0, y2 = 1, which simplifies the relation considerably.

Alternatively, let a =
P

xiei and b =
P

yiei be vectors in R4 with ei the standard
basis. Then a ^ b has components which are the 2⇥ 2 minors above in the standard
basis ei ^ ej, i < j of ⇤2(R4). We have (a ^ b) ^ (a ^ b) = 0 by standard properties of
the exterior product, and expanding this out in the standard basis gives the relation
above.

This is also known as the Plücker relation.

Exercise 8.3. Relate �(h1, h2) to Euclidean geometry in the disk model. Prove the
hyperbolic Ptolemy relation using the Euclidean one.

Exercise 8.4. Relate the cross-ratio of four ideal points to �-lengths of a correspond-
ing decorated ideal quadrilateral.

Since a decorated ideal n-gon is determined by its n horocycles, specifying such
an n-gon is equivalent to specifying a collection of n points in R2/{±1} modulo
the action of PSL2(R), which is very close to specifying a point in the Grassmannian
Gr2,n except that there are some cyclic order and positivity conditions. The positivity
condition is equivalent to specifying a 2⇥ n matrix all of whose minors have positive
determinant.
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Let’s consider more general surfaces than the hyperbolic plane, such as the punc-
tured torus. This surface admits a complete hyperbolic metric of constant curvature
�1, and so we can talk about geodesics on it, which go to infinity (the puncture). We
can write down three such geodesics giving an ideal triangulation of the torus.

Figure 3: Three views of a punctured torus and three geodesics on it.

We want to measure lengths by decorating using horocycles as before. Here by
horocycle we mean a curve which lifts to a horocycle in the universal cover (which is
the hyperbolic plane).

Theorem 8.5. Decorated hyperbolic structures on the punctured torus are parame-
terized by the three �-lengths in a triangulation.

Alternatively, let T g,n be the space of complete hyperbolic structures on a (com-
pact, orientable) surface of genus g with n punctures up to isotopy (Teichmüller
space), and let T̃ g,n be the space of correspondingly decorated hyperbolic structures,
where we also choose horocycles (decorated Teichmüller space). Then T̃ 1,1 is homeo-
morphic to R3 with the homeomorphism given by �-lengths.

There is an interesting relationship between these ideas and number theory. A
Markov triple is a solution to x2 + y2 + z2 = 3xyz. There is an obvious solution
(1, 1, 1), and new solutions can be generated from old solutions by permutation or by
applying
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(x, y, z) 7! (x, y,
x2 + y2

z
). (8)

Consider the Ptolemy relation for a decorated ideal triangulation of a punctured
torus. This gives �(C)�(C 0) = �(A)2 + �(B)2 where C 0 is the fourth diagonal, or

�(C 0) =
�(A)2 + �(B)2

�(C)
. (9)

What is the relationship? In the special case that �(A) = �(B) = �(C) = 1
(equilateral; all of the horocycles touch), the Ptolemy relation allows us to compute
other �-lengths, such as the lengths of various diagonals, and these are precisely the
Markov triples we get starting from (1, 1, 1).

Figure 4: Changing triangulations on an equilateral torus.

A Markov number is a number occurring in a Markov triple.

Conjecture 8.6. For every Markov number n, the Markov triples containing n can
be connected by the transformation above without removing n.

Equivalently, the simple length spectrum of the equilateral punctured torus is
simple up to symmetries. The length spectrum is the multiset of lengths of closed
geodesics. The simple length spectrum is the multiset of lengths of closed simple (non-
intersecting) geodesics. A multiset is simple if every element occurs with multiplicity
1.
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9 Teichmüller space and Markov triples

Last time there were some exercises. One was to compute �-lengths between two
horocycles in terms of Euclidean geometry in the upper half-plane. If x is the distance
between the corresponding points on the boundary and�1,�2 are the diameters, then
this is xp

�1�2
.

Figure 1: Euclidean distances determining the �-length.

To check this, it su�ces to check that it is invariant under hyperbolic isometries,
behaves correctly with respect to scaling one of the circles, and is equal to 1 when the
circles are tangent. The only nontrivial step is invariance under inversion with respect
to some circle, but the circle determined by the geodesic connecting the boundary
points fixes both horocycles setwise, so the conclusion follows. Alternatively, we can
invert so that one of the horocycles is sent to 1.

One was to relate the Euclidean and hyperbolic Ptolemy relations. Hint: if (x, y)
is a point on the unit circle, then x2+ y2 = 1, and there is a natural way to construct
a null vector from this data.

One was to relate the cross ratio of four ideal points a, b, c, d to �-lengths. To
access the cross ratio, we will work in the upper half-plane and send three of the
points to 0, 1,1. Let the fourth point be ⌧ .

We want to compute ⌧ in terms of �-lengths, so we need to choose four horocy-
cles (one of which is at 1). Letting the diameters of the three finite horocycles be
�a,�b,�d and letting the infinite horocycle be at height yc, we have

�(a, b) =
1p

�a�b

= �(B) (1)

1



Figure 2: A decorated ideal quadrilateral in the upper half-plane.

�(a, d) =
�⌧p
�a�d

= �(A) (2)

�(c, d) =

r
yc
�d

= �(D) (3)

�(b, c) =

r
yc
�b

= �(C) (4)

and we want some combination of these which does not depend on the choice of
horocycle. This turns out to be

⌧ = ��(A)�(C)

�(B)�(D)
. (5)

We should give a more careful definition of Teichmüller space. Suppose we want
to classify hyperbolic metrics (complete, finite volume) on a (smooth) surface S. The
first method would be to look at all hyperbolic metrics, where we declare two metrics
to be equivalent if there is an isometry between them. If S is closed of genus g, this
gives the moduli space Mg. This is not a manifold but an orbifold due to metrics
with additional symmetries.

A space which is easier to parameterize is to look at all hyperbolic metrics, where
we declare two metrics to be equivalent if there is an isometry between them which is
isotopic to the identity (in the di↵eomorphism group; for surfaces, this is equivalent
to being homotopic to the identity). If S is closed of genus g, this is Teichmüller
space. Surprisingly, it is a finite-dimensional manifold of dimension 6g � 6 for g > 1
even though it is defined as the quotient of some infinite-dimensional space by some
other infinite-dimensional space.

2



When g = 1 we can instead look at Euclidean metrics on the torus modulo isome-
tries isotopic to the identity and by global scaling. By choosing an oriented basis for
homology, this can be identified with oriented pairs of vectors in R2 up to scaling and
rotation, which can be identified with the upper half-plane. If we instead quotient
by all isometries, we get the upper half-plane modulo PSL2(Z). This is the moduli
space M1.

We can also allow n punctures with cusps at the punctures (we want the metric
to remain complete and of finite volume). This gives moduli spaces Mg,n.

To relate moduli space and Teichmüller space, we should quotient Teichmüller
space by all di↵eomorphisms and not just those isotopic to the identity. The ad-
ditional symmetries by which we have to quotient are precisely the mapping class
group MCG(S). For example, M1,1 = T1,1/MCG(T 2, x), which exhibits M1,1 as the
quotient of the upper half-plane by SL2(Z).

Last time we also chose horocycles, giving us a decorated Teichmüller space T̃g,n.
This has dimension 6g�6+3n, which is the number of arcs in a triangulation. Given
a triangulation, we can measure its �-lengths to obtain a map

T̃g,n ! R6g�6+3n (6)

and this is a homeomorphism; moreover, these maps coming from triangulations
are related by exchange relations coming from the Ptolemy relation.

Last time we also discussed Markov triples, the integer solutions to x2+ y2+ z2 =
3xyz. These arise when considering lengths of the segment of a horocycle contained
in an ideal triangle that it decorates.

Figure 3: A segment of a horocycle at infinity in the upper half-plane.

This is necessarily some function of the �-lengths involved, so we want to determine

3



what this function is. Sending the corresponding horocycle to 1 in the upper half-
plane and letting its height be ya, we compute that this length is

Z 1

0

dx

ya
=

1

ya
= ha. (7)

But we want an expression in terms of �-lengths. The relevant �-lengths are

�(A) = 1p
�b�c

,�(B) =
q

ya
�c

,�(C) =
q

ya
�b

. This gives

ha =
�(A)

�(B)�(C)
. (8)

Consider now a horocycle on a punctured torus with an ideal triangulation. Let
the �-lengths be x, y, z.

Figure 4: A horocycle on a punctured torus.

The total length of the horocycle can be computed using the above to be

2

✓
x

yz
+

y

zx
+

z

xy

◆
= 2

x2 + y2 + z2

xyz
. (9)

The Markov triple equation then says precisely that the total length of the cor-
responding horocycle is equal to 6, which occurs, for example, when x = y = z = 1.
This total length is independent of triangulation, and changing triangulations corre-
sponds to getting new Markov triples.

Exercise 9.1. The above discussion was for the equilateral torus. What are �-lengths
in the square torus? What is the corresponding Diophantine equation?
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Next time we will talk about cluster algebras. These are, among other things,
algebras A with sets of distinguished variables called clusters. For any cluster C =
(xi)ni=1, the entire algebra A is contained in the ring of Laurent polynomials Q[x±

i ]
in the xi. We can also move between clusters as follows: for any C and i, there is a
unique cluster C 0 = C \ {xi} [ {x0

i} satisfying an exchange relation of the form

xix
0
i = P (x1, ...x̂i, ...xn) (10)

where P is a polynomial with two terms. There are also rules determining which
polynomials P can occur and how they are related.

The model examples to keep in mind come from surfaces. If S is a surface, possibly
with boundary, and M is a set of marked points, then a choice of hyperbolic metric
and horocycles allows us to associate to any triangulation a collection of �-lengths.
Changing the triangulation by replacing a diagonal in a quadrilateral changes the �-
lengths by a Ptolemy relation, which is an exchange relation. The �-lengths associated
to a given triangulation form the clusters of a cluster algebra of functions on decorated
Teichmüller space.

Example Consider a pentagon. We can choose horocycles so that the �-lengths
are all equal to 1. Choosing two more diagonals gives a triangulation with two new
�-lengths x1, x2.

Figure 5: A pentagon and its diagonals.

Now alternately applying quadrilateral flips to get new diagonals gives a sequence
of �-lengths xn satisfying the recurrence

xn+1xn�1 = xn + 1. (11)
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This recurrence is periodic with period 5 since there are only 5 diagonals in the
pentagon. It consists of Laurent polynomials in x1, x2, and this is not obvious. Com-
puting the terms gives

x3 =
x2

x1
+

1

x1
(12)

x4 =
1

x1
+

1

x1x2
+

1

x2
(13)

x5 =
1 + x1

x2
(14)

x6 = x1. (15)

Exercise 9.2. Consider the recurrence xn+1xn�1 = x2
n + 1. Check a few terms to

verify that we get Laurent polynomials. Can you find a surface giving rise to this
recurrence as above?
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10 Cluster algebras

Yesterday Zelevinsky gave a talk about cluster algebras.
Question from the audience: in a surface cluster algebra, we can show that the

denominators of all the relevant rational functions don’t have positive real roots (be-
cause the �-lengths described by these rational functions exist). But the theory of
cluster algebras shows that these denominators are in fact monomials (the Laurent
phenomenon). Can this be shown using some notion of complex �-lengths?

Answer: hyperbolic structures correspond to representations of the fundamental
group into PSL2(R). To complexify this, we could instead look at representations
of the fundamental group into PSL2(C). This is the group of orientation-preserving
isometries of hyperbolic space H

3.
First, some background: the isometries of H2 can be organized into three classes.

The elliptic elements fix some point, which in the disk model we can arrange to be
the origin. The hyperbolic elements fix some geodesic, which in the disk model we
can arrange to be a diameter, and also fix two points on the boundary. The parabolic
elements fix one point on the boundary.

Figure 1: The three types of isometries.

This classification is obtained as follows. An element of PSL2(R) is represented
by a 2 ⇥ 2 real matrix with two eigenvalues �,��1. It could have two distinct real
eigenvalues, in which case it can be conjugated to a diagonal matrix (hyperbolic). It
could have two complex eigenvalues, in which case � is on the unit circle (elliptic).
Or it could have a repeated eigenvalue, so �2 = 1 and � = ±1. We can choose a
representative with � = 1, in which case we obtain a Jordan block (parabolic).

Consider a closed surface with punctures (but no boundary components), with
cusps at the boundaries. Having a cusp means that the monodromy around the

1



puncture is parabolic. (Hyperbolic monodromy corresponds to a geodesic boundary
component.)

Figure 2: A cusp vs. a geodesic boundary.

Choosing a horocycle at the cusp corresponds to choosing an eigenvector of the
monodromy in R

2 up to sign, and this allows us to define �-lengths using the de-
terminant formula in a way which continues to work when PSL2(R) is replaced with
PSL2(C). Unfortunately, the corresponding �-lengths are not always defined, so this
doesn’t appear to prove the Laurent phenomenon.

We know from Zelevinsky’s talk that (some) cluster algebras can be described
using quivers (directed graphs). The quiver associated to a triangulation of a surface
has vertices the edges of the triangulation and directed edges are given by clockwise
adjacency. We need to check that mutation corresponds to changing the triangulation.

Mutation at a vertex occurs in three steps:

1. Add composite arrows through the vertex.

2. Reverse arrows through the vertex.

3. Delete all oriented 2-cycles that occur.

Doing this does indeed correspond to changing the triangulation (by a quadrilat-
eral flip).

Moreover, the �-lengths in the triangulation (relative to some choice of horocycles
and hyperbolic structure) are cluster variables with exchange relation given by the
Ptolemy relation

�(E)�(F ) = �(A)�(C) + �(B)�(D). (1)

2



Figure 3: The quiver associated to a triangulation.

