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22 More about strong positivity

Today we will ignore tags.
Let D be a diagram. Recall that a crossing in D is positive if both of its resolutions

are positive, where positivity means no singular 0-gons and 1-gons. Recall also that
a diagram is taut if it has the minimum number of self-intersections.

Figure 1: A crossing that is not positive.

Definition A multi-bracelet is a diagram where two components don’t intersect and
each component is a simple arc or a bracelet (and there are no 0-gons and 1-gons).

Lemma 22.1. Any taut diagram that is not a multi-bracelet has a positive crossing.

To show this we will use the following.

Lemma 22.2. If D is taut but a crossing of D resolves into D1, D2 where D1 is not
positive, then D1 has a singular 0-gon or 1-gon passing through the reducing disk (the
disk surrounding the crossing in which we apply the skein relation) twice.

Proof. Since D1 is not positive, it has a singular 0-gon or 1-gon H. If H does not
pass through the reducing disk, then we get a 0-gon or 1-gon for D, which contradicts
tautness. If H passes through the reducing disk once, then we get a 1-gon or 2-gon
for D, which also contradicts tautness.

Exercise 22.3. Find more examples of resolutions D = D1 +D2 where D is taut and
D1 is not positive. Check the lemma above in your examples.
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Figure 2: Singular polygons in D1 and singular polygons in D.

Definition A bracelet chain in D is a 0-chain or 1-chain H such that the smoothing
H0 is homotopic to a bracelet. A maximal bracelet chain is a bracelet not contained
in any larger bracelet chain for the same loop.

Lemma 22.4. Every component of a taut diagram D with at least one self-crossing
has a maximal bracelet chain.

Proof. Let C be a component with a self-crossing. Then it has a 1-chain. Take a
minimal 1-chain by inclusion. This is a 1-chain H such that H0 is a simple loop L.
Take H ′ to be a maximal bracelet chain containing H (which is also a bracelet for
L).

Lemma 22.5. The crossing at the end of a maximal bracelet 1-chain is positive.

Proof. Let H be such a maximal bracelet. Tne resolution of the crossing is not
connected to the rest of the diagram locally, so a 0-gon or 1-gon cannot pass through
the reducing disk twice. There are two possible cases a), b) involving the other
resolution which must be ruled out.

To rule out case a), write the maximal bracelet as γk ∈ π1 for k maximal and γ a
loop. Write the rest of the diagram as ρ ∈ π1. If we get a singular 1-gon in the first
case, then ργk = id, or ρ = γ−k, which contradicts the maximality of H.

To rule out case b), with notation as above, we have ργ` = id for some ` ≤ k. It
follows that the entire component is a bracelet, which contradicts the maximality of
H.

We are getting close to the proof of the first lemma; it suffices now to consider
crossings between components.
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Figure 3: Part of a maximal bracelet.

Figure 4: The two cases above.

Exercise 22.6. Show that any crossing between two components C1, C2 of a taut
diagram D where C1, C2 are simple arcs or bracelets is positive.

Use the fact that roots are unique in π1(Σ): that is, if γk = ρ`, then there exists
σ, s, t such that γ = σs, ρ = σt, and sk = t`.

Exercise 22.7. Prove the multiplication rule T(a,b)T(c,d) = T(a+c,b+d) + T(a−c,b+d) for
the basis for the unpunctured torus (at q = 1) from last time.

Now we will discuss a geometric interpretation of the skein relations. Here we
will ignore marked points and arcs. The skein relation should have something to do
with SL2. More precisely, it should have something to do with the following fact: if
A,B ∈ SL2, then
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tr(A)tr(B) = tr(AB) + tr(AB−1). (1)

This follows from the Cayley-Hamilton theorem, which gives B2−tr(B)B+I = 0,
after dividing by B and multiplying by A, then taking traces.

A,B should be the monodromy of two loops, except that the signs don’t match.

Figure 5: The signs are incorrect here.

This is because we were taking q = 1 and we actually need to take q = −1, which
gives a skein relation in which three terms add up to 0. Geometrically we should take
the negative of the trace. More precisely,

Proposition 22.8. If Σ is a surface and ρ : π1(Σ) → SL2 is a representation, then
the assignment

D 7→
∏
i

−tr(ρ(Di)) (2)

where D is a diagram with components Di satisfies the q = −1 skein relation.

However, taking q = −1 destroys positivity. To get back to q = 1 we need to
twist. There is a fibration

S1 → UT(Σ)→ Σ (3)

where UT is the unit tangent bundle. This gives a long exact sequence in homotopy

π2(Σ)→ π1(S
1)→ π1(UT(Σ))→ π1(Σ)→ 0 (4)

4



and if Σ is not S2 then π2(Σ) vanishes, hence π1(UT(Σ)) = π̃1(Σ) is a canonical
Z-extension of π1(Σ). We define a twisted SL2 representation to be a representation
ρ : π̃1(Σ) → SL2 such that ρ(360◦ turn) = −1. The corresponding quotient map to
PSL2 gives an honest PSL2-representation.

If γ is an immersed curve in Σ, by taking tangent vectors it lifts to a curve γ̃
in UT(Σ), and associated to this choice of lift is a trace. (If we had just used a
PSL2-representation, the trace would only be defined up to sign.)

Proposition 22.9. For Σ a surface and ρ : π̃1(Σ)→ SL2 a twisted SL2-representation,
the assignment

D 7→
∏
i

tr(ρ(D̃i)) (5)

satisfies the q = 1 skein relation.

In the background here is the fact that a hyperbolic structure on Σ has a canonical
twisted SL2-representation lifting the PSL2-representation given by considering the
universal cover.

This is related to spin structures. Recall that π1(SO(n)) ∼= Z/2Z for n ≥ 3; in
particular it is not simply connected. When n = 2 we have π1(SO(2)) ∼= Z. In any
case, for n ≥ 2, it follows that SO(n) has a unique double cover called Spin(n), and for
n ≥ 3 this is the universal cover. There are exceptional isomorphisms Spin(3) ∼= SU(2)
and Spin(4) ∼= SU(2)× SU(2).

A spin structure on a smooth oriented (Riemannian for simplicity but this is not
necessary) manifold M is a lift of the frame bundle to a Spin(n)-bundle. Concretely,
this gives us some information about which loops in the frame bundle lift and which
do not. On an oriented surface Σ, rather than thinking about frames we can think
about tangent vectors, and then the question is whether or not a path of tangent
vectors lifts. We can generate paths of tangent vectors using an immersed curve.
This gives us a rule assigning connected immersed curves signs ±1 satisfying some
rules.

A twisted SL2-representation can then be described as the product of an ordinary
SL2-representation and a spin structure.
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