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22 DMore about strong positivity

Today we will ignore tags.

Let D be a diagram. Recall that a crossing in D is positive if both of its resolutions
are positive, where positivity means no singular 0-gons and 1-gons. Recall also that
a diagram is taut if it has the minimum number of self-intersections.

Figure 1: A crossing that is not positive.

Definition A multi-bracelet is a diagram where two components don’t intersect and
each component is a simple arc or a bracelet (and there are no 0-gons and 1-gons).

Lemma 22.1. Any taut diagram that is not a multi-bracelet has a positive crossing.
To show this we will use the following.

Lemma 22.2. If D is taut but a crossing of D resolves into Dy, Dy where Dy is not
positive, then Dy has a singular 0-gon or 1-gon passing through the reducing disk (the
disk surrounding the crossing in which we apply the skein relation) twice.

Proof. Since D; is not positive, it has a singular 0-gon or 1-gon H. If H does not
pass through the reducing disk, then we get a 0-gon or 1-gon for D, which contradicts
tautness. If H passes through the reducing disk once, then we get a 1-gon or 2-gon
for D, which also contradicts tautness. ]

Exercise 22.3. Find more examples of resolutions D = D1+ Dy where D is taut and
Dy 1s not positive. Check the lemma above in your examples.
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Figure 2: Singular polygons in D; and singular polygons in D.

Definition A bracelet chain in D is a O-chain or 1-chain H such that the smoothing
HY is homotopic to a bracelet. A mazimal bracelet chain is a bracelet not contained
in any larger bracelet chain for the same loop.

Lemma 22.4. Every component of a taut diagram D with at least one self-crossing
has a mazximal bracelet chain.

Proof. Let C be a component with a self-crossing. Then it has a 1-chain. Take a
minimal 1-chain by inclusion. This is a 1-chain H such that H° is a simple loop L.
Take H' to be a maximal bracelet chain containing H (which is also a bracelet for

L). [
Lemma 22.5. The crossing at the end of a maximal bracelet 1-chain is positive.

Proof. Let H be such a maximal bracelet. Tmne resolution of the crossing is not
connected to the rest of the diagram locally, so a 0-gon or 1-gon cannot pass through
the reducing disk twice. There are two possible cases a), b) involving the other
resolution which must be ruled out.

To rule out case a), write the maximal bracelet as v* € 7, for k maximal and v a
loop. Write the rest of the diagram as p € m;. If we get a singular 1-gon in the first
case, then py* = id, or p = v, which contradicts the maximality of H.

To rule out case b), with notation as above, we have py* = id for some ¢ < k. It
follows that the entire component is a bracelet, which contradicts the maximality of
H. O

We are getting close to the proof of the first lemma; it suffices now to consider
crossings between components.
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Figure 3: Part of a maximal bracelet.
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Figure 4: The two cases above.

Exercise 22.6. Show that any crossing between two components Ci,Cs of a taut
diagram D where Cy, Cy are simple arcs or bracelets is positive.

Use the fact that roots are unique in 7;(X): that is, if 4% = pf, then there exists
0, s,t such that v = 0%, p = o', and sk = t£.

Exercise 22.7. Prove the multiplication rule Tiap)T(c.qy = Tateprd) + Ta—cpt+d) for
the basis for the unpunctured torus (at ¢ = 1) from last time.

Now we will discuss a geometric interpretation of the skein relations. Here we
will ignore marked points and arcs. The skein relation should have something to do
with SLy. More precisely, it should have something to do with the following fact: if
A, B € SLy, then



tr(A)tr(B) = tr(AB) + tr(AB™1). (1)

This follows from the Cayley-Hamilton theorem, which gives B?> —tr(B)B+1 = 0,
after dividing by B and multiplying by A, then taking traces.
A, B should be the monodromy of two loops, except that the signs don’t match.
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Figure 5: The signs are incorrect here.

This is because we were taking ¢ = 1 and we actually need to take ¢ = —1, which
gives a skein relation in which three terms add up to 0. Geometrically we should take
the negative of the trace. More precisely,

Proposition 22.8. If ¥ is a surface and p : m(3) — SLy is a representation, then
the assignment

D [ ~trtp(D1) (2)

where D 1is a diagram with components D; satisfies the ¢ = —1 skein relation.

However, taking ¢ = —1 destroys positivity. To get back to ¢ = 1 we need to
twist. There is a fibration

St UT(Z) = % (3)

where UT is the unit tangent bundle. This gives a long exact sequence in homotopy

m(X) = m(S') = T (UT(R)) = m (%) = 0 (4)



and if ¥ is not S? then my(3) vanishes, hence m (UT(X)) = 7;(X) is a canonical
Z-extension of m1(3). We define a twisted SLy representation to be a representation
p : 71(X) — SLy such that p(360° turn) = —1. The corresponding quotient map to
PSL, gives an honest PSLy-representation.

If v is an immersed curve in X, by taking tangent vectors it lifts to a curve ¥
in UT(X), and associated to this choice of lift is a trace. (If we had just used a
PSLa-representation, the trace would only be defined up to sign.)

Proposition 22.9. For X a surface and p : 71 (3) — SLy a twisted SLy-representation,
the assignment

D — H tr(p(D;)) (5)

satisfies the ¢ = 1 skein relation.

In the background here is the fact that a hyperbolic structure on X has a canonical
twisted SLo-representation lifting the PSLy-representation given by considering the
universal cover.

This is related to spin structures. Recall that 7 (SO(n)) = Z/2Z for n > 3; in
particular it is not simply connected. When n = 2 we have 71(SO(2)) = Z. In any
case, for n > 2, it follows that SO(n) has a unique double cover called Spin(n), and for
n > 3 this is the universal cover. There are exceptional isomorphisms Spin(3) = SU(2)
and Spin(4) = SU(2) x SU(2).

A spin structure on a smooth oriented (Riemannian for simplicity but this is not
necessary) manifold M is a lift of the frame bundle to a Spin(n)-bundle. Concretely,
this gives us some information about which loops in the frame bundle lift and which
do not. On an oriented surface X, rather than thinking about frames we can think
about tangent vectors, and then the question is whether or not a path of tangent
vectors lifts. We can generate paths of tangent vectors using an immersed curve.
This gives us a rule assigning connected immersed curves signs 41 satisfying some
rules.

A twisted SLo-representation can then be described as the product of an ordinary
SLo-representation and a spin structure.