Figure 4: Mutation and changing the triangulation.

Here �(F ) is the new cluster variable given by the length of the new diagonal.
In general, some vertices of the quiver are frozen and cannot be mutated (for a

surface with boundary these are the boundary edges). We can indicate the di↵erence
by drawing frozen vertices in black and non-frozen vertices in white.

The cluster algebra associated to a pentagon is finite type of type A2. We can get
A3 by triangulating the hexagon appropriately. If we reverse one of the arrows in the
corresponding quiver, we get a di↵erent triangulation of the hexagon. More generally
we can get An by triangulating an (n+ 3)-gon.

Similarly, we get Dn from a punctured n-gon. (To do this we needed to cancel an
edge, which makes the exchange relation a little di↵erent from what one expects.)

One reason to care about cluster algebras is that they occur in many di↵erent

3



Figure 5: Cluster algebras of type An from polygons.

Figure 6: The cluster algebra of type D6 from a punctured hexagon.

places for di↵erent reasons. For example, D4, which we obtain from a punctured
4-gon, also occurs when considering a cluster algebra structure on 3 ⇥ 3 matrices
obtained from considering minors.

Theorem 10.1. (Felikson, Shapiro, Tumarkin) The mutation-finite cluster algebras
are the following:

1. Surface (or orbifold) cluster algebras (including An, Dn),

4



2. Rank 2 cluster algebras,

3. 11 + 7 additional diagrams, some of which have di↵erent possible assignments
of short and long roots.

Question from the audience: is it obvious that surface cluster algebras are mutation-
finite? They may have infinitely many triangulations.

Answer: what we care about is not the number of triangulations but the number
of triangulations modulo the action of the mapping class group (since this is already
enough to determine the quiver). Up to the action of the mapping class group, a
triangulation is specified by the combinatorial data of how to glue a fixed set of
triangles together, and there are finitely many ways to do this. Alternately, there
are finitely many possible B-matrices because their entries are at most 2 in absolute
value.

Exercise 10.2. Find surfaces that give the a�ne Dynkin diagrams.

(Orientation of the arrows matters for Ãn since there is a cycle. But D̃n is acyclic
so orientation doesn’t matter there.)

Exercise 10.3. What’s a geometric surface model for D4 in the form of a quiver with
all the arrows pointing outwards? Can you see the triality symmetry?

Previously we asked for a surface cluster algebra giving the recurrence xn+1xn�1 =
x2
n + 1. This can be obtained from a (punctured) torus one of whose side lengths is

equal to 1, or alternately (by cutting the torus open) from an annulus.
Consider again the triangulation of a punctured n-gon near the puncture. We had

to cancel an edge to get Dn, and this causes the corresponding mutation to disagree
with the result we get from the Ptolemy relation.

Namely, changing triangulations at D, the Ptolemy relation gives

�(E)�(D) = �(A)�(C) + �(B)�(C) (2)

but on the cluster algebra side the exchange relation is

x(D)x(D0) = x(B) + x(A) ) x(D0) =
�(E)

�(C)
(3)

where x denotes a cluster variable; this di↵ers by a factor of 1
�(C) from the expected

answer �(E).
We can geometrically interpret the above relation as follows. For p a cusp in a

hyperbolic surface and h a horocycle around p with a the length of the horocycle, the
conjugate horocycle h̄ is the corresponding horocycle of length 1

a .

5



Figure 7: A cylinder / annulus giving the recurrence xn+1xn�1 = x2
n + 1.

Figure 8: A disagreement between the Ptolemy relation and the exchange relation.

Lemma 10.4. In a punctured monogon (a punctured ideal triangle with edges iden-
tified),

�(A)�(A0) = �(B) ) �(A0) =
�(B)

�(A)
. (4)

(A0 is the same geodesic as A, but the �-length is measured with respect to the
conjugate horocycle.)

6



Figure 9: Conjugate horocycles.

Proof. Let a be the length of the original horocycle h. We have a formula describing
this length which shows that

a =
�(B)

�(A)2
. (5)

The same formula applied to the conjugate horocycle h̄ shows that

1

a
=

�(B)

�(A0)2
. (6)

Multiplying these gives the conclusion.

We can now give a geometric interpretation to the cluster variable computation,
which is that we are computing the �-length of the new diagonal E with respect to a
conjugate horocycle.

Exercise 10.5. Another way of writing the relation for conjugate horocycles is as
follows. Let h, h0 be conjugate horocycles and let A,A0 be parallel arcs, with the length
of A0 being measured with respect to h0. Then

�(A0) = �(A)`(h) (7)

where `(h) is the hyperbolic length of h. Give a direct geometric proof of this
relationship.
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11 More about cluster algebras

Last time we discussed conjugate horocycles. This gave a relation �(A)�(A0) = �(B)
where �(A0) is a �-length measured with respec to the conjugate horocycle. On the
other hand, we know that `(h) = �(B)

�(A)2 , which gives

�(A0) = �(A)`(h) (1)

or equivalently taking logarithms,

`(A0)� `(A) = 2 ln `(h). (2)

This can be proven using a scaling argument. The result is clear when `(h) = 1,
since then the horocycle is its own conjugate. In general, a suitable scaling multiplies
`(h) by c, multiplies �(A) by 1p

c , and multiplies �(A0) by
p
c, so the conclusion follows.

Last time we also asked for a surface giving rise to the a�ne Dynkin diagrams as
quivers. To get Ãk,` we can triangulate an annulus.

Figure 1: A triangulation giving Ã2, 4.

We also asked for a surface giving rise to D4 in the orientation where all of the
arrows point outward. On the quiver level this can be obtained from the other D4 we
had by mutating twice.

The corresponding geometric exchange relation for the first mutation is

x1y = x4x3 + x3 (3)

but the actual exchange relation is

x1x
0
1 = x4 + 1. (4)
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Figure 2: A D4 with two arrows pointing inward.

As before, this suggests measuring a �-length with respect to some conjugate
horocycle.

Figure 3: A corrected version of the first mutation giving the correct exchange rela-
tion.

Question from the audience: where is the triality symmetry here?
Answer: it appears to be somewhat hidden and is not readily accessible geomet-

rically. Note that quotienting D4 by triality gives G2, which is exceptional and does
not come from a surface at all.

Another example with hidden symmetry is the 4-punctured sphere. With a tetra-
hedral triangulation, the corresponding quiver is the octahedron with a certain tri-
angulation. This octahedral quiver can be obtained from a triangulation in a second

2



Figure 4: The second mutation.

way, which gives a hidden symmetry (related to Regge symmetry?). More precisely,
it can be glued from Type II blocks (see below) in two di↵erent ways.

Figure 5: The octahedral quiver.

We will now clarify the geometric meaning of what we have been doing.
A tagged simple arc is an arc with one or both ends marked with a notch which does

not self-intersect and which does not bound a monogon or a 1-punctured monogon.
Notches can only appear at punctures in the interior and should agree at common
endpoints if an arc goes from a puncture to itself. Geometrically, a notch indicates
that �-lengths should be measured with respect to the conjugate horocycle. Two
tagged arcs are compatible if they don’t cross and if either

1. the tags agree at common endpoints or

3



2. the arcs are parallel, one is notched, and one is plain.

Figure 6: Compatible and incompatible tagged arcs.

A tagged triangulation on a surface with a fixed set of marked points is a maximal
collection of (distinct) compatible tagged arcs between marked points.

Theorem 11.1. Any tagged triangulation may be obtained from an ordinary trian-
gulation T by

1. replacing self-folded triangles with parallel arcs and

2. flipping all tags at some vertices.

We can construct quivers from a tagged triangulation. The way to remember how
this construction works is to remember the relation �(A)�(A0) = �(B) for A0 a tagged
arc parallel to A and B an arc around them. This suggests that when we replace a
self-folded triangle with parallel arcs, we e↵ectively double the corresponding vertex
in the quiver.

Conversely, to determine when a quiver can come from a tagged triangulation,
we can glue blocks together (not to themselves) along vertices in such a way that we
cancel edges of opposite orientations. Blocks can only be glued along vertices which
have not been previously glued.

Any cluster algebra occurring in this way is mutation-finite. However, we don’t
get some interesting examples, such as the exceptional series.

Exercise 11.2. Show that it is not possible to obtain E6, E7, E8 by gluing blocks.

Here is a more precise statement of the classification theorem we stated previously.
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Figure 7: Removing a self-folded triangle and doubling the corresponding vertex.

Figure 8: Blocks which glue together to form quivers coming from tagged triangula-
tions.

Theorem 11.3. Every mutation-finite skew-symmetric cluster algebra is either

1. rank 2,

2. a surface cluster algebra, or

3. E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , X6, X7.

It would be interesting to find a better proof of this.

Exercise 11.4. Where is the default quiver in Bernhard Keller’s applet on the above
list? Can you mutate it to get to a standard form?
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Figure 9: The exceptional diagrams En, Ẽn, and E
(1,1)
n .

Figure 10: The exceptional diagrams X7, X6.

Some of the entries in the above list, such as E6, E7, E8, are not only mutation-
finite but of finite type (finitely many cluster variables). The a�ne ones Ẽ6, Ẽ7, Ẽ8

are not mutation-finite, but the number of clusters reachable after n mutations is
O(n) rather than exponential for most quivers.

Exercise 11.5. Mutate the punctured hexagonal quiver to obtain the D6 quiver.
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Figure 11: Bernhard Keller’s default quiver.

Figure 12: The punctured hexagon and D6.

7



274 Curves on Surfaces, Lecture 11

Dylan Thurston

Fall 2012



12 Cross-ratio coordinates

Last time we asked for a quiver mutation-equivalent to the default one in Bernhard
Keller’s applet. As stated on Keller’s page, this is E(1,1)

8 . One way to see this would
be to count vertices and then attempt to rule out that the quiver comes from a surface
using the classification in terms of blocks.

Last time we also asked for a proof that E8 cannot be obtained by gluing blocks.
First, type IV and V blocks cannot occur because E8 is acyclic and the cycles in type
IV and V cannot be removed by gluing. Type III blocks cannot occur because E8

does not have a tail of two black vertices. This leaves blocks of type I and II from
which it is impossible to construct a trivalent vertex of the type that occurs in E8

(after some additional case analysis).
Recall that the cross-ratio of four points a, b, c, d is defined as follows: we send

a ! 0, b ! 1, c ! 1, and examine where d goes. A straightforward argument shows
that

d 7! (d� a)(b� c)

(d� c)(b� a)
= [d, b; a, c]. (1)

We will use the negative of the cross ratio ⌧ because positivity properties are
important.

Figure 1: Construction of the cross ratio. (⌧ should be �⌧ .)

Some basic properties:

1. [d, b; a, c] is a projective invariant of a, b, c, d; every other such projective invari-
ant is a function of it.

1



2. [d, b; a, c] = [b, d; a, c]�1 = [d, b; c, a]�1. As a corollary, [d, b; a, c] = [b, d; c, a], and
so there is no need to orient the diagonal edge.

3. The action of S4 permutes the six possible values of ⌧ generated by ⌧ 7! 1
⌧ and

⌧ 7! 1� ⌧ .

⌧ = �[d, b; a, c] has other interpretations besides the cross-ratio. It is also a ratio
of Euclidean lengths (and phases) B·D

A·C in both the upper half plane and the disk
model.

Figure 2: Euclidean distances.

It is also a ratio of �-lengths

⌧(E) =
�(B)�(D)

�(A)�(C)
. (2)

For a more geometric interpretation, we can look at where two angle bisectors
intersect on the diagonal. It is reasonable to call these midpoints. They don’t intersect
at the same point, and the distance between them is the shear ln d

b if a is sent to the
origin.

So in general we have

⌧ = eshear. (3)

In general, any geometric quantity is some function of the cross-ratio, so for ex-
ample we also have the following.

Exercise 12.1. If ` is the length between two opposite sides, then cosh2
�
`
2

�
= ⌧ + 1,

whereas for the other pair of opposites sides, cosh2
�
`0

2

�
= 1 + 1

⌧ .
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Figure 3: Shear and its relationship to the cross-ratio.

Hint: put the quadrilateral in a more symmetric form.
If ✓ denotes the angle between the two diagonals, we also have

cos ✓ =
x� y

x+ y
=

1� ⌧

1 + ⌧
(4)

or, slightly more nicely,

cos2
✓
✓

2

◆
=

1

1 + ⌧
. (5)

Figure 4: The angle between the two diagonals.
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What happens to ⌧ when changing triangulations? Using the interpretation in
terms of �-lengths, we have

⌧(E) =
�(B)�(D)

�(A)�(C)
, ⌧(F ) =

�(C)�(A)

�(B)�(D)
(6)

so ⌧ gets sent to 1
⌧ .

Figure 5: Changing triangulations.

This seems very nice. But when we try to generalize these coordinates to polygons
with more sides, shear coordinates depend not only on how an edge changes but on
how its neighbors change. So when we add more edges, we get shear coordinates like

⌧(A) =
�(Q)�(E)

�(P )�(F )
(7)

which gets transformed to

⌧ 0(A) =
�(Q)�(D)

�(P )�(F )
= ⌧(A)

1

1 + ⌧(E)�1
. (8)

This factor measures the exponential of the distance between two angle bisectors.
Similarly, we find that

⌧ 0(B) = ⌧(B)(1 + ⌧(E)) (9)

⌧ 0(C) = ⌧(C)
1

1 + ⌧(E)�1
(10)

⌧ 0(D) = ⌧(D)(1 + ⌧(E)). (11)
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Figure 6: The distance between two angle bisectors.

We have a map from �-coordinates to ⌧ -coordinates. We know that the former
parameterizes decorated Teichmüller space. ⌧ -coordinates do not depend on a choice
of horocycle and hence parameterize ordinary Teichmüller space.

