

274 Curves on Surfaces, Lecture 26

Dylan Thurston

Fall 2012

28 More about geometric interpretations of skein relations

Recall that giving a hyperbolic structure to a surface Σ gives a (discrete, faithful) representation of $\pi_1(\Sigma)$ in $\text{Aut}(\mathbb{H}^2) \cong \text{PSL}_2(\mathbb{R})$ up to conjugacy. If Σ has marked points, then we want cusps in the hyperbolic structure, which gives a collection of ideal points in $\partial\mathbb{H}^2$ (lifts of the cusps) acted on by $\pi_1(\Sigma)$. The number of such orbits should be finite and should satisfy some other conditions.

Decorating cusps gives a collection of horocycles in \mathbb{H}^2 acted on by $\pi_1(\Sigma)$. Recall that horocycles can be thought of as (positive) null vectors in the light-cone model or as elements of $\mathbb{R}^2/\{\pm 1\}$.

Now ignore twisting and suppose that we have an $\text{SL}_2(\mathbb{R})$ -representation of $\pi_1(\Sigma)$. These can be identified with certain \mathbb{R}^2 -bundles over Σ with a flat connection (equivalently, an \mathbb{R}^2 -local system). We want bundles whose transition functions lie in SL_2 (equivalently, SL_2 -local systems).

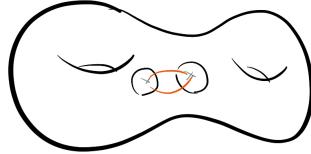


Figure 1: Monodromy of a bundle on a surface.

In this picture, a decorated cusp corresponds to a choice of vector in the fiber of the local system above each marked point.

$\text{PSL}_2(\mathbb{R})$ acts on the unit tangent bundle $\text{UT}(\mathbb{H}^2)$ freely and transitively, so $\text{UT}(\mathbb{H}^2)$ can in fact be identified with $\text{PSL}_2(\mathbb{R})$. Taking double covers gives $\text{SL}_2(\mathbb{R}) \cong \text{UT}^{(2)}(\mathbb{H}^2)$, and taking universal covers gives $\widetilde{\text{SL}_2(\mathbb{R})} \cong \widetilde{\text{UT}(\mathbb{H}^2)}$. (The universal cover of $\text{SL}_2(\mathbb{R})$ is a good example of a group that has no faithful finite-dimensional representations.)

As we saw earlier, this story descends to Σ and gives both a canonical $\mathbb{Z}/2\mathbb{Z}$ -extension and a canonical \mathbb{Z} -extension of $\pi_1(\Sigma)$, and this is how we define twisted representations. Also, as we saw earlier, a hyperbolic structure gives a PSL_2 -representation which canonically lifts to a twisted SL_2 -representation.

An immersed loop L on Σ gives a loop in $UT(\Sigma)$. Given a twisted representation $\tilde{\rho}$, we can now extract a number $\text{tr}(\tilde{\rho}(\tilde{L}))$.

Proposition 28.1. *If $\tilde{\rho}$ comes from a hyperbolic structure and L is taut, then $\text{tr}(\tilde{\rho}(\tilde{L})) > 2$.*

Proof. If L is taut, then it is regular isotopic to its geodesic representative L_2 . Moreover, L_2 lifts to a curve \tilde{L}_2 in $UT(\Sigma)$ which is still geodesic, and it lifts again to a geodesic (but not necessarily closed) curve in $UT^{(2)}(\mathbb{H}^2) \cong \text{SL}_2(\mathbb{R})$. A geodesic in a Lie group (with respect to a bi-invariant metric) is up to translation of the form $e^{tM}, M \in \mathfrak{sl}_2(\mathbb{R})$, and the number we want is $\text{tr}(e^M)$. We know that e^M is hyperbolic, which means that the absolute value of the trace is greater than 2, and diagonalizing M the conclusion follows. \square

Theorem 28.2. *The positive real points of $\text{Spec}(\text{Sk}(\Sigma))$ (the real points on which the bands or bracelets basis evaluate to positive numbers) are naturally identified with $\text{Teich}(\Sigma)$.*

Proof. (Sketch) The interesting case is when Σ is closed. Let $\nu : \text{Sk}(\Sigma) \rightarrow \mathbb{R}$ be a positive point. If L is a simple loop, then $\nu(L) > 0$, but we also have $\nu(\text{Brac}^{(k)}(L)) > 0$. But

$$\nu(\text{Brac}^{(k)}(L)) = T_k(\nu(L)) \quad (1)$$

where T_k is the k^{th} Chebyshev polynomial. The condition that this is positive for all k implies that $\nu(L) \geq 2$. The complex points of $\text{Spec}(\text{Sk}(\Sigma))$ can be identified with twisted $\text{SL}_2(\mathbb{C})$ -representations of $\pi_1(\Sigma)$ (Bullock), and ν itself gives a representation into $\text{PSL}_2(\mathbb{R})$ in which all elements are parabolic or hyperbolic. This is not quite enough to show that ρ is discrete; there is more work needed...

Some indication of why this should be true. The closure of the image of ρ in $\text{PSL}_2(\mathbb{R})$ is a Lie subgroup. Its connected component of the identity is a connected Lie subgroup, hence corresponds to some Lie subalgebra of $\mathfrak{sl}_2(\mathbb{R})$. If the image of ρ consists of hyperbolic elements (and the identity) then the closure of the image cannot be all of $\text{PSL}_2(\mathbb{R})$, so it suffices to rule out the other possible images. \square

We now return to the case of marked points (on the boundary for simplicity). We would like to generalize twisted representations to this case. A twisted representation corresponds to an SL_2 -local system, not on a surface Σ , but on its unit tangent bundle $UT(\Sigma)$. We then associate to each marked point a vector in the fiber of the local system above the outward-pointing normal to the marked point.

We can now associate real numbers to arcs A between marked points p and q given a decorated local system as follows. By lifting the arc to $UT(\Sigma)$ appropriately, we can

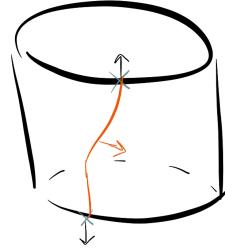


Figure 2: Vectors in the fibers above outward-pointing normals.

get a linear map $\tilde{\rho}(\tilde{A})$ from the fiber of the local system over \tilde{p} (the outward-pointing normal at p) to \tilde{q} (the outward-pointing normal at q). We now choose the real number

$$\tilde{\rho}(\tilde{A})v_p \wedge v_q \quad (2)$$

where v_p is the chosen vector over \tilde{p} and v_q is the chosen vector over \tilde{q} . (We have chosen an identification of the determinant bundle with the trivial line bundle.)

Recall that the identity

$$\text{tr}(A)\text{tr}(B) = \text{tr}(AB) + \text{tr}(AB^{-1}) \quad (3)$$

for $A, B \in \text{SL}_2$ gives us the skein relations for loops.

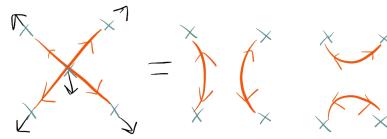


Figure 3: The skein relations again.

The skein relations for arcs can be obtained using the identity

$$Av \wedge w + A^{-1}v \wedge w = \text{tr}(A)(v \wedge w) \quad (4)$$

and the Plücker relation

$$(v_1 \wedge v_3)(v_2 \wedge v_4) = (v_1 \wedge v_2)(v_3 \wedge v_4) + (v_1 \wedge v_4)(v_2 \wedge v_3). \quad (5)$$

For example, to prove the skein relation for two crossing arcs, we can translate everything to the fiber over the intersection point.