

274 Curves on Surfaces, Lecture 22

Dylan Thurston

Fall 2012

24 Additive categorification of surface cluster algebras (Christof)

Surface cluster algebras can be categorified (additively) as follows. We consider certain triangulated 2-Calabi-Yau \mathbb{C} -linear categories C with a cluster tilting object $T = T_1 \oplus \dots \oplus T_n$. Triangulated categories generalize derived categories: their main feature is the existence of a self-equivalence $\Sigma : C \rightarrow C$ and a collection of distinguished triangles

$$X \rightarrow Y \rightarrow Z \rightarrow \Sigma X \quad (1)$$

satisfying various axioms and generalizing exact sequences. One of these is that for every morphism $X \xrightarrow{f} Y$ there exists a distinguished triangle

$$X \xrightarrow{f} Y \rightarrow Z \rightarrow \Sigma X. \quad (2)$$

2-Calabi-Yau means that there is a natural isomorphism

$$\text{Hom}(X, Y) \cong \text{Hom}(Y, \Sigma^2 X)^* \quad (3)$$

where $*$ denotes the linear dual. In particular,

$$\text{Hom}(X, \Sigma Y) \cong \text{Hom}(Y, \Sigma X)^*. \quad (4)$$

Cluster tilting means that for every X we have

$$\text{Hom}(T, \Sigma X) = 0 \Leftrightarrow X \text{ is direct summand of } T. \quad (5)$$

In particular, there is a functor

$$F : C \ni X \mapsto \text{Hom}(T, \Sigma X) \in \text{End}(T)^{op}\text{-Mod} \quad (6)$$

whose kernel is given by morphisms which factor through T .

The above conditions imply that every Hom-space is finite-dimensional. In particular, $\text{End}(T)^{op}$ is finite-dimensional. It can be written as $\mathbb{C}[Q]/I$ where $\mathbb{C}[Q]$ is the path algebra of a quiver Q and I is an admissible ideal. This quiver Q is canonically determined by the algebra.

The summands $T = T_1 \oplus \dots \oplus T_n$ can be exchanged; for each i there exists $T'_i \neq T_i$ such that $T/T_i \oplus T'_i$ is again a cluster tilting object. The corresponding quiver Q changes according to quiver mutation.

There is a map called the cluster character sending an object Z to a certain sum

$$C^T(Z) = \underline{x}^{g(Z)} \sum_{\ell} \chi(\mathrm{Gr}_{\underline{\ell}}^{Q^{op}}(F(Z))) \underline{y}^{\underline{\ell}} \quad (7)$$

over Euler characteristics of quiver Grassmannians which evaluates to a Laurent polynomial in $\mathbb{Z}[x_1^{\pm}, \dots, x_n^{\pm}]$. Here $g(Z)$ is defined as follows: if

$$\Sigma^{-1}Z \rightarrow T_Z^b \rightarrow T_Z^a \rightarrow Z \quad (8)$$

is a distinguished triangle, where $\underline{a} = (a_1, a_2, \dots)$ and

$$T_Z^a = T_1^{a_1} \oplus T_2^{a_2} \oplus \dots \quad (9)$$

then

$$g(Z) = \underline{a} - \underline{b}. \quad (10)$$

Furthermore,

$$y_k = \prod_{i=1}^n x_i^{|Q(i,k)| - |Q(k,i)|} \quad (11)$$

where $|Q(i,k)|$ is the number of edges from i to k .

Ideally $C^T(Z)$ is contained in the upper cluster algebra associated to Q . The indecomposable rigid objects (those satisfying $\mathrm{Hom}(Z, \Sigma Z) = 0$) give cluster variables.

Quiver Grassmannians are defined as follows. If M is a module over a quiver algebra $\mathbb{C}[Q]$ and $\underline{\ell}$ is a dimension vector, then $\mathrm{Gr}_{\underline{\ell}}^Q(M)$ is a projective variety parameterizing submodules of M with dimension vector $\underline{\ell}$. Any projective variety appears as some quiver Grassmannian, so they can be come arbitrarily complicated.

We can recognize the images of rigid objects in $\mathrm{End}(T)^{op}\text{-Mod}$ as follows. For M a module, take a minimal projective presentation

$$P_n \xrightarrow{\pi} P_0 \rightarrow M \rightarrow 0 \quad (12)$$

and consider the cokernel

$$\mathrm{Hom}(P_0, M) \xrightarrow{\mathrm{Hom}(\pi, M)} \mathrm{Hom}(P_n, M) \rightarrow \mathcal{E}(M). \quad (13)$$

Then $M = F(Z)$ with Z rigid if and only if $\mathcal{E}(M) = 0$. In particular, we need $\mathrm{Ext}^1(M, M) = 0$.

To find categories and objects T of them satisfying the above conditions, we can start from a quiver with potential. If Q is a quiver, a potential W is a linear combination of cycles in Q . From this data one can construct a Ginzburg dg-algebra, and from this dg-algebra one can construct the required category and object. This

object T satisfies $\text{End}(T)^{op} = \mathbb{C}[Q]/\langle \partial W \rangle$ where ∂W is the ideal generated by all cyclic derivatives of the potential W . Actually one needs to take a suitable completion of this in general.

Exercise 24.1. Consider the quiver

with potential $W = cba$. In this case the completed and uncompleted algebras are the same and $\langle \partial W \rangle = \{ba, cb, ac\}$.