But there is someting funny going on. Consider the once-punctured torus.

Figure 7: A once-punctured torus.

We parameterized this by three �-lengths �(A),�(B),�(C) and now we are pa-
rameterizing it by three shear coordinates ⌧(A), ⌧(B), ⌧(C) and we are forgetting a
horocycle, so this map cannot be surjective. In fact,

⌧(A) =
�(B)2

�(C)2
, ⌧(B) =

�(C)2

�(A)2
, ⌧(C) =

�(A)2

�(B)2
(12)
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so it follows that ⌧(A)⌧(B)⌧(C) = 1.
In general, for every puncture, we forget a horocycle, so we should expect a cor-

responding relation.

Figure 8: A punctured pentagon.

We get that

Y

i

⌧(Ai) = 1 (13)

where Ai are the arcs incident to a puncture. What does this mean geometrically,
and what do the corresponding ⌧ -coordinates parameterize if we drop this restriction?

Inside each triangle adjacent to a puncture, we can measure the distance between
the horocycle and midpoints (we will do this in the upper half-plane with the horocycle
at infinity). As we move from triangle to triangle, these distances change by shears,
and moving all the way around, the sum of the shears must be 0. The above is the
exponential of this relation.

Alternately, on the upper half-plane, shear coordinates are ratios of Euclidean
lengths ⌧(Ai) =

xi
xi+1

. The condition that these ratios multiply to 1 is precisely the
condition that the two possible lifts of the initial triangle to the upper half-plane have
the same width, which in turn expresses the fact that the monodromy around the
puncture is a parabolic element (translation).

What if we drop this condition
Q

⌧(Ai) = 1? Consider a single triangle with two
sides identified (alternately, a monogon). There are two midpoints involved, and we
do not need to identify the sides so that the midpoints match; in general they can
have shear. Correspondingly we get a geometric series of lifts to the upper half-plane
which get smaller and smaller.
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Figure 9: Shears along a horocycle.

Figure 10: A triangle with two sides identified whose midpoints don’t match.

We still get a hyperbolic metric on the punctured monogon, but it is not complete.
Trying to draw a horocycle in the upper half-plane will give a spiral which does not
close in on itself.

However, we can fix this by completing. In the upper half-plane we do this by
adding the limit geodesic of the geometric series of lifts, which appears as extra
geodesic boundary.

Exercise 12.2. What is the length of the new boundary?

Exercise 12.3. What determines the direction of spiraling? (There are two things
that are spiraling, namely the horocycle and the geodesic arc in the triangulation.)

7



Figure 11: Geodesic boundary and a spiraling horocycle.

Hence the map from �-coordinates to ⌧ -coordinates has image in a Teichmüller
space which includes the possibility of geodesic boundaries where the cusps were. It
factors through a Teichmüller space which only describes cusps.
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13 Laminations and compactifying Teichmüller space

We want to compactify (decorated) Teichmüller space T̃g,n. One reason we might
want to do this is the following: the mapping class group acts on Teichmüller space
and we would like to understand the resulting dynamics. However, on a noncompact
space this is di�cult to do. We have an embedding from decorated Teichmüller space
to RI given by taking lengths of arcs in a triangulation, but this uses a choice of
triangulation and we would like something that doesn’t depend on choices so that we
can get a natural action of the mapping class group.

We therefore take the lengths of all arcs rather than arcs in a fixed triangulation.
This gives now an embedding in an infinite-dimensional Euclidean space. This space
in turn embeds into a corresponding projective space, and we define the compactifi-
cation to be the closure in this projective space. (We can also do this for undecorated
Teichmüller space by taking the lengths of all simple closed curves instead of the
lengths of arcs in a triangulation, which gives a compactification T g,n.) This is the
Thurston compactification.

The mapping class group still acts on the Thurston compactiication. Moreover:

Theorem 13.1. T g,n is a ball.

It follows by the Brouwer fixed point theorem that any element of the mapping
class group acting on T g,n has a fixed point.

What happens to the Ptolemy relation in the compactification?

Figure 1: A heuristic picture of a sequence in Teichmüller space heading to infinity
in its compactification.

Working in a projective space corresponds to rescaling lengths by some constant:

`
R(A) =

`(A)

k
. (1)

1



The e↵ect on �-lengths is

�
R(A) = �(A)1/k. (2)

The Ptolemy relation now looks like

�
R(E)�R(F ) = �

R(A)�R(C)�k �
R(B)�R(D) (3)

where

x�k y = k
p

xk + yk. (4)

As k ! 1, we have

lim
k!1

x�k y = max(x, y). (5)

Rewriting in terms of renormalized lengths, we get

`
R(E) + `

R(F ) = max(`R(A) + `
R(C), `R(B) + `

R(D)). (6)

Proposition 13.2. The above identity holds at all points in compactified Teichmüller
space which do not lie in Teichmüller space.

In other words, compactifying tropicalizes the Ptolemy relation.
Earlier we saw this relation when looking at intersection numbers of curves crossing

a triangulation. This suggests that simple closed curves give points in compactified
Teichmüller space. We would like to see this geometrically.

Begin with a surface with a hyperbolic structure and a simple closed curve L in
that surface. We will construct a sequence of hyperbolic structures going to infinity
by placing a long neck where L is.

Figure 2: A lengthening neck.

2



As the neck gets longer, the length of any curve C is dominated by the number
of times it crosses L (up to a constant); that is,

`(C) = k · i(C,L) +O(1). (7)

As k ! 1, the lengths of curves approach their intersection numbers in projective
space.

More formally, fix a hyperbolic metric ⌃0. Find a geodesic representative for
L. Insert a Euclidean cylinder of width t at L. This is enough to get a conformal
structure, and then we can uniformize to get a new hyperbolic structure ⌃t.

Example Consider the punctured torus, so the Teichmüller space T1,1. Recall that
this can be naturally identified with the hyperbolic plane (which is mildly confusing),
and the mapping class group is the usual action of SL2(Z) (so the moduli space can
be identified with the usual fundamental domain). Punctured tori can be represented
as the quotient of C by the discrete subgroup spanned by two linearly independent
z, w 2 C.

The boundary of Teichmüller space should be the usual boundary of the hyperbolic
plane. Simple closed curves on the torus with rational slope can then be identified
with points on the boundary by looking at how inserting cylinders increases the length
of the vectors z, w.

Figure 3: Simple closed curves in a torus and the corresponding boundary points in
T 1,1.

Exercise 13.3. What simple closed curve corresponds to the limit point at 3
5?
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We now know that limit points of the compactification of Teichmüller space cor-
respond to tropical solutions to the Ptolemy relations. Integral (rational) limit points
correspond to simple closed curves, but this only gives countably many limit points.
The real limit points correspond to laminations.

More precisely, an integral decorated lamination L is a collection of distinct simple
closed nontrivial curves with positive weights except that curves surrounding a marked
point can have negative weight. These weights describe possible limit behaviors of
sequences of decorated hyperbolic structures.

Figure 4: A lamination. The dashed line indicates a negative weight.

We can measure lengths by counting intersection numbers with weights:

`(A) = i(L,A). (8)

Exercise 13.4. What should the weight of a notched arc be?

Before we move on to laminations, we should return to the punctured torus with
a line of rational slope. R2 minus the punctures has a hyperbolic metric, and hyper-
bolically, geodesics will avoid punctures.

More precisely:

Theorem 13.5. Around each cusp in a hyperbolic surface, simple geodesics do not
enter in a horocycle of circumference 2.

In other words, although lines of rational slope look straight in the Euclidean
sense, they clump up dramatically in the hyperbolic metric. These clumps look like
Cantor sets.

We are now ready to discuss the complete definition of a lamination. A geodesic
lamination of a hyperbolic surface is a collection of simple geodesics {�↵} whose unionS

�↵ is closed.

4



Figure 5: Geodesics avoiding a puncture.

Example Any simple closed curve is a geodesic lamination.

Example Any geodesic that spirals to a closed geodesic (together with the limiting
closed geodesic) is a geodesic lamination.

Figure 6: Some atypical examples of laminations.

These are not typical examples. Typically a lamination looks locally like a Cantor
set cross the interval.

We want weights as above. A measured lamination L is a lamination with a
transverse measure, namely, a measure on each transverse arc supported on its inter-
section of L which is transversely invariant in the sense that transverse arcs which
are transverse isotopic have the same measure.

Measured laminations give rise to coordinates as follows: we associate to an arc
between punctures its total measure.

It is not obvious how to write down measured laminations.

Example A spiraling lamination has no positive measure. Isotoping an arc around
the spiral shows that no part of the spiral has positive weight.

5



Figure 7: A transverse isotopy between transverse arcs.

Figure 8: A spiraling lamination.

However, we can write down measured laminations using train tracks.

Figure 9: A train track.
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Train tracks have an operation defined on them called splitting, and by repeatedly
splitting a train track we get something approximating a measured lamination.

Figure 10: Splitting a train track.
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14 More about laminations

Recall that last time we were trying to understand the Thurston compactification of

(decorated) Teichmüller space. When we did this we got points whose coordinates

satisfied the tropical Ptolemy relations. We can imagine doing this for other kinds of

Teichmüller space:

Teichmüller space Coordinates Integer limits Coordinates

T̃g,n �-lengths Integer laminations Intersections

Tg Lengths of closed curves Integer laminations Intersections

Tg,0,n Shear coordinates ? ?

Here Tg,0,n denotes the Teichmüller space of surfaces with no punctures but with

geodesic boundary, and we should take logarithms of shear coordinates before pro-

jectivizing because they behave multiplicatively. We do not yet know what the cor-

responding limit points of the Thurston compactification are.

Recall that one geometric interpretation of the cross-ratio was in terms of the

distance (shear) between two midpoints obtained by dropping angle bisectors: if d is

this distance, then ⌧ = ed. Recall also that we obtained limit points by inserting a

simple multicurve and inserting necks; then in the limit, lengths become proportional

to intersection numbers.

Accordingly, we should count intersections of the segment between two midpoints;

these are also called shear coordinates. We will count these with sign: in one direction

they will be assigned +1 while in another direction they will be assigned �1.

Alternately, for any choice of decoration we had

⌧(E) =
�(B)�(D)

�(A)�(C)
. (1)

Tropicalizing this relation gives almost, but not quite, the right answer: since

�(A) = e
`
2 , we should take

shear(E) =
`(B) + `(D)� `(A)� `(C)

2
. (2)

If we don’t want to use decorations, we should work with infinitely many curves

since ideal polygons have sides of infinite length. This gives in the limit a kind

of metric space where the distance between two points is given by the intersection

number of a geodesic between them. We can identify points at distance zero, and

then a triangle with infinitely many curves at the vertices (since an ideal triangle has

infinite length) becomes an infinite tripod tree. Gluing two such triangles together

to obtain a quadrilateral gives us a metric tree.

1



This gives limit points described by multicurves such that there are infinitely many

curves around punctures, some of which may be spiraling (to account for geodesic

boundary). These are unbounded laminations.

Exercise 14.1. How do these shear coordinates transform under change of triangula-

tion? Compare to the geometric answer (from points in noncompactified Teichmüller

space).

When we draw a geodesic representative of a complicated multicurve on, say, the

4-punctured sphere, it does not look much like a curve because it becomes very close

to itself. What we get looks more like a train track. As the curve becomes more

complicated (under the action of the mapping class group) we get something which

should describe a limit point in the compactification, which corresponds to a train

track with real weights. In this particular case we should replace Fibonacci numbers

with the corresponding powers of the golden ratio.

Exercise 14.2. Apply the mapping class group element we have been applying to the

limit train track. Check that you get the same thing up to scale and splitting.

(It is probably a better idea to apply the inverse, which will make the train track

simpler rather than more complicated.)

This reflects the fact that the Thurston compactification is a ball, so any element

of the mapping class group has a fixed point. In general, studying the action of the

mapping class group on the Thurston compactification led Thurston to the following

theorem.

Theorem 14.3. Every element � of the mapping class group is in one of the following

three categories:

1. � has finite order.

2. � is reducible: it fixes a finite collection of closed curves (e.g. Dehn twist)

(possibly permuting them).

3. � is pseudo-Anosov: it fixes exactly two points in the Thurston compactification,

neither of which are points in Teichmüller space. Call these two projective

measured laminations L+, L�. The lamination L+ is, in an appropriate sense,

limn!1 �n
(c) for any nontrivial multicurve c, and L� is, in an appropriate

sense, limn!1 ��n
(c).

This is analogous to the classification of hyperbolic isometries into elliptic, parabolic,

and hyperbolic elements. For example, � finite order turns out to be equivalent to

the claim that � fixes a hyperbolic structure.
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16 Orbifolds (Felikson)

Roughly speaking, a (2-dimensional) orbifold is the quotient of a surface by the action
of a discrete group. These look like surfaces, possibly with boundary, some of whose
points are orbifold points.

Example Consider the quotient of the disk D2 by negation. This is just a cone; the
cone point (orbifold point) is at the origin and has an angle of ⇡.

Figure 1: Quotienting a disk to obtain an orbifold.

Orbifolds are relevant to the complete statement of the classification of cluster
algebras of finite mutation type. Recall that this classification was previously stated
as follows:

Theorem 16.1. (Shapiro, Tumarkin, Felikson) A cluster algebra with skew-symmetric

matrix of finite mutation type is one of the following types:

1. Rank 2,

2. A surface cluster algebra,

3. 11 other exceptions.

However, the full classification is for skew-symmetrizable matrices (matrices B
such that there exists a diagonal matrix D such that BD is skew-symmetric). Now,
we know that skew-symmetric matrices can be represented by quivers and quivers
coming from surfaces are the block-decomposable ones.

