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18 The Laurent phenomenon (Kalman)

The Laurent phenomenon is a phenomenon by which various recurrences defined by
rational functions turn out to be Laurent polynomials in the first few terms. If the
first few terms are set to 1, then the remaining terms become integers even though
the recurrence divides by previous members of the term. For example, consider the
sequence

yk =
yk−3yk−1 + y2k−2

yk−4
(1)

with initial conditions y1 = y2 = y3 = y4 (Somos-4).
Cluster algebras provide a natural setting for studying the Laurent phenomenon

via the exchange relation (Fomin, Zelevinsky).

Theorem 18.1. In a cluste ralgebra, any cluster variable is expressed in terms of
any given cluster as a Laurent polynomial with coefficients in the group ring ZP.

We will instead prove a more general result, the Caterpillar Lemma. This is a
statement about a sequence Tn,m of trees. This has m vertices of degree n in its
spine.

Figure 1: The caterpillar T4,8.

We will label the edges emanating from each vertex with different labels and we
will associate an exchange polynomial P ∈ A[x1, ...xn], not involving xk, to every edge
(here A is a UFD). This is a generalized exchange pattern.

Associate to t0 the initial cluster x(t0) of n independent variables. To each vertex
t ∈ Tn,m, we associate a cluster x(t). The variables in this cluster are uniquely
determined by the exchange relations, for an edge labeled by k and P :
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xi(t) = xi(t
′), i 6= k (2)

xk(t)xk(t′) = P (x(t)). (3)

Lemma 18.2. (Caterpillar) Suppose a generalized exchange pattern on Tn,m satisfies
the following conditions:

1. for any edge labeled by k and P , the polynomial P does not involve xk and is
not divisible by any xi.

2. For any two consecutive edges labeled by i, P and j,Q, the polynomials P and
Q0 = Q|xi=0 are coprime.

3. For any three consecutive edges labeled by i, P and j,Q and i, R, we have

LQb
0P = R

xj←
Q0
xj

(4)

where b is a non-negative integer and L is a Laurent monomial whose coefficients
lie in A and which is coprime to P .

Then each xi(t), t ∈ Tn,m is a Laurent polynomial in x1(t0), ...xn(t0) with coeffi-
cients in A.

Proof. For t ∈ Tn,m let L(t) be the ring of Laurent polynomials in x(t). Abbreviate
L0 = L(t0). We proceed by induction on m (the length of the spine). This is
straightforward for m = 1, so assume m ≥ 2 and that the statement is true for all
caterpillars with smaller spine.

We will need a lemma. Suppose the path from t0 to thead starts with edges la-
beled by i and j and consider the unique next edge labeled by i. Then the clusters
x(t1),x(t2),x(t3) are all in L0, and in addition gcd(xi(t3), xi(t1)) = gcd(xj(t2), xi(t1)) =
1. The proof of this last statement involves the third condition.

Returning to the proof, by the inductive hypothesis X = xk(thead) belongs to both
L(t1) and L(t3). We further claim that X = f

xi(t1)a
for some f ∈ L0 and some a ≥ 0.

This follows from the fact that X ∈ L(t1) and that xi(t1) = P
xi
∈ L0.

Similarly, we claim that X = g
xj(t2)bxi(t3)c

for some g ∈ L0 and some b, c ≥ 0. This

follows from the fact that X ∈ L(t3), the fact that xi(t3), xj(t3) ∈ L0 by the lemma,
and the fact that xj(t3) = xj(t2) ∈ L0.

We conclude that
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X =
f

xi(t)a
=

g

xj(t2)axi(t3)c
. (5)

From the second part of the lemma, gcd(xi(t3), xi(t1)) = 1, gcd(xj(t2), xi(t1)) = 1,
so X ∈ L0 as desired.

Good news: the Caterpillar Lemma can prove Laurentness in many situations.
Bad news: it is often not trivial to rephrase a given problem in the Caterpillar Lemma
framework. For example, when describing the caterpillar graph for the Somos-4 se-
quence, it is not obvious what the exchange polynomials on the legs should be. See
Fomin-Zelevinsky for details.

19 Miscellaneous

Some sequences exhibiting the Laurent phenomenon like the Somos-7 sequence

xkxk+7 = xk+1xk+6 + xk+2xk+5 + xk+3xk+4 (6)

cannot be described using cluster algebras (we would need the RHS to consist of
two terms). Lam and Pylyavskyy have a notion of Laurent phenomenon algebra that
addresses this.

Consider surfaces with boundary components and no marked points.

Figure 2: A surface with boundary components and no marked points.

We can write down what the exchange relations for the corresponding cluster
algebra looks like using the skein relation.
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Figure 3: An application of the skein relation.

Figure 4: Another application of the skein relation.

This gives an exchange relation with three terms on the RHS (so not a cluster
algebra): more specifically,

xx′ = y2 + z2 + yzw. (7)

There are two special cases. When w = 0, this has two terms. When w = 2, we
should take

√
x,
√
x′ as the cluster variables, and then their product is y + z.

More geometrically, recall that for closed curves the λ-length is 2 cosh
(
`
2

)
, or the

trace of the monodromy. When w = 2 we have ` = 0 (a cusp) and when w = 0 we are
instead at a cone point and we should replace the hyperbolic cosine with the usual
cosine of the angle, which is π at an order 2 cone point. In the case that w = 2, we
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added square roots because we are looking at a self-conjugate horocycle.

Figure 5: Self-conjugate horocycles and square roots. Here t =
√
s.

Let’s return to skein theory. Last time we forgot an extra relation, namely that a
loop around a puncture evaluates to 2.

Figure 6: Relations for skein theory.

Not including this relation gives a sensible skein algebra, but one which has a zero
divisor.

With this extra relation it is not completely obvious that these relations are con-
sistent (that is, that the basis is still what we expect it to be). This can be proven
using the diamond lemma (Bergman). This is a lemma about a system of reductions
(e.g. relations replacing some terms by other terms in a presentation of an algebra).
This system of reductions is required to have the following properties:

5



Figure 7: A zero divisor.

1. Local confluence: if R1, R2 are two reductions of some x, there is some further
chain of reductions which makes them equal.

2. Any chain of reductions terminates.

Figure 8: A diamond describing local confluence.

With these hypotheses, any two chains of reductions from x ends at the same
place. This proceeds by induction on the length of chains.

These hypotheses are straightforward to verify for the skein relations.
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Figure 9: The inductive step.
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