

274 Curves on Surfaces, Lecture 21

Dylan Thurston

Fall 2012

23 More about the geometry of skein relations

Recall that a twisted SL_2 -representation of a surface Σ is an SL_2 -representation of a \mathbb{Z} -extension $\tilde{\pi}_1(\Sigma) \cong \pi_1(UT(\Sigma))$ of the fundamental group such that a 360° rotation acts by -1 . Such a representation in particular descends to an ordinary PSL_2 -representation of $\pi_1(\Sigma)$. Defining

$$\tilde{\rho}(D) = \prod_i \text{tr}(\tilde{\rho}(\tilde{D}_i)) \quad (1)$$

where D is a curve diagram, \tilde{D}_i are the lifts of the components of D to $UT(\Sigma)$, and $\tilde{\rho}$ is a twisted representation, we claim that $\tilde{\rho}(D)$ satisfies the skein relations with $q = 1$.

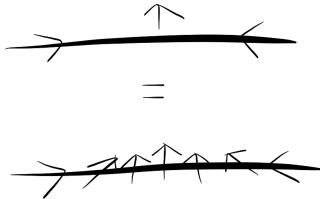


Figure 1: An immersed curve and its tangent vectors.

We should say more about paths in the unit tangent bundle. We can notate these by writing down an immersed curve in Σ together with arrows indicating how the unit tangent vectors should rotate. This notation satisfies some straightforward axioms.

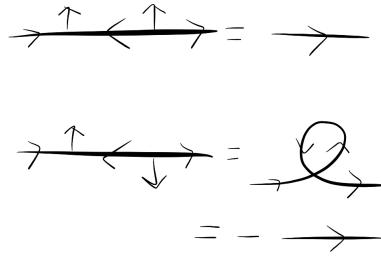


Figure 2: Some axioms.

To verify the skein relations, there are two cases depending on how the skeins close up into curves. We will apply the trace relation $\text{tr}(A)\text{tr}(B) = \text{tr}(AB) + \text{tr}(AB^{-1})$, but keeping track of tangent vectors.

Figure 3: The two cases.

Exercise 23.1. Verify the skein relation in the second case.

The relationship to spin structures is the following. Concretely, a double cover of the frame bundle is a homomorphism η from π_1 of the frame bundle to $\mathbb{Z}/2\mathbb{Z}$. For a surface Σ the frame bundle is essentially the unit tangent bundle, so a spin structure on Σ assigns a sign to every path in $UT(\Sigma)$, hence to immersed curves in Σ . This assignment satisfies various axioms.

Alternatively, we can think of η as an element of $H^1(UT(\Sigma), \mathbb{Z}/2\mathbb{Z})$ which is non-trivial on the 360° rotation. There is an action of $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z})$ on the above cohomology group (by translation), hence $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z})$ acts on the set of spin structures of Σ . If spin structures exist, the set of all such spin structures is then a torsor over $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z})$. More concretely, if η_1, η_2 are two spin structures, their difference is an element of $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z})$.

Proposition 23.2. If $\rho : \pi_1(\Sigma) \rightarrow SL_2$ is an SL_2 -representation of the fundamental group and $\eta : \pi_1(UT(\Sigma)) \rightarrow \mathbb{Z}/2\mathbb{Z}$ is a spin structure, then $\rho\eta : \pi_1(UT(\Sigma)) \rightarrow SL_2$ is a twisted SL_2 -representation.

Conversely, we have an identification

$$\text{Rep}_{SL_2}^{\text{Twist}}(\Sigma) = (\text{Rep}_{SL_2}(\Sigma) \times \text{Spin}(\Sigma)) / H^1(\Sigma; \mathbb{Z}/2\mathbb{Z}) \quad (2)$$

where $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z}) \cong \text{Hom}(\pi_1, \mathbb{Z}/2\mathbb{Z})$ acts diagonally.

$$\begin{aligned}
h(\circlearrowleft) &= -1 & h(\circlearrowright) &= h(\circlearrowright) \\
h(\overrightarrow{\text{---}}) &= -h(\overrightarrow{\text{---}}) & & \cdot h(\circlearrowleft)
\end{aligned}$$

$$h(\circlearrowleft) = -h(\circlearrowright)$$

Figure 4: Some properties of spin structures.