1



Skew-symmetrizable matrices may be studied using certain diagrams (which do
not capture everything about the matrix). We associate to an entry bij > 0 in such
a matrix a pair of vertices i, j and an edge between them labeled �bijbji. These
diagrams may be mutated like quivers as follows: a mutation at k

1. reverses arrows incident to k,

2. modifies triangles incident to k and their labels in such a way that
p
r+

p
r0 =p

pq in the image below.

Figure 2: A diagram mutation.

The more general classification is the following.

Theorem 16.2. (Shapiro, Tumarkin, Felikson) A cluster algebra with skew-symmetrizable

matrix of finite mutation type is one of the following types:

1. Rank 2,

2. Obtained from blocks,

3. 11 + 7 other exceptional diagrams.

The blocks used here include the blocks we used to construct quivers coming
from surfaces, but with five new blocks. They may be thought of as coming from
triangulations of orbifolds.

We require all of the orbifold points to be cone points of angle ⇡. A triangulation of
such an orbifold is a maximal compatible set of arcs, where an arc may have endpoints
either marked points or orbifold points, and compatibility means non-crossing and

2



Figure 3: Blocks and the triangulations of orbifolds from which they arise.

also means that we forbid two arcs from having endpoint the same orbifold point. We
allow our arcs to be tagged on ends which are not attached to orbifold points (since
orbifold points do not have horocycles associated to them).

Figure 4: Quotienting a triangulation to obtain an orbifold triangulation.

We also need to decide what flips between triangulations are for arcs with an
orbifold endpoint. These are obtained by removing the arc and drawing the only
other compatible arc.

Theorem 16.3. Flips act transitively on tagged triangulations of orbifolds.
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We can build diagrams from tagged triangulations of orbifolds in the same way
as before, except that edges coming to or from an arc with an orbifold endpoint
should be labeled by a 2 (and edges coming both to and from an arc with an orbifold
endpoint should be labeled by a 4). Mutation of diagrams then corresponds to flips
of triangulations, and any diagram we obtain in this way decomposes into blocks.

We cannot reconstruct a skew-symmetrizable matrix from a diagram because we
have lost information in only labeling by �bijbji. This can be fixed by assigning
weights to vertices given by the corresponding entries of the diagonal matrix D sym-
metrizing the matrix.

Figure 5: Using weights on vertices to reconstruct matrix entries.

In a block decomposition with weights, all white vertices necessarily have the same
weight w, and all black vertices have weight either 2w or w

2 .
Hence we should use weighted orbifolds, namely orbifolds such that their orbifold

points are marked either 2 or 1
2 . These are the geometric objects associated to the

second type of cluster algebra in the theorem above. From such data we can choose
a triangulation, then build a weighted diagram, from which we can recover a skew-
symmetrizable matrix.

We would now like to introduce hyperbolic structure (so we can assign �-lengths,
etc.). We first restrict our attention to the case that all of the orbifold points have
weight 1

2 . We make all ordinary triangles ideal hyperbolic triangles, and we obtain
orbifold points by symmetrically gluing ideal hyperbolic triangles (dropping an angle
bisector). We may now decorate with horocycles (keeping in mind that there are
no horocycles around orbifold points), and we define �-lengths as before, with the
�-length of an arc with an orbifold endpoint the �-length of its lift to a symmetrically
glued ideal hyperbolic triangle.

The Ptolemy relation can look di↵erent here.
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To accommodate orbifold points of weight 2, it is necessary to replace them by
special marked points. These marked points are special because they assigned a
self-conjugate horocycle.

With the above convention, �-lengths parameterize the Teichmüller space associ-
ated to the orbifold.

Example The quiver Bn can be realized using one orbifold point. It is a quotient of
Dn.

Figure 6: The Bn quiver as a quotient of the Dn quiver.

Example The quiver Cn can be realized using one orbifold point. It is a quotient of
A2n�1.

It is a natural question to ask whether any orbifold can be realized as a quotient
of an ordinary surface. If there are an even number of orbifold points of weight 1

2 ,
we can pair them up and cut along lines connecting them. If there is more than one
orbifold point of weight 1

2 , then we can pair up two of them and cut, and this doubles
the remaining number of orbifold points. If the boundary is nonzero, we can cut
along a line connecting an orbifold point and a point on the boundary. Finally, if our
surface is not S2, we can cut along a non-contractible loop.

The remaining case is when the surface is S2 with one orbifold point of weight 1
2 ;

this orbifold cannot be realized as a quotient.
Laminations and skein relations work well in this formalism.
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Figure 7: The Cn quiver as a quotient of the A2n�1 quiver.
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16 Orbifolds (Felikson)

Roughly speaking, a (2-dimensional) orbifold is the quotient of a surface by the action
of a discrete group. These look like surfaces, possibly with boundary, some of whose
points are orbifold points.

Example Consider the quotient of the disk D2 by negation. This is just a cone; the
cone point (orbifold point) is at the origin and has an angle of ⇡.

Figure 1: Quotienting a disk to obtain an orbifold.

Orbifolds are relevant to the complete statement of the classification of cluster
algebras of finite mutation type. Recall that this classification was previously stated
as follows:

Theorem 16.1. (Shapiro, Tumarkin, Felikson) A cluster algebra with skew-symmetric

matrix of finite mutation type is one of the following types:

1. Rank 2,

2. A surface cluster algebra,

3. 11 other exceptions.

However, the full classification is for skew-symmetrizable matrices (matrices B
such that there exists a diagonal matrix D such that BD is skew-symmetric). Now,
we know that skew-symmetric matrices can be represented by quivers and quivers
coming from surfaces are the block-decomposable ones.
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Skew-symmetrizable matrices may be studied using certain diagrams (which do
not capture everything about the matrix). We associate to an entry bij > 0 in such
a matrix a pair of vertices i, j and an edge between them labeled �bijbji. These
diagrams may be mutated like quivers as follows: a mutation at k

1. reverses arrows incident to k,

2. modifies triangles incident to k and their labels in such a way that
p
r+

p
r0 =p

pq in the image below.

Figure 2: A diagram mutation.

The more general classification is the following.

Theorem 16.2. (Shapiro, Tumarkin, Felikson) A cluster algebra with skew-symmetrizable

matrix of finite mutation type is one of the following types:

1. Rank 2,

2. Obtained from blocks,

3. 11 + 7 other exceptional diagrams.

The blocks used here include the blocks we used to construct quivers coming
from surfaces, but with five new blocks. They may be thought of as coming from
triangulations of orbifolds.

We require all of the orbifold points to be cone points of angle ⇡. A triangulation of
such an orbifold is a maximal compatible set of arcs, where an arc may have endpoints
either marked points or orbifold points, and compatibility means non-crossing and
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Figure 3: Blocks and the triangulations of orbifolds from which they arise.

also means that we forbid two arcs from having endpoint the same orbifold point. We
allow our arcs to be tagged on ends which are not attached to orbifold points (since
orbifold points do not have horocycles associated to them).

Figure 4: Quotienting a triangulation to obtain an orbifold triangulation.

We also need to decide what flips between triangulations are for arcs with an
orbifold endpoint. These are obtained by removing the arc and drawing the only
other compatible arc.

Theorem 16.3. Flips act transitively on tagged triangulations of orbifolds.
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We can build diagrams from tagged triangulations of orbifolds in the same way
as before, except that edges coming to or from an arc with an orbifold endpoint
should be labeled by a 2 (and edges coming both to and from an arc with an orbifold
endpoint should be labeled by a 4). Mutation of diagrams then corresponds to flips
of triangulations, and any diagram we obtain in this way decomposes into blocks.

We cannot reconstruct a skew-symmetrizable matrix from a diagram because we
have lost information in only labeling by �bijbji. This can be fixed by assigning
weights to vertices given by the corresponding entries of the diagonal matrix D sym-
metrizing the matrix.

Figure 5: Using weights on vertices to reconstruct matrix entries.

In a block decomposition with weights, all white vertices necessarily have the same
weight w, and all black vertices have weight either 2w or w

2 .
Hence we should use weighted orbifolds, namely orbifolds such that their orbifold

points are marked either 2 or 1
2 . These are the geometric objects associated to the

second type of cluster algebra in the theorem above. From such data we can choose
a triangulation, then build a weighted diagram, from which we can recover a skew-
symmetrizable matrix.

We would now like to introduce hyperbolic structure (so we can assign �-lengths,
etc.). We first restrict our attention to the case that all of the orbifold points have
weight 1

2 . We make all ordinary triangles ideal hyperbolic triangles, and we obtain
orbifold points by symmetrically gluing ideal hyperbolic triangles (dropping an angle
bisector). We may now decorate with horocycles (keeping in mind that there are
no horocycles around orbifold points), and we define �-lengths as before, with the
�-length of an arc with an orbifold endpoint the �-length of its lift to a symmetrically
glued ideal hyperbolic triangle.

The Ptolemy relation can look di↵erent here.
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To accommodate orbifold points of weight 2, it is necessary to replace them by
special marked points. These marked points are special because they assigned a
self-conjugate horocycle.

With the above convention, �-lengths parameterize the Teichmüller space associ-
ated to the orbifold.

Example The quiver Bn can be realized using one orbifold point. It is a quotient of
Dn.

Figure 6: The Bn quiver as a quotient of the Dn quiver.

Example The quiver Cn can be realized using one orbifold point. It is a quotient of
A2n�1.

It is a natural question to ask whether any orbifold can be realized as a quotient
of an ordinary surface. If there are an even number of orbifold points of weight 1

2 ,
we can pair them up and cut along lines connecting them. If there is more than one
orbifold point of weight 1

2 , then we can pair up two of them and cut, and this doubles
the remaining number of orbifold points. If the boundary is nonzero, we can cut
along a line connecting an orbifold point and a point on the boundary. Finally, if our
surface is not S2, we can cut along a non-contractible loop.

The remaining case is when the surface is S2 with one orbifold point of weight 1
2 ;

this orbifold cannot be realized as a quotient.
Laminations and skein relations work well in this formalism.
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Figure 7: The Cn quiver as a quotient of the A2n�1 quiver.
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18 The Laurent phenomenon (Kalman)

The Laurent phenomenon is a phenomenon by which various recurrences defined by

rational functions turn out to be Laurent polynomials in the first few terms. If the

first few terms are set to 1, then the remaining terms become integers even though

the recurrence divides by previous members of the term. For example, consider the

sequence

yk =
yk�3yk�1 + y2k�2

yk�4
(1)

with initial conditions y1 = y2 = y3 = y4 (Somos-4).

Cluster algebras provide a natural setting for studying the Laurent phenomenon

via the exchange relation (Fomin, Zelevinsky).

Theorem 18.1. In a cluste ralgebra, any cluster variable is expressed in terms of
any given cluster as a Laurent polynomial with coe�cients in the group ring ZP.

We will instead prove a more general result, the Caterpillar Lemma. This is a

statement about a sequence Tn,m of trees. This has m vertices of degree n in its

spine.

Figure 1: The caterpillar T4,8.

We will label the edges emanating from each vertex with di↵erent labels and we

will associate an exchange polynomial P 2 A[x1, ...xn], not involving xk, to every edge

(here A is a UFD). This is a generalized exchange pattern.

Associate to t0 the initial cluster x(t0) of n independent variables. To each vertex

t 2 Tn,m, we associate a cluster x(t). The variables in this cluster are uniquely

determined by the exchange relations, for an edge labeled by k and P :

1



xi(t) = xi(t
0
), i 6= k (2)

xk(t)xk(t
0
) = P (x(t)). (3)

Lemma 18.2. (Caterpillar) Suppose a generalized exchange pattern on Tn,m satisfies
the following conditions:

1. for any edge labeled by k and P , the polynomial P does not involve xk and is
not divisible by any xi.

2. For any two consecutive edges labeled by i, P and j, Q, the polynomials P and
Q0 = Q|xi=0 are coprime.

3. For any three consecutive edges labeled by i, P and j, Q and i, R, we have

LQb
0P = R

xj 
Q0
xj

(4)

where b is a non-negative integer and L is a Laurent monomial whose coe�cients
lie in A and which is coprime to P .

Then each xi(t), t 2 Tn,m is a Laurent polynomial in x1(t0), ...xn(t0) with coe�-
cients in A.

Proof. For t 2 Tn,m let L(t) be the ring of Laurent polynomials in x(t). Abbreviate

L0 = L(t0). We proceed by induction on m (the length of the spine). This is

straightforward for m = 1, so assume m � 2 and that the statement is true for all

caterpillars with smaller spine.

We will need a lemma. Suppose the path from t0 to thead starts with edges la-

beled by i and j and consider the unique next edge labeled by i. Then the clusters

x(t1),x(t2),x(t3) are all in L0, and in addition gcd(xi(t3), xi(t1)) = gcd(xj(t2), xi(t1)) =
1. The proof of this last statement involves the third condition.

Returning to the proof, by the inductive hypothesis X = xk(thead) belongs to both

L(t1) and L(t3). We further claim that X =
f

xi(t1)a
for some f 2 L0 and some a � 0.

This follows from the fact that X 2 L(t1) and that xi(t1) =
P
xi

2 L0.

Similarly, we claim that X =
g

xj(t2)bxi(t3)c
for some g 2 L0 and some b, c � 0. This

follows from the fact that X 2 L(t3), the fact that xi(t3), xj(t3) 2 L0 by the lemma,

and the fact that xj(t3) = xj(t2) 2 L0.

We conclude that
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X =
f

xi(t)a
=

g

xj(t2)axi(t3)c
. (5)

From the second part of the lemma, gcd(xi(t3), xi(t1)) = 1, gcd(xj(t2), xi(t1)) = 1,

so X 2 L0 as desired.

Good news: the Caterpillar Lemma can prove Laurentness in many situations.

