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11 More about cluster algebras

Last time we discussed conjugate horocycles. This gave a relation A(A)A(A’) = A\(B)
where A\(A’) is a A-length measured with respec to the conjugate horocycle. On the

other hand, we know that ¢(h) = %, which gives

A(AY) = A(A)L(h) (1)

or equivalently taking logarithms,

U(A) — €(A) = 21n ((h). 2)

This can be proven using a scaling argument. The result is clear when ¢(h) = 1,
since then the horocycle is its own conjugate. In general, a suitable scaling multiplies
¢(h) by ¢, multiplies A(A) by \%, and multiplies A(A’) by /¢, so the conclusion follows.

Last time we also asked for a surface giving rise to the affine Dynkin diagrams as
quivers. To get fik,g we can triangulate an annulus.

Figure 1: A triangulation giving A2, 4.

We also asked for a surface giving rise to D, in the orientation where all of the
arrows point outward. On the quiver level this can be obtained from the other D, we
had by mutating twice.

The corresponding geometric exchange relation for the first mutation is

T1Y = T4x3 + T3 (3)

but the actual exchange relation is
Ty = x4+ 1. (4)
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Figure 2: A D4 with two arrows pointing inward.

As before, this suggests measuring a A-length with respect to some conjugate
horocycle.

Figure 3: A corrected version of the first mutation giving the correct exchange rela-
tion.

Question from the audience: where is the triality symmetry here?

Answer: it appears to be somewhat hidden and is not readily accessible geomet-
rically. Note that quotienting D, by triality gives G, which is exceptional and does
not come from a surface at all.

Another example with hidden symmetry is the 4-punctured sphere. With a tetra-
hedral triangulation, the corresponding quiver is the octahedron with a certain tri-
angulation. This octahedral quiver can be obtained from a triangulation in a second



Figure 4: The second mutation.

way, which gives a hidden symmetry (related to Regge symmetry?). More precisely,
it can be glued from Type II blocks (see below) in two different ways.
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Figure 5: The octahedral quiver.

We will now clarify the geometric meaning of what we have been doing.

A tagged simple arc is an arc with one or both ends marked with a notch which does
not self-intersect and which does not bound a monogon or a 1-punctured monogon.
Notches can only appear at punctures in the interior and should agree at common
endpoints if an arc goes from a puncture to itself. Geometrically, a notch indicates
that A-lengths should be measured with respect to the conjugate horocycle. Two
tagged arcs are compatible if they don’t cross and if either

1. the tags agree at common endpoints or



2. the arcs are parallel, one is notched, and one is plain.
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Figure 6: Compatible and incompatible tagged arcs.

A tagged triangulation on a surface with a fixed set of marked points is a maximal
collection of (distinct) compatible tagged arcs between marked points.

Theorem 11.1. Any tagged triangulation may be obtained from an ordinary trian-
gulation T' by

1. replacing self-folded triangles with parallel arcs and

2. flipping all tags at some vertices.

We can construct quivers from a tagged triangulation. The way to remember how
this construction works is to remember the relation A(A)A(A") = A(B) for A" a tagged
arc parallel to A and B an arc around them. This suggests that when we replace a
self-folded triangle with parallel arcs, we effectively double the corresponding vertex
in the quiver.

Conversely, to determine when a quiver can come from a tagged triangulation,
we can glue blocks together (not to themselves) along vertices in such a way that we
cancel edges of opposite orientations. Blocks can only be glued along vertices which
have not been previously glued.

Any cluster algebra occurring in this way is mutation-finite. However, we don’t
get some interesting examples, such as the exceptional series.

Exercise 11.2. Show that it is not possible to obtain Eg, E7, Eg by gluing blocks.

Here is a more precise statement of the classification theorem we stated previously.
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Figure 7: Removing a self-folded triangle and doubling the corresponding vertex.
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Figure 8: Blocks which glue together to form quivers coming from tagged triangula-
tions.

Theorem 11.3. Fvery mutation-finite skew-symmetric cluster algebra is either
1. rank 2,
2. a surface cluster algebra, or
3. Eg, B, By, Eg, By, By, B8V EMY B X, X,
It would be interesting to find a better proof of this.

Exercise 11.4. Where is the default quiver in Bernhard Keller’s applet on the above
list? Can you mutate it to get to a standard form?
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Figure 9: The exceptional diagrams E,, E,, and E&Y.
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Figure 10: The exceptional diagrams X7, Xj.

Some of the entries in the above list, such as Eg, E7, Es, are not only mutation-
finite but of finite type (finitely many cluster variables). The affine ones Fg, E7, Eg

are not mutation-finite, but the number of clusters reachable after n mutations is
O(n) rather than exponential for most quivers.

Exercise 11.5. Mutate the punctured hexagonal quiver to obtain the Dg quiver.



Figure 11: Bernhard Keller’s default quiver.

Figure 12: The punctured hexagon and Ds.