Exercise 23.3. *What are the spin structures on the torus? What are their orbits under the action of the mapping class group?*

The skein algebra at $q = 1$ describes a class of functions on the set of twisted SL_2 -representations. Moreover it has a strongly positive basis which is invariant under the action of the mapping class group. Passing to ordinary SL_2 -representations by multiplication by a spin structure, we lose this invariance because not all spin structures are preserved by the action of the mapping class group.

Now suppose Σ is equipped with a hyperbolic structure. Then the universal cover of Σ is naturally identified with the hyperbolic plane \mathbb{H}^2 , so we can write $\Sigma \cong \mathbb{H}^2/\Gamma$ where $\Gamma \cong \pi_1(\Sigma)$ is a discrete subgroup of $\text{PSL}_2(\mathbb{R})$. Thus a hyperbolic structure determines a (faithful) representation

$$\pi_1(\Sigma) \rightarrow \text{PSL}_2(\mathbb{R}). \quad (3)$$

This is part of the structure defining a twisted SL_2 -representation. The different lifts of this representation to an SL_2 -representation are classified by spin structures and people usually pick one.

However, there is a canonical such lift. To see this, write \mathbb{H}^2 as the quotient of $\text{PSL}_2(\mathbb{R})$ by $\text{SO}(2)$. This gives an identification of $\text{UT}(\mathbb{H}^2)$ with $\text{PSL}_2(\mathbb{R})$, hence an identification

$$UT(\Sigma) \cong PSL_2(\mathbb{R})/\Gamma \quad (4)$$

using the fact that the identification $\Sigma \cong \mathbb{H}^2/\Gamma$ respects tangent spaces. This in turn gives an identification

$$UT(\Sigma) \cong SL_2(\mathbb{R})/\tilde{\Gamma} \quad (5)$$

where $\tilde{\Gamma}$ is the preimage of Γ in $SL_2(\mathbb{R})$ (some $\mathbb{Z}/2\mathbb{Z}$ central extension). This is not quite $\tilde{\pi}_1(\Sigma)$, but there is a diagram

$$\begin{array}{ccccc} \mathbb{Z} & \longrightarrow & \tilde{\pi}_1(\Sigma) & \longrightarrow & \pi_1(\Sigma) \\ \downarrow & & \downarrow & & \downarrow \cong \\ \mathbb{Z}/2\mathbb{Z} & \longrightarrow & \tilde{\Gamma} & \longrightarrow & \Gamma \end{array} \quad (6)$$

relating them.

Alternatively, consider the boundary of \mathbb{H}^2 , which is naturally identified with \mathbb{RP}^1 . This is naturally acted on by $PSL_2(\mathbb{R})$. On the other hand, given a tangent vector to a point in \mathbb{H}^2 we can follow a unique geodesic to the boundary, which gives a natural identification

$$UT_p(\Sigma) \cong UT_p(\mathbb{H}^2) \cong \mathbb{RP}^1. \quad (7)$$

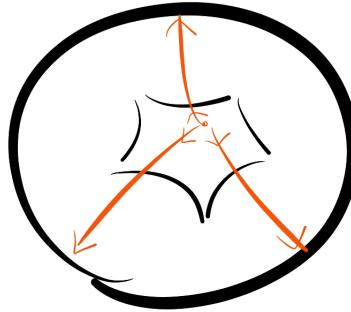


Figure 5: Identifying unit tangents with the boundary.

This identification can also be used to obtain the above result. It follows that the Teichmuller space for Σ embeds into $Rep_{SL_2}^{\text{Twist}}$.

Proposition 23.4. *The Teichmüller space for Σ is the totally positive part of $\text{Rep}_{SL_2}^{\text{Twist}}$: that is, it is the part where all elements in the positive basis for the skein algebra take positive values.*

To take decorations into account, we need a notion of twisted decorated SL_2 -representation. We will first think of twisted SL_2 -representations as twisted SL_2 -local systems (2-dimensional real vector bundles V over $UT(\Sigma)$ such that the projectivization of V is the pullback of the unit tangent bundle over Σ). To decorate them, we want the additional data of a choice of vector in V_p for each outward-pointing tangent vector at a boundary point.