Bad news: it is often not trivial to rephrase a given problem in the Caterpillar Lemma

framework. For example, when describing the caterpillar graph for the Somos-4 se-

quence, it is not obvious what the exchange polynomials on the legs should be. See

Fomin-Zelevinsky for details.

19 Miscellaneous

Some sequences exhibiting the Laurent phenomenon like the Somos-7 sequence

xkxk+7 = xk+1xk+6 + xk+2xk+5 + xk+3xk+4 (6)

cannot be described using cluster algebras (we would need the RHS to consist of

two terms). Lam and Pylyavskyy have a notion of Laurent phenomenon algebra that

addresses this.

Consider surfaces with boundary components and no marked points.

Figure 2: A surface with boundary components and no marked points.

We can write down what the exchange relations for the corresponding cluster

algebra looks like using the skein relation.

3



Figure 3: An application of the skein relation.

Figure 4: Another application of the skein relation.

This gives an exchange relation with three terms on the RHS (so not a cluster

algebra): more specifically,

xx0 = y2 + z2 + yzw. (7)

There are two special cases. When w = 0, this has two terms. When w = 2, we

should take
p
x,
p
x0 as the cluster variables, and then their product is y + z.

More geometrically, recall that for closed curves the �-length is 2 cosh
�
`
2

�
, or the

trace of the monodromy. When w = 2 we have ` = 0 (a cusp) and when w = 0 we are

instead at a cone point and we should replace the hyperbolic cosine with the usual

cosine of the angle, which is ⇡ at an order 2 cone point. In the case that w = 2, we

4



added square roots because we are looking at a self-conjugate horocycle.

Figure 5: Self-conjugate horocycles and square roots. Here t =
p
s.

Let’s return to skein theory. Last time we forgot an extra relation, namely that a

loop around a puncture evaluates to 2.

Figure 6: Relations for skein theory.

Not including this relation gives a sensible skein algebra, but one which has a zero

divisor.

With this extra relation it is not completely obvious that these relations are con-

sistent (that is, that the basis is still what we expect it to be). This can be proven

using the diamond lemma (Bergman). This is a lemma about a system of reductions

(e.g. relations replacing some terms by other terms in a presentation of an algebra).

This system of reductions is required to have the following properties:

5



Figure 7: A zero divisor.

1. Local confluence: if R1, R2 are two reductions of some x, there is some further

chain of reductions which makes them equal.

2. Any chain of reductions terminates.

Figure 8: A diamond describing local confluence.

With these hypotheses, any two chains of reductions from x ends at the same

place. This proceeds by induction on the length of chains.

These hypotheses are straightforward to verify for the skein relations.

6



Figure 9: The inductive step.
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20 Skein theory and the Laurent phenomenon

Skein theory for tagged arcs requires an extra relation beyond the ones we have used
so far.

Figure 1: The complete set of relations.

Exercise 20.1. Check that these reductions satisfy the hypotheses of the diamond
lemma.

We can induce an order on diagrams by considering its complexity, which is a
triple (t(D), c(D), r(D)) where t(D) is the number of tag mismatches, c(D) is the
number of crossings, and r(D) is the number of reducible components (loops bounding
disks and arcs bounding monogons), ordering diagrams by lexicographic order on
their complexity, and ordering linear combinations by sorting the complexities of the
components.

Theorem 20.2. The skein algebra Sk(⌃) of a surface ⌃ has the following properties:

1. It has a basis of simple curves (those with complexity (0, 0, 0)).

2. Elements are invariant under regular isotopy (RII, RIII, RIIb) and change by
�1 under RI.

3. Multiplication is given by superimposing curves and is well-defined (independent
of how the superposition is done).

If T is a triangulation of ⌃, we have a sequence of inclusions

1



Figure 2: The various Reidemeister moves.

Z[T ] ⇢ A(⌃) ⇢ Sk(⌃) ⇢ A+(⌃) ⇢ Z[T±1] ⇢ Q(T ) = K(⌃) (1)

where Z[T ] is the ring of polynomials in the arcs in T , A(⌃) is the cluster algebra
of ⌃, A+(⌃) is the upper cluster algebra (the rational functions of the arcs that are
integral Laurent polynomials in any cluster), Z[T±1] is the ring of integral Laurent
polynomials in the arcs in T , and Q(T ) = K(⌃) is the fraction field of any of the
above.

The inclusion Sk(⌃) ⇢ A+(⌃) is obtained as follows. As for quantum skeins, we
have the following lemma.

Lemma 20.3. If A is a simple arc and C any curve, then for su�ciently large n,
hC · Ani 2 Sk(⌃) has only terms which are compatible with (do not cross) A.

It follows that if T is a triangulation consisting of arcs Ai, then we can find a
monomial

Q
Ani

i such that hC ·
Q

Ani
i i is compatible with T , hence is a polynomial

in the Ai. Once we know that we can divide by the Ai, it follows that hCi ⇢ Z[T±1]
is a Laurent polynomial in every cluster.

Proof. Without tags, assume that C is simple and that C and A intersect n times.
Expanding all of these intersections using the skein relations, we usually obtain two
terms with n�1 intersections and all of the remaining terms have even fewer intersec-
tions. (However, sometimes it is possible to get fewer than n� 1 intersections.)

Example Consider an arc C in a triangulated annulus with arcs A0, A1. We compute
that

2



Figure 3: Expanding intersections.

Figure 4: An example in which we get fewer than n� 1 intersections.

hC · A0i = hA1i+ hA�1i (2)

where

hA1 · A�1i = hA2
0i+ hB1 · B2i. (3)

Hence as a Laurent polynomial,

C =
A1

A0
+

A0

A1
+

B1B2

A0A1
. (4)

This is an example of the following fairly general result.

3



Figure 5: An arc in a triangulated annulus.

Figure 6: Skein relations in the annulus.

Theorem 20.4. (Weak positivity) In many cases, any simple curve C expressed as
a Laurent polynomial has all positive integer coe�cients. These coe�cients have
combinatorial interpretations.

Another condition we might ask for is strong positivity, namely that there is a
basis xi of some algebra (over some ordered ring) such that xixj =

P
nk
ijxk where

nk
ij � 0.

Exercise 20.5. Find an example in the annulus where strong positivity fails with
respect to the simple curves basis. More precisely, consider the curve Ak which is an
arc wrapped around k times, and find the first k such that A0Ak is not positive.

It is an interesting problem to find natural strongly positive bases.

4



Theorem 20.6. The map Sk(⌃) ! A+(⌃) defined above is injective.

Proof. (Sketch) It is enough to show that multiplication by an arc E is invertible.
We can order diagrams by their intersection with E, which has two dominant terms
as above given by the left smooth and the right smoothing. We modify the order by
approximately a shear; more precisely, we order by �i(·, A) + i(·, B)� i(·, C) + i(·, )
where A,B,C,D is a quadrilateral with E as its diagonal, and this picks out one
dominant term. Now multiplication by E looks upper triangular.

Figure 7: The modification of the order.

Conjecturally we in fact have Sk(⌃) = A+(⌃) unless ⌃ has one puncture or has
tagged arcs and one puncture.
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21 Strong positivity

Earlier we wrote down a basis (the bangles basis) of the skein algebra that is not
strongly positive. Here we will use a di↵erent basis, the bracelet basis. It is composed
of bracelet basis curves, which are diagrams where

1. No two components intersect,

2. No component intersects itself except for multiple covers of a single loop,

3. We do not have two powers of the same simple loop,

4. There are no tag mismatches, disks, punctured disks, or monogons.

Figure 1: A bracelet basis curve.

Theorem 21.1. The bracelets basis of Sk(⌃) is strongly positive.

Conjecturally the bracelets basis of Skq(⌃) is also strongly positive. There is
also another basis, the bands basis, which is not known to be strongly positive for
surfaces with punctures. It is strongly positive for the annulus with two or more
marked points, and in this case it agrees with Lusztig’s dual canonical basis (Lampe).

The Chebyshev polynomials Tn(z) of the first kind are defined by the initial con-
ditions T0(z) = 2, T1(z) = z, and

Tn+1(z) = zTn(z)� Tn�1(z) (1)

and satisfy

1



Tk(z)T`(z) = Tk+`(z) + T|k�`|(z). (2)

They are also uniquely determined by the condition that

Tk(e
` + e�`) = ek` + e�k`. (3)

Lemma 21.2. For n � 1, we have hBracn(L)i = Tn(hLi).

Proof. Check for n = 1, 2. For higher values of n apply the skein relation to the
outermost crossing.

Figure 2: The skein relation applied to a bracelet.

Conjecturally the bracelets basis is an atomic basis : for any element of the skein
algbra which is not positive in the bracelets basis, there exists a triangulation T with
respect to which this element is not a positive Laurent polynomial.

Question from the audience: is the bands basis related to Jones-Wenzl idempo-
tents?

Answer: yes, for q = 1. In representation-theoretic terms these correspond to
symmeric powers of the defining representation.

For the unpunctured torus, there is a basis parameterized by pairs (k, `) up to the
identification (k, `) = (�k,�`) given by taking

T(k,`) = Bracgcd(k,`)(line of slope
`

k
) (4)

and this basis is strongly positive in Skq(⌃) (Frohman-Gelca).

2



Figure 3: The basis element T(2,2).

Theorem 21.3. Any diagram D is sign-definite in the bracelets basis in Sk(⌃).
Any taut diagram (immersed with minimal number of self-intersections, no disks,

no monogons, no punctured disks) is positive in the bracelets basis.

Say that a diagram is positive if it has no singular 0-gons or singular 1-gons.
By this we mean the following. A segment of a diagram D is an interval between
intersection points or endpoints. A k-chain is a sequence of k segments meeting
cyclically at endpoints. A 0-chain is a loop component of a diagram. For a k-chain
C, we can smooth out corners to obtain a loop C0. A singular k-gon is a k-chain C
such that C0 is null-homotopic.

Theorem 21.4. (Hass-Scott) Any curve diagram can be turned into a taut diagram

by Reidemeister reductions (Reidemeister moves that make the diagram less compli-

cated), together with the deletion of boundary loops and unknotted loops.

This can be done greedily. The idea is to shorten the curves, but this is done
combinatorially rather than geometrically.

Corollary 21.5. A positive curve diagram can be turned into a taut curve diagram

using only RIII, RII, RIIb (regular isotopy).

Proof. By Hass-Scott, we can do this using all of the moves above. We need to show
that when doing this we do not use RI, R0 (delete an unknotted loop), or R0b (delete
a boundary loop). Before using RI, we have a singular 1-gon, and it su�ces to show
that going backwards we started out with a singular 1-gon. This follows from an
inspection of each move.

3



Figure 4: A counterexample.

It is not true that D is taut i↵ it has no singular 0-gons, 1-gons, or 2-gons. There
is a counterexample in an annulus.

The correct salvage is to weaken the notion of singular 2-gon.

Exercise 21.6. What goes wrong with the going backwards argument for 2-gons?

We now return to the claim that every taut diagram is positive in the bracelets
basis. Say that a good crossing of a taut diagram is a crossing where both resolutions
are positive.

Lemma 21.7. Every taut diagram that is not a bracelets basis curve has either a

good crossing, two components that are powers of the same loop, or a tag mismatch.

This is enough to prove the theorem. Let D be a taut diagram. If D is in the
bracelets basis, we are done. Otherwise, we are in one of the cases above. In the first
case, we resolve the crossing. In the second case, we apply the Chebyshev polynomial
identity. The third case is similar to the first.

Question from the audience: is there an inner product with respect to which the
bracelets basis is orthogonal?

Answer: that is an interesting question.
Question from the audience: does the bracelets basis admit a monoidal categori-

fication?
Answer: this is not known. Conjecturally there should be a monoidal abelian cate-

gory C(⌃) whose simple objects correspond to the bracelets basis and whose monoidal
product reproduces the structure constants of the skein algebra in the bracelets basis
in the sense that the Grothendieck ring of C(⌃) should be Sk(⌃).

4
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22 More about strong positivity

Today we will ignore tags.
LetD be a diagram. Recall that a crossing inD is positive if both of its resolutions

are positive, where positivity means no singular 0-gons and 1-gons. Recall also that
a diagram is taut if it has the minimum number of self-intersections.

Figure 1: A crossing that is not positive.

Definition A multi-bracelet is a diagram where two components don’t intersect and
each component is a simple arc or a bracelet (and there are no 0-gons and 1-gons).

Lemma 22.1. Any taut diagram that is not a multi-bracelet has a positive crossing.

To show this we will use the following.

Lemma 22.2. If D is taut but a crossing of D resolves into D1, D2 where D1 is not
positive, then D1 has a singular 0-gon or 1-gon passing through the reducing disk (the
disk surrounding the crossing in which we apply the skein relation) twice.

Proof. Since D1 is not positive, it has a singular 0-gon or 1-gon H. If H does not
pass through the reducing disk, then we get a 0-gon or 1-gon for D, which contradicts
tautness. If H passes through the reducing disk once, then we get a 1-gon or 2-gon
for D, which also contradicts tautness.

Exercise 22.3. Find more examples of resolutions D = D1+D2 where D is taut and
D1 is not positive. Check the lemma above in your examples.

1



Figure 2: Singular polygons in D1 and singular polygons in D.

Definition A bracelet chain in D is a 0-chain or 1-chain H such that the smoothing
H

0 is homotopic to a bracelet. A maximal bracelet chain is a bracelet not contained
in any larger bracelet chain for the same loop.

Lemma 22.4. Every component of a taut diagram D with at least one self-crossing
has a maximal bracelet chain.

Proof. Let C be a component with a self-crossing. Then it has a 1-chain. Take a
minimal 1-chain by inclusion. This is a 1-chain H such that H0 is a simple loop L.
Take H

0 to be a maximal bracelet chain containing H (which is also a bracelet for
L).

Lemma 22.5. The crossing at the end of a maximal bracelet 1-chain is positive.

Proof. Let H be such a maximal bracelet. Tne resolution of the crossing is not
connected to the rest of the diagram locally, so a 0-gon or 1-gon cannot pass through
the reducing disk twice. There are two possible cases a), b) involving the other
resolution which must be ruled out.

To rule out case a), write the maximal bracelet as �k 2 ⇡1 for k maximal and � a
loop. Write the rest of the diagram as ⇢ 2 ⇡1. If we get a singular 1-gon in the first
case, then ⇢�

k = id, or ⇢ = �
�k, which contradicts the maximality of H.

To rule out case b), with notation as above, we have ⇢�
` = id for some `  k. It

follows that the entire component is a bracelet, which contradicts the maximality of
H.

We are getting close to the proof of the first lemma; it su�ces now to consider
crossings between components.

2



Figure 3: Part of a maximal bracelet.

Figure 4: The two cases above.

Exercise 22.6. Show that any crossing between two components C1, C2 of a taut
diagram D where C1, C2 are simple arcs or bracelets is positive.

Use the fact that roots are unique in ⇡1(⌃): that is, if �k = ⇢
`, then there exists

�, s, t such that � = �
s
, ⇢ = �

t, and sk = t`.

Exercise 22.7. Prove the multiplication rule T(a,b)T(c,d) = T(a+c,b+d) + T(a�c,b+d) for
the basis for the unpunctured torus (at q = 1) from last time.

Now we will discuss a geometric interpretation of the skein relations. Here we
will ignore marked points and arcs. The skein relation should have something to do
with SL2. More precisely, it should have something to do with the following fact: if
A,B 2 SL2, then
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tr(A)tr(B) = tr(AB) + tr(AB�1). (1)

This follows from the Cayley-Hamilton theorem, which gives B2�tr(B)B+I = 0,
after dividing by B and multiplying by A, then taking traces.

A,B should be the monodromy of two loops, except that the signs don’t match.

Figure 5: The signs are incorrect here.

This is because we were taking q = 1 and we actually need to take q = �1, which
gives a skein relation in which three terms add up to 0. Geometrically we should take
the negative of the trace. More precisely,

Proposition 22.8. If ⌃ is a surface and ⇢ : ⇡1(⌃) ! SL2 is a representation, then
the assignment

D 7!
Y

i

�tr(⇢(Di)) (2)

where D is a diagram with components Di satisfies the q = �1 skein relation.

However, taking q = �1 destroys positivity. To get back to q = 1 we need to
twist. There is a fibration

S
1 ! UT(⌃) ! ⌃ (3)

where UT is the unit tangent bundle. This gives a long exact sequence in homotopy

⇡2(⌃) ! ⇡1(S
1) ! ⇡1(UT(⌃)) ! ⇡1(⌃) ! 0 (4)
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and if ⌃ is not S2 then ⇡2(⌃) vanishes, hence ⇡1(UT(⌃)) = ⇡̃1(⌃) is a canonical
Z-extension of ⇡1(⌃). We define a twisted SL2 representation to be a representation
⇢ : ⇡̃1(⌃) ! SL2 such that ⇢(360� turn) = �1. The corresponding quotient map to
PSL2 gives an honest PSL2-representation.

If � is an immersed curve in ⌃, by taking tangent vectors it lifts to a curve �̃

in UT(⌃), and associated to this choice of lift is a trace. (If we had just used a
PSL2-representation, the trace would only be defined up to sign.)

Proposition 22.9. For ⌃ a surface and ⇢ : ⇡̃1(⌃) ! SL2 a twisted SL2-representation,
the assignment

D 7!
Y

i

tr(⇢(D̃i)) (5)

satisfies the q = 1 skein relation.

In the background here is the fact that a hyperbolic structure on ⌃ has a canonical
twisted SL2-representation lifting the PSL2-representation given by considering the
universal cover.

This is related to spin structures. Recall that ⇡1(SO(n)) ⇠= Z/2Z for n � 3; in
particular it is not simply connected. When n = 2 we have ⇡1(SO(2)) ⇠= Z. In any
case, for n � 2, it follows that SO(n) has a unique double cover called Spin(n), and for
n � 3 this is the universal cover. There are exceptional isomorphisms Spin(3) ⇠= SU(2)
and Spin(4) ⇠= SU(2)⇥ SU(2).

A spin structure on a smooth oriented (Riemannian for simplicity but this is not
necessary) manifold M is a lift of the frame bundle to a Spin(n)-bundle. Concretely,
this gives us some information about which loops in the frame bundle lift and which
do not. On an oriented surface ⌃, rather than thinking about frames we can think
about tangent vectors, and then the question is whether or not a path of tangent
vectors lifts. We can generate paths of tangent vectors using an immersed curve.
This gives us a rule assigning connected immersed curves signs ±1 satisfying some
rules.

A twisted SL2-representation can then be described as the product of an ordinary
SL2-representation and a spin structure.
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23 More about the geometry of skein relations

Recall that a twisted SL2-representation of a surface ⌃ is an SL2-representation of
a Z-extension ⇡̃1(⌃) ⇠= ⇡1(UT(⌃)) of the fundamental group such that a 360� rota-
tion acts by �1. Such a representation in particular descends to an ordinary PSL2-
representation of ⇡1(⌃). Defining

⇢̃(D) =
Y

i

tr(⇢̃(D̃i)) (1)

where D is a curve diagram, D̃i are the lifts of the components of D to UT(⌃),
and ⇢̃ is a twisted representation, we claim that ⇢̃(D) satisfies the skein relations with
q = 1.

Figure 1: An immersed curve and its tangent vectors.

We should say more about paths in the unit tangent bundle. We can notate these
by writing down an immersed curve in ⌃ together with arrows indicating how the unit
tangent vectors should rotate. This notation satisfies some straightforward axioms.

Figure 2: Some axioms.
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To verify the skein relations, there are two cases depending on how the skeins close
up into curves. We will apply the trace relation tr(A)tr(B) = tr(AB) + tr(AB�1),
but keeping track of tangent vectors.

Figure 3: The two cases.

Exercise 23.1. Verify the skein relation in the second case.

The relationship to spin structures is the following. Concretely, a double cover of
the frame bundle is a homomorphism ⌘ from ⇡1 of the frame bundle to Z/2Z. For a
surface ⌃ the frame bundle is essentially the unit tangent bundle, so a spin structure
on ⌃ assigns a sign to every path in UT(⌃), hence to immersed curves in ⌃. This
assignment satisfies various axioms.

Alternatively, we can think of ⌘ as an element of H1(UT(⌃),Z/2Z) which is non-
trivial on the 360� rotation. There is an action of H1(⌃;Z/2Z) on the above coho-
mology group (by translation), hence H

1(⌃;Z/2Z) acts on the set of spin structures
of ⌃. If spin structures exist, the set of all such spin structures is then a torsor over
H

1(⌃;Z/2Z). More concretely, if ⌘1, ⌘2 are two spin structures, their di↵erence is an
element of H1(⌃;Z/2Z).

Proposition 23.2. If ⇢ : ⇡1(⌃) ! SL2 is an SL2-representation of the fundamental
group and ⌘ : ⇡1(UT(⌃)) ! Z/2Z is a spin structure, then ⇢⌘ : ⇡1(UT(⌃)) ! SL2 is
a twisted SL2-representation.

Conversely, we have an identification

RepTwist
SL2

(⌃) = (RepSL2
(⌃)⇥ Spin(⌃))/H1(⌃;Z/2Z) (2)

where H
1(⌃;Z/2Z) ⇠= Hom(⇡1,Z/2Z) acts diagonally.

2



Figure 4: Some properties of spin structures.

Exercise 23.3. What are the spin structures on the torus? What are their orbits
under the action of the mapping class group?

The skein algebra at q = 1 describes a class of functions on the set of twisted
SL2-representations. Moreover it has a strongly positive basis which is invariant
under the action of the mapping class group. Passing to ordinary SL2-representations
by multiplication by a spin structure, we lose this invariance because not all spin
structures are preserved by the action of the mapping class group.

Now suppose ⌃ is equipped with a hyperbolic structure. Then the universal cover
of ⌃ is naturally identified with the hyperbolic plane H

2, so we can write ⌃ ⇠= H
2
/�

where � ⇠= ⇡1(⌃) is a discrete subgroup of PSL2(R). Thus a hyperbolic structure
determines a (faithful) representation

⇡1(⌃) ! PSL2(R). (3)

This is part of the structure defining a twisted SL2-representation. The di↵erent
lifts of this representation to an SL2-representation are classified by spin structures
and people usually pick one.

However, there is a canonical such lift. To see this, write H
2 as the quotient of

PSL2(R) by SO(2). This gives an identification of UT(H2) with PSL2(R), hence an
identification

3



UT(⌃) ⇠= PSL2(R)/� (4)

using the fact that the identification ⌃ ⇠= H
2
/� respects tangent spaces. This in

turn gives an identification

UT(⌃) ⇠= SL2(R)/�̃ (5)

where �̃ is the preimage of � in SL2(R) (some Z/2Z central extension). This is
not quite ⇡̃1(⌃), but there is a diagram

Z

✏✏

// ⇡̃1(⌃)

✏✏

// ⇡1(⌃)

⇠=
✏✏

Z/2Z // �̃ // �

(6)

relating them.
Alternatively, consider the boundary of H2, which is naturally identified with RP

1.
This is naturally acted on by PSL2(R). On the other hand, given a tangent vector to
a point in H

2 we can follow a unique geodesic to the boundary, which gives a natural
identification

UTp(⌃) ⇠= UTp(H
2) ⇠= RP

1
. (7)

Figure 5: Identifying unit tangents with the boundary.

This identification can also be used to obtain the above result.
It follows that the Teichmuller space for ⌃ embeds into RepTwist

SL2
.

4



Proposition 23.4. The Teichmüller space for ⌃ is the totally positive part of RepTwist
SL2

:
that is, it is the part where all elements in the positive basis for the skein algebra take
positive values.

To take decorations into account, we need a notion of twisted decorated SL2-
representation. We will first think of twisted SL2-representations as twisted SL2-local
systems (2-dimensional real vector bundles V over UT(⌃) such that the projectiviza-
tion of V is the pullback of the unit tangent bundle over ⌃). To decorate them, we
want the additional data of a choice of vector in Vp for each outward-pointing tangent
vector at a boundary point.
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24 Additive categorification of surface cluster al-
gebras (Christof)

Surface cluster algebras can be categorified (additively) as follows. We consider cer-
tain triangulated 2-Calabi-Yau C-linear categories C with a cluster tilting object
T = T1 � ... � Tn. Triangulated categories generalize derived categories: their main
feature is the existence of a self-equivalence ⌃ : C ! C and a collection of distin-
guished triangles

X ! Y ! Z ! ⌃X (1)

satisfying various axioms and generalizing exact sequences. One of these is that

for every morphism X
f�! Y there exists a distinguished triangle

X
f�! Y ! Z ! ⌃X. (2)

2-Calabi-Yau means that there is a natural isomorphism

Hom(X, Y ) ⇠= Hom(Y,⌃2X)⇤ (3)

where ⇤ denotes the linear dual. In particular,

Hom(X,⌃Y ) ⇠= Hom(Y,⌃X)⇤. (4)

Cluster tilting means that for every X we have

Hom(T,⌃X) = 0 , X is direct summand of T. (5)

In particular, there is a functor

F : C 3 X 7! Hom(T,⌃X) 2 End(T )op-Mod (6)

whose kernel is given by morphisms which factor through T .
The above conditions imply that every Hom-space is finite-dimensional. In par-

ticular, End(T )op is finite-dimensional. It can be written as C[Q]/I where C[Q] is the
path algebra of a quiver Q and I is an admissible ideal. This quiver Q is canonically
determined by the algebra.

The summands T = T1� ...�Tn can be exchanged; for each i there exists T 0
i 6= Ti

such that T/Ti � T 0
i is again a cluster tilting object. The corresponding quiver Q

changes according to quiver mutation.
There is a map called the cluster character sending an object Z to a certain sum

1



CT (Z) = xg(Z)
X

`

�(GrQ
op

` (F (Z)))y` (7)

over Euler characteristics of quiver Grassmannians which evaluates to a Laurent
polynomial in Z[x±

1
, ...x±

n ]. Here g(Z) is defined as follows: if

⌃�1Z ! T b
Z ! T a

Z ! Z (8)

is a distinguished triangle, where a = (a1, a2, ...) and

T a
Z = T a1

1
� T a2

2
� ... (9)

then

g(Z) = a� b. (10)

Furthermore,

yk =
nY

i=1

x|Q(i,k)|�|Q(k,i)|
i (11)

where |Q(i, k)| is the number of edges from i to k.
Ideally CT (Z) is contained in the upper cluster algebra associated to Q. The in-

decomposable rigid objects (those satisfying Hom(Z,⌃Z) = 0) give cluster variables.
Quiver Grassmannians are defined as follows. If M is a module over a quiver

algebra C[Q] and ` is a dimension vector, then GrQ` (M) is a projective variety param-
eterizing submodules of M with dimension vector `. Any projective variety appears
as some quiver Grassmannian, so they can be come arbitrarily complicated.

We can recognize the images of rigid objects in End(T )op-Mod as follows. For M
a module, take a minimal projective presentation

Pn
⇡�! P0 ! M ! 0 (12)

and consider the cokernel

Hom(P0,M)
Hom(⇡,M)������! Hom(Pn,M) ! E(M). (13)

Then M = F (Z) with Z rigid if and only if E(M) = 0. In particular, we need
Ext1(M,M) = 0.

To find categories and objects T of them satisfying the above conditions, we
can start from a quiver with potential. If Q is a quiver, a potential W is a linear
combination of cycles in Q. From this data one can construct a Ginzburg dg-algebra,
and from this dg-algebra one can construct the required category and object. This

2



object T satisfies End(T )op = C[Q]/h@W i where @W is the ideal generated by all
cyclic derivatives of the potentialW . Actually one needs to take a suitable completion
of this in general.

Exercise 24.1. Consider the quiver

•
b

��

•
a

OO

•c
oo

(14)

with potential W = cba. In this case the completed and uncompleted algebras are
the same and h@W i = {ba, cb, ac}.
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25 More about additive categorification of surface
cluster algebras (Christof)

Mutation of quivers with potential proceeds as follows. Consider again the quiver Q
given by

Figure 1: A quiver.

with potential W = ��↵. We want to mutate at 1. The premutation Q̃ has
new composite arrows for each composition of arrows through 1, and in addition we
change the orientation of arrows starting or ending at 1, giving

Figure 2: The premutation.

We now need to modify the potential by replacing �↵ with the composite arrow
and adding a new term for each composite arrow, giving

W̃ = �[�↵] + [�↵]↵⇤�⇤. (1)

The potential now has a 2-cycle, which we will try to eliminate as follows. There
is an automorphism

1



' : � 7! � + �⇤↵⇤ (2)

of the completed path algebra with the property that if W̃ 0 = �[�↵], then '(W̃ 0) =
W̃ up to cyclic rotation of summands. This allows us to remove the 2-cycle �[�↵],
which trivializes the potential.

Figure 3: The mutation.

We can associate a quiver with potential to a triangulation of a surface as follows.
We restrict our attention to ideal triangulations without tags or self-folded triangles.
Details can be found in Labardini-Fragoso.

Let (⌃,M) be a surface with marked points M , a subset P ✓ M of which are
punctures. Fix xp 2 C⇤ for each p 2 P . We associate to a triangulation ⌧ a non-
reduced quiver Q̃(⌧) with vertices given by the edges of the triangulation and edges
associated to each interior triangle and each puncture.

Figure 4: A triangle and a puncture.

We associate to each interior triangle a term c� = ��↵ and to each puncture a
term cp = ↵n...↵2↵1, and we sum these up to obtain a potential

2



W̃ (⌧) =
X

�

c� +
X

p

xpcp. (3)

Finally, we need to remove 2-cycles. The resulting definition of a quiver with
potential is compatible with flips of triangulations except in a few cases (Labardini-
Fragoso), namely

1. g(⌃) � 1, @⌃ = ; and |M | 2 {2, 3, 4, 5} and

2. ⌃ = S2 and |M | 2 {5, 6, 7, 8}.

Example Let ⌃ be a once-punctured 4-gon. The corresponding quiver has a 2-cycle.
Before it is removed the potential is W̃ = �↵"2+��"1+x"2"1, and after it is removed
the potential is W = ���↵.

Figure 5: A quiver mutation on a surface.

To categorify surface cluster algebras we now need to associate modules to curves
on the surface. We restrict our attention to the case that there are no punctures.

Example Consider a torus with a hole and a marked point on the boundary. The
potential is

W = �+��� + ↵+↵↵�. (4)

We want to associate modules to curves on this surface. Take, for example, a loop
around the hole. We will follow the loop around and associate to each intersection
we find a basis vector of the module. Each intersection is connected to the next
intersection by some edge in the quiver, so the action of the path algebra is specified
by sending intersections to the next intersection in this way.

3



Figure 6: A curve on a surface.
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26 Monoidal categorification of skein algebras

Let C be an abelian category (an Ab-enriched category with certain nice properties).
Its Grothendieck groupK0(C) is the quotient of the free abelian group on isomorphism
classes of objects in C by a relation [B] = [A] + [C] for every short exact sequence

0 ! A ! B ! C ! 0 (1)

in C. If moreover C is monoidal (with monoidal structure suitably compatible
with the abelian structure) then K0(C) inherits a multiplication [A][B] = [A ⌦ B]
and hence becomes a ring.

If furthermore C has simple objects and each object of C has a composition
series of finite length, then K0(C) is freely generated by the simple objects, and if
X = Xi � Xi�1 � ... � X0 = 0 is a composition series then

[X] =
X

i

[Xi/Xi�1]. (2)

For example, C = R-Mod for R a commutative ring satisfies the above. We can
also consider representations of groups. More generally we can take C = H-Mod
where H is a Hopf algebra.

Under the above assumptions, K0(C) has a strongly positive basis given by simple
objects. The structure constants are given by finding the composition series of the
tensor product of two simple objects.

Example Consider the representation theory of SL2(R). There is an obvious simple
module V = R2. Its symmetric powers Vk = Symk(V ) are also simple and can be
identified with homogeneous polynomials of degree k in two variables. The tensor
products are

Vk ⌦ V`
⇠= Vk+` � Vk+`�2 � ...� V|k�`|. (3)

Whenever we find an algebra with a positive integral basis, we can conjecture
that that algebra has a monoidal categorification in the sense that we can identify it
with K0(C) for some C such that the simple objects are sent to the integral basis. In
particular we conjecture that skein algebras Sk(⌃) have this property with the simple
objects sent to the bracelets basis.

In the monoidal categorification, product in Sk(⌃) corresponds to tensor product
and unions of simple arcs correspond to simple objects. By contrast, in the addi-
tive categorification, product in Sk(⌃) corresponds to direct sum and simple arcs
correspond to objects satisfying Ext1(X,X) = 0.

1



This conjecture is known for the surfaces whose quivers have type An and Dn but
open in general. One reason to expect it to be true comes from the study of topological
quantum field theories. A topological quantum field theory is a symmetric monoidal
functor from a cobordism category to a category of vector spaces. Explicitly, for fixed
n, it should assign vector spaces Z(M) to (n� 1)-manifolds M and, to an n-manifold
with boundary M̄ tN , it should assign a linear map Z(M) ! Z(N) in a way which
is compatible with composition and tensor product.

For example, when n = 2 a topological quantum field theory is precisely a vector
space Z(S1) together with a commutative product (coming from the pair of pants)
and a linear functional (coming from half of a torus) such that

hab, ci = ha, bci (4)

and which is nondegenerate, and this is precisely a (commutative) Frobenius al-
gebra.

Figure 1: Structure maps of a Frobenius algebra.

When n = 3 there are a rich class of examples coming from quantum groups.
Associated to any semisimple Lie group G is a quantum group Uq(g) depending on a
prameter q, and setting q to a root of unity we can obtain Witten-Reshetikhin-Turaev
TQFTs.

Rather than construct functors out of cobordism categories we can construct func-
tors out of the category of framed tangles.

One such functor is essentially the Jones polynomial. That is, it is obtained
by taking free linear combinations and quotienting by the skein relations, which
gives an intermediate category called the Temperley-Lieb category, and then applying
Hom(;,�). The Temperley-Lieb category is spanned by tangles with no crossings.
This can be used to construct an n = 3 TQFT.

When n = 4 we have an interesting near-TQFT (modulo conjectures): Donaldson
theory is dual to Seiberg-Witten theory is equivalent to embedded contact homology

2



Figure 2: A tangle.

Figure 3: Composition in the Temperley-Lieb category.

is equivalent to Hegaard-Floer homology (these are all very di�cult results). This is
the only known way to distinguish smooth structures on topological 4-manifolds, and
it would be nice if it were easier to compute.

One way to compute is to extend downward. Currently these TQFTs associate
data to 4-manifolds and 3-manifolds, but if they also associated data to 2-manifolds we
could cut up the 3-manifolds further. In fact they associate homologies to 3-manifolds
and can be made to associate derived categories to 2-manifolds.

More functorially, there is a 2-category whose objects are n� 2-manifolds, whose
morphisms are n� 1-dimensional cobordisms between them, and whose 2-morphisms
are n-dimensional cobordisms between morphisms (hence in particular are manifolds
with corners), and we want a (symmetric monoidal) 2-functor out of this category to
some linear 2-category, e.g. a 2-category of linear categories. For example, bordered
Heegaard-Floer theory assigns to a surface ⌃ the derived category of modules over
some dg-algebra A(⌃), assigns to a 3-manifold a dg-bimodule, and which assigns to
a 4-manifold a morphism of bimodules.

Conjecturally cluster algebras can be used to construct a di↵erent 4-dimensional

3



TQFT, and monoidal categorifications might be relevant to doing this. Even more
conjecturally we should be able to monoidally categorify Skq(⌃) (although a strongly
positive basis is not known in general in this case).

This is related to categorifying the Jones polynomial to Khovanov homology. Kho-
vanov homology can be thought of as a functor from the category of framed knots
in S

3 and cobordisms to bigraded vector spaces which recovers the Jones polynomial
after taking Euler characteristics (alternating sum of graded dimensions). It upgrades
the skein relation to a short exact sequence

0 ! CKh

 !
! CKh

 !
! CKh

 !
! 0 (5)

(with grading shifts) by constructing a chain complex using all possible resolutions
of the crossings of a knot.

The 3-manifold TQFTs discussed above come from quantum groups. It is also
possible to use quantum groups, together with a representation, to construct a knot
polynomial, and Khovanov homology suggests that this story can be categorified. For
example, quantum SL2 and its standard representation gives the Jones polynomial,
which is categorified to Khovanov homology. More generally, quantum SLn and its
standard representation gives the HOMFLYPT polynomial, which is categorified to
Khovanov-Rozansky or HOMFLYPT homology. Similarly, quantum SO(n) and its
standard representation gives the Kau↵man polynomial (not to be confused with the
Kau↵man bracket), which is categorified to SO(n) homology (conjecturally).

We also get an invariant of tangles, at least for Khovanov homology, which should
give a monoidal categorification for the skein algebra of the disk with n punctures.
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27 Types of multicurves

References for today: Mirzakhani, Growth of the number of simple closed geodesics on
hyperbolic surfaces. Rivin, A simpler proof of Mirzakhani’s simple curve asymptotics.

Thurston conjectured the following. LetM be a compact 3-manifold whose bound-
ary is a union of tori. If M is irreducible, atoroidal, and has infinite ⇡1, then M has
a finite cober which fibers over S1. More generally, we might ask how common it is
for a 3-manifold to fiber over S1.

A 3-manifold has tunnel-number one if M = H[(D2⇥I) where H is an orientable
handlebody of genus 2 and the two pieces have been glued along a simple closed curve
� on @H. We choose such a thing randomly by choosing Dehn-Thurston coordinates
of the corresponding curve on @H randomly with size  L. As L ! 1, it turns out
that the probability that M fibers over the circle vanishes as L ! 1.

Alternately, we could fix a set of generators of the mapping class group of @H (e.g.
some Dehn twists) and randomly apply them to an initial curve �0. Conjecturally as
L ! 1 the probability that M fibers of the circle still vanishes as L ! 1.

We want the curve � above to be connected and non-separating. By this we mean
the following. Consider multicurves in a surface of genus 2 up to the action of the
mapping class group (types of multicurves). A connected such curve either divides
the surface into two genus 1 pieces (the separating case) or loops around one of the
two holes (the non-separating case), and the general multicurve is a union of such
things.

Figure 1: Connected curves on a two-holed torus.

Theorem 27.1. (Mirzakhani) Fix a multicurve �. The probability that a random
multicurve in Dehn-Thurston coordinates is equivalent to � under the action of the
mapping class group approaches a limit 0 < c� < 1 as L ! 1. Furthermore, if
⌦ ⇢ R6g�6 is a bounded region in the space of Dehn coordinates, the proportion of
Dehn-Thurston coordinates of random curves that sit inside ⌦ after rescaling and

1



that are equivalent to � under the action of the mapping class group again, suitably
rescaled, again approaches c�.

In the case that � is connected and nonseparating we have c� ⇡ 1
5 .

Compare to the case g = 1. Then there is only one type of connected curve, and
a simple multicurve up to the action of the mapping class group is a finite number of
copies of this.

Figure 2: Curves on a torus.

Choosing a random multicurve on the torus means choosing a random pair (p, q)
of positive integers, and the number of connected components of the resulting curve
is gcd(p, q). Mirzakhani’s result in this case (which is much older) says that there is
a definite probability of obtaining gcd(p, q) = 1, which is just 6

⇡2 .
The appearance of ⇡ here is not surprising. Another part of Mirzakhani’s result

is that c� is proportional to the Weil-Petersson volume of the Teichmüller space of
S\�. (We consider punctures at the boundary components of S\�.) The Teichmüller
space of Sg,n has a canonical symplectic form !, and !

3g�3+n gives a canonical volume
form.

(Edit: there is a result of this form, but the result above is not true as stated.)
To obtain !, there is another set of coordinates on Teichmüller space called

Feichel-Nielsen coordinates obtained by choosing a pants decomposition and look-
ing at lengths `i of each curve, then looking at the twists ti around each curve. The
symplectic form is then !WP =

P
d`i ^ dti (in particular the above does not depend

on the choice of pants decomposition).
Alternately, if the surface has a triangulation, then consider shear coordinates si

for each edge of a triangulation T . Then

!WP =
X

�ijk

(dsi ^ dsj + dsj ^ dsk + dsk ^ dsi) (1)

2



where the sum runs over all triangles and i, j, k are the edges in clockwise order
(in particular the above does not depend on the choice of triangulation).

Theorem 27.2. (Mirzakhani) The Weil-Petersson volume of the Teichmuller space
of Sg,n is a rational multiple of ⇡6g�6+2n.

A key ingredient is that the action of the mapping class group on measured lam-
inations is ergodic with respect to Lebesgue measure. (We say that the action of a
group G on a measure space (X,µ) is ergodic if any G-invariant set is either empty or
has full measure, and moreover any G-invariant measure that is absolutely continuous
with respect to µ is a constant multiple of µ.)

When we compactified Teichmüller space, we tropicalized �-lengths and obtained
bounded measured laminations. Alternately, we tropicalized shear coordinates and
obtained unbounded measured laminations. The latter does not give a symplectic
manifold, but we can consider the subspace where the sum of the shear coordinates
around each puncture is 0 (no spiraling into punctures).

Mirzakhani’s result above can be translated into the theory of cluster algebras as
follows.

Theorem 27.3. (Mirzakhani) Fix a surface cluster algebra, not of finite type, with
some set of marked points m1, ...mk. Consider random basis elements x with degmi

(x) =
0. Then the probability that x is of some type (e.g. connected) is definite (strictly
between 0 and 1).

A similar statement should be true for other mutation-finite cluster algebras (nei-
ther finite type nor a�ne). Mutation sequences giving a cluster with the same quiver
form a group analogous to the mapping class group, and we can study the orbits of
some conjectural positive basis under this group. Conjecturally the orbits are finitely
generated in a suitable sense, there is a definite probability of getting any orbit, and
the ratios of these probabilities are rational.

What happens in the non-mutation-finite case? What is the analogue of cutting
a surface along a simple curve?

3
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28 More about geometric interpretations of skein
relations

Recall that giving a hyperbolic structure to a surface ⌃ gives a (discrete, faithful)
representation of ⇡1(⌃) in Aut(H2) ⇠= PSL2(R) up to conjugacy. If ⌃ has marked
points, then we want cusps in the hyperbolic structure, which gives a collection of
ideal points in @H2 (lifts of the cusps) acted on by ⇡1(⌃). The number of such orbits
should be finite and should satisfy some other conditions.

Decorating cusps gives a collection of horocycles in H
2 acted on by ⇡1(⌃). Recall

that horocycles can be thought of as (positive) null vectors in the light-cone model
or as elements of R2/{±1}.

Now ignore twisting and suppose that we have an SL2(R)-representation of ⇡1(⌃).
These can be identified with certain R

2-bundles over ⌃ with a flat connection (equiv-
alently, an R

2-local system). We want bundles whose transition functions lie in SL2

(equivalently, SL2-local systems).

Figure 1: Monodromy of a bundle on a surface.

In this picture, a decorated cusp corresponds to a choice of vector in the fiber of
the local system above each marked point.

PSL2(R) acts on the unit tangent bundle UT(H2) freely and transitively, so
UT(H2) can in fact be identified with PSL2(R). Taking double covers gives SL2(R) ⇠=
UT(2)(H2), and taking universal covers gives ŜL2(R) ⇠= ÛT(H2). (The universal cover
of SL2(R) is a good example of a group that has no faithful finite-dimensional repre-
sentations.)

As we saw earlier, this story descends to ⌃ and gives both a canonical Z/2Z-
extension and a canonical Z-extension of ⇡1(⌃), and this is how we define twisted rep-
resentations. Also, as we saw earlier, a hyperbolic structure gives a PSL2-representation
which canonically lifts to a twisted SL2-representation.

1



An immersed loop L on ⌃ gives a loop in UT(⌃). Given a twisted representation
⇢̃, we can now extract a number tr(⇢̃(L̃)).

Proposition 28.1. If ⇢̃ comes from a hyperbolic structure and L is taut, then tr(⇢̃(L̃)) >
2.

Proof. If L is taut, then it is regular isotopic to its geodesic representative L2. More-
over, L2 lifts to a curve L̃2 in UT(⌃) which is still geodesic, and it lifts again to a
geodesic (but not necessarily closed) curve in UT(2)(H2) ⇠= SL2(R). A geodesic in
a Lie group (with respect to a bi-invariant metric) is up to translation of the form
etM ,M 2 sl2(R), and the number we want is tr(eM). We know that eM is hyperbolic,
which means that the absolute value of the trace is greater than 2, and diagonalizing
M the conclusion follows.

Theorem 28.2. The positive real points of Spec(Sk(⌃)) (the real points on which
the bands or bracelets basis evaluate to positive numbers) are naturally identified with
Teich(⌃).

Proof. (Sketch) The interesting case is when ⌃ is closed. Let ⌫ : Sk(⌃) ! R be a
positive point. If L is a simple loop, then ⌫(L) > 0, but we also have ⌫(Brac(k))(L) >
0. But

⌫(Brac(k)(L)) = Tk(⌫(L)) (1)

where Tk is the kth Chebyshev polynomial. The condition that this is positive for
all k implies that ⌫(L) � 2. The complex points of Spec(Sk(⌃)) can be identified with
twisted SL2(C)-representations of ⇡1(⌃) (Bullock), and ⌫ itself gives a representation
into PSL2(R) in which all elements are parabolic or hyperbolic. This is not quite
enough to show that ⇢ is discrete; there is more work needed...

Some indication of why this should be true. The closure of the image of ⇢ in
PSL2(R) is a Lie subgroup. Its connected component of the identity is a connected
Lie subgroup, hence corresponds to some Lie subalgebra of sl2(R). If the image of
⇢ consists of hyperbolic elements (and the identity) then the closure of the image
cannot be all of PSL2(R), so it su�ces to rule out the other possible images.

We now return to the case of marked points (on the boundary for simplicity). We
would like to generalize twisted representations to this case. A twisted representation
corresponds to an SL2-local system, not on a surface ⌃, but on its unit tangent
bundle UT(⌃). We then associate to each marked point a vector in the fiber of the
local system above the outward-pointing normal to the marked point.

We can now associate real numbers to arcs A between marked points p and q given
a decorated local system as follows. By lifting the arc to UT(⌃) appropriately, we can

2



Figure 2: Vectors in the fibers above outward-pointing normals.

get a linear map ⇢̃(Ã) from the fiber of the local system over p̃ (the outward-pointing
normal at p) to q̃ (the outward-pointing normal at q). We now choose the real number

⇢̃(Ã)vp ^ vq (2)

where vp is the chosen vector over p̃ and vq is the chosen vector over q̃. (We have
chosen an identification of the determinant bundle with the trivial line bundle.)

Recall that the identity

tr(A)tr(B) = tr(AB) + tr(AB�1) (3)

for A,B 2 SL2 gives us the skein relations for loops.

Figure 3: The skein relations again.

The skein relations for arcs can be obtained using the identity

Av ^ w + A�1v ^ w = tr(A) (v ^ w) (4)

and the Plücker relation

3



(v1 ^ v3)(v2 ^ v4) = (v1 ^ v2)(v3 ^ v4) + (v1 ^ v4)(v2 ^ v3). (5)

For example, to prove the skein relation for two crossing arcs, we can translate
everything to the fiber over the intersection point.
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15 Compactifications, skein theory

Theorem 15.1. The Thurston compactification is a ball for the following Teichmüller
spaces:

1. T̃g,n (�-lengths),

2. Tg,n (cross-ratios),

3. Tg,0,n (cross-ratios).

It is also a ball for Tg but this is harder (the coordinates are given by lengths of

all simple closed curves).

Proof. Correction: when we discussed the Thurston compactification, we should have

embedded not in a projective space but in a sphere (in other words instead of quoti-

enting by nonzero reals we quotient by positive reals). If T denotes a triangulation,

we can then measure �-lengths to get a map T̃g,n ! R
|T |
. Embedding R

|T |
into R

|T |+1

gives a map to S|T |
.

Lemma 15.2. The map T̃g,n ! S|T | above is an embedding.

Proof. T̃g,n embeds into R
|T |

due to the existence of the exchange relation: we can

express the �-length of any arc as a Laurent polynomial in the �-lengths of a fixed

triangulation.

To show that the Thurston compactification embeds into S|T |
, we use the fact

that on the new points, our coordinates satisfy a tropical exchange relation, which

expresses a new length as a piecewise-linear function of the old lengths. (The key

point here is that the original exchange relation is a subtraction-free expression in

positive variables. Without this condition, there is no guarantee that a new length is

a function of old lengths.)

The above does not always happen.

Exercise 15.3. Consider decorated quadrilaterals with three boundary edges of �-
length 1. This moduli space embeds into R

2, and the corresponding Thurston com-
pactification does not embed into S2.

We conclude that the Thurston compactification of T̃g,n is a hemisphere in S|T |
,

hence homeomorphic to a ball. The argument for Tg,0,n is similar. For Tg,n, we have

additional relations
Q

⌧(E) = 1 around punctures, which introduce linear relations

after taking logarithms. The corresponding closure in S|T |
is still homeomorphic to a

ball.

1



Figure 1: A decorated quadrilateral.

An alternate definition of a lamination, which will hopefully make it more concrete,

is the following.

Definition A lamination on H
2
is a collection of pairs of distinct points on the

boundary such that the corresponding geodesics do not cross and which is closed as a

subset of (@H)
2 \�. A lamination on a hyperbolic surface ⌃ = H

2/� is a lamination

on H
2
which is invariant under �.

Figure 2: A lamination.

Onto skein theory.

2



Definition Skein theory for a decorated hyperbolic surface ⌃ and a multicurve on ⌃

with endpoints at the punctures is defined up to sign as follows (where ` denotes the
length of a geodesic representative of a curve, or 0 if there is no such representative):

1. �(A) = e
`(A)
2 for A an arc,

2. �(C) = 2cosh

⇣
`(C)
2

⌘
for C a loop,

3. �(C1 [ C2) = �(C1)�(C2).

Note that there is no assumption that the multicurve is simple.

Figure 3: A multicurve, not necessarily simple.

Lemma 15.4. Up to sign, the skein relation

�

 !
= �

 !
+ �

 !
(1)

holds.

Some motivation for the above definition is the following.

Exercise 15.5. Let � 2 SL2(R) be hyperbolic. Let `(') be the translation length of
� (the distance by which � translates on the geodesic between its two fixed points).
Then

tr(�) = ±2cosh

✓
`(')

2

◆
. (2)
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Definition A curve diagram on ⌃ is an immersion C ! ⌃ = (S,M) (M the set of

marked points) where C is a 1-manifold with boundary, the boundary of C is sent

to marked points, the interior of C misses marked points, and there are no triple

intersections. We consider curve diagrams up to isotopies not changing the crossings.

The corresponding set is denoted CD(⌃).

Definition The skein algebra Sk(⌃) of ⌃ is Z[CD(⌃)] modulo the skein relation, the

relation that a closed loop has value �2, and the relation that a loop at a marked

point has value 0.

Setting a closed loop to �2 is equivalent to invariance under Reidemeister II:

�

0

BBBBBBB@

1

CCCCCCCA

= �

0

BBBBBBB@

1

CCCCCCCA

+ �

0

BBBBBBB@

1

CCCCCCCA

+ �

0

BBBBBBB@

1

CCCCCCCA

+ �

0

BBBBBBB@

1

CCCCCCCA

(3)

= �

0

BBBBBBB@

1

CCCCCCCA

(4)

Exercise 15.6. Check invariance under Reidemeister III. (Do not expand into 8

terms.) That is, check that

�

0

BBB@

1

CCCA
= �

0

BBB@

1

CCCA
. (5)

Setting a boundary loop to 0 is equivalent to invariance under a boundary version

of Reidemeister II:

�

0

@
•

1

A = �

0

@
•

1

A (6)
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We do not have invariance under Reidemeister I:

�

0

BBB@

1

CCCA
= �

0

BBB@

1

CCCA
+ �

0

BBB@

1

CCCA
(7)

= ��

0

BBB@

1

CCCA
. (8)

Instead, adding a twist introduces a sign. In summary, we have the following.

Proposition 15.7. The class of a curve in Sk(⌃) is invariant under RII, RIIb, RIII,
and changes by sign under RI.

Curves up to RII, RIIb, RIII may be regarded as curves up to regular isotopy.

Theorem 15.8. Simple multicurves (no loops, no boundary loops) form an integral
basis for Sk(⌃).

Proof. There is an expansion map Z[CD(⌃)] ! Z[SC(⌃)] (SC the set of simple multi-

curves) which resolves all crossings using the skein relation and removes all loops and

boundary loops. There is also an inclusion map in the other direction, since simple

multicurves are curve diagrams. There is also a map Z[CD(⌃)] ! Sk(⌃) through

which the expansion map factors, as well as a map Z[SC(⌃)] ! Sk(⌃). These maps

are inverses.

There is a map from Sk(⌃) to the upper cluster algebra Ā(⌃) associated to ⌃. It

is not known whether this map is an injection in general. This has been proven under

stronger assumptions on the coe�cients.

Question from the audience: what does this map look like?

Answer: first we need the following.

Theorem 15.9. Sk(⌃) has a product structure given by union of diagrams.

Proof. (Sketch) Let C(⌃) denote curve diagrams up to regular isotopy (curve dia-

grams modulo RII, RIIb, RIII). There is a natural map C(⌃)⇥ C(⌃) ! C(⌃) given

by union of diagrams, and this descends to a product structure on Sk(⌃).
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Figure 4: Multiplying by an edge in the triangulation.

Now consider the ring of Laurent polynomials with integer coe�cients in the �-
lengths associated to some triangulation T . Given the class of a simple multicurve in

Sk(⌃), we can multiply it by an edge in the triangulation and expand using the skein

relation.

Repeatedly doing this eventually gives edges in the triangulation, which can be

assigned their �-lengths, and then we can divide by the �-lengths of the edges we

multiplied by.

Exercise 15.10. Expand a loop in an annulus as a Laurent polynomial.

Figure 5: A loop in an annulus.
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Figure 6: Three curves on a torus.

Exercise 15.11. Find a relation between the three curves c0, c1, c1 in Sk(T 2
).

Exercise 15.12. Try to find skein relations for tagged arcs.
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