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4 Hyperbolic geometry

Last time there was an exercise asking for braids giving the torsion elements in
PSLy(Z). A 3-torsion element can be obtained by cyclically permuting punctures
(a one-third-twist?), and a 2-torsion element can be obtained by swapping two punc-
tures (a half-twist).
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Figure 1: Braids which are torsion in PSLy(Z).

Last time we also classified elements of MCG(T?) as either periodic, parabolic, or
hyperbolic. This classification generalizes to other surfaces; it is called the Nielsen-
Thurston classification. We will get back to this later.

First, the hyperbolic plane. It is the unique complete simply-connected Rieman-
nian surface with constant curvature —1, but this is not useful for computations.

The Poincaré disk model of the hyperbolic plane is the open disc {(z,y) € R? :
2?2 + y* < 1} with the metric

= v

where 72 = 2?2 + 9%

Since the metric is always a scalar multiple of the standard Euclidean metric, this
angle is conformal with the Euclidean metric, so angles agree with Euclidean angles
(even if lengths do not agree with Euclidean lengths). Geodesics are circles perpen-
dicular to the boundary (including circles of infinite radius, or lines); in particular,
there is a unique geodesic through any two points.

A geodesic triangle has the property that the sum of its angles is less than 7. In
fact,



Figure 2: Geodesics in the disk model.

Area(triangle) = m — sum of angles. (2)
Exercise 4.1. The angle sum defect @ — sum of angles is additive on triangles.

The Poincaré half-plane model is the upper half-plane {(z,y) € R? : y > 0} with
the metric

dz? + dy?
L (3

Y

Geodesics are circles perpendicular to the boundary (including circles of infinite
radius). This metric is also conformal with the Euclidean metric.

Instead of thinking directly about these metrics, it is better to think about au-
tomorphisms (that is, about isometries). The automorphisms we want should be
conformal; that is, they should preserve (Euclidean) angles. This is equivalent to
complex analytic with derivative not equal to zero anywhere. We will look for such
automorphisms within the group of Mdébius transformations

ds

H%,a,b,c,de(@,ad—bc#o. (4)

This is precisely the group of conformal automorphisms of the Riemann sphere.
Abstractly, this is the group PGLy(C) (which naturally acts on CP'), and conse-
quently it admits a morphism from GL3(C) (so Mobius transformations compose like

Z ] to the above.

matrices) sending [ CCL



Figure 3: Geodesics in the half-plane model.

Mobius transformations have many nice properties. For example, they preserve
circles (including of infinite radius).

Some Mobius transformations are relatively easy to understand. Those of the
form z +— az + b describe translations, scalings, and rotations. The only additional
Mobius transformation needed to generate the entire group is z — %, which is closely
related to circle inversion z +— % Inversion has many nice properties: it sends circles
inside the unit circle to circles outside the unit circle and sends circles intersecting
the unit circle to circles intersecting the unit circle.
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Figure 4: Circle inversion.

We want to consider Mobius transformations which in addition preserve the open
disk or the upper half plane.



Theorem 4.2. The orientation-preserving isometries of the upper half-plane are pre-

cisely PSLy(R) C PGLy(C).

Proof. Since H? has constant curvature, it has an isometry taking every pair of a
point and a tangent vector to another point and a tangent vector. Every orientation-
preserving isometry is conformal, hence complex-analytic, and furthermore extends
to a conformal automorphism CP' — CP' by the Schwarz reflection principle, hence
must be a Mobius transformation. Moreover, it must preserve RP* ¢ CP', so lies in
PGL2(R).

There is a commutative diagram of inclusions

PSLy(R) —— PSL,(C) (5)

l J

PGL,(R) —— PGL,(C)

and the inclusion PSLy(C) — PGLy(C) is an isomorphism (we can always scale
by the square root of the determinant) but the inclusion PSLy(R) — PGLy(R) is not;
the latter has two connected components, one consisting of matrices with positive
determinant (which PSLy(R) maps to isomorphically) and one consisting of matrices
with negative determinant.

The elements of PGLy(R) of negative determinant take the upper half-plane to
the lower half-plane, so the elements of PSLy(R) are the ones we want. O

We can now obtain the metric on the upper half-plane we wrote down earlier
as follows: first assume that it is ds* = dx® + dy* at the point (0,1) and find an
automorphism taking (0, 1) to another point (x,y). It suffices to take z — yz + x,
and we want this to be an isometry, which in fact forces ds* = % by inspecting
the Jacobian.

A similar idea works for the metric on the disk; alternately, there is a Mobius
transformation taking the upper half-plane to the disk given by

z—1
Z+i (6)
To see this, note that it takes the boundary of the upper half-plane to the boundary
of the open disc and takes i to 0. (Multiplying by 4 gives a map which fixes £1 and
which sends oo to i.) This gives us a description of the Mobius transformations fixing
the disk by conjugating by the above map; explicitly, they have the form

Z

az — 1



where a lies in the disk.

More generally, the Riemann mapping theorem asserts that for any open simply-
connected subset U of C there exists a unique biholomorphic map from U to the open
disc sending a particular point and tangent vector to a particular point and tangent
vector in the open disc. This gives us a metric on U.
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Figure 5: The Riemann mapping theorem.

Moving away from complex analysis, we can write down a different kind of model of
the hyperbolic plane which generalizes better to higher dimensions as follows. There
is an exceptional isomorphism

PSL,(R) = SO*(2,1) (8)

where the RHS describes the group of all linear transformations of R? preserving
the quadratic form 22 4 3% — 22 which have determinant 1 and which maps the upper
half of the cone 22 + y? = 22 to itself.

This can be seen as follows. SLy(R) has a natural representation on R?. This gives
a representation of PSLy(R) on Sym?*(R), or equivalently on 2 x 2 real symmetric

matrices as follows:
P q a b P q a c
e Leal s ] a] ©

This action preserves the determinant pr — ¢?. Writingz =q¢,p=2+v,¢=2—1y
this gives the quadratic form 2% —y? — 2%, Alternately, PSLy(R) has an adjoint action
on its Lie algebra sl3(R), which is 3-dimensional. This action preserves the Killing
form on sly(R), which also has signature (2, 1) as above.



SO(2, 1) preserves the two-sheeted hyperboloid {(z,y, 2) € R? : x?+y*—2? = —1},
and SO™(2,1) preserves the sheet z > 0. This has an induced metric

ds® = dz® + dy* — d2* (10)

which gives another model of the hyperbolic plane, the hyperboloid model. This is
a pleasant model for computations because of the lack of division.

Figure 6: The hyperboloid model.

We need to check that the above metric is actually Riemannian; as a metric on
R3 it is Lorentzian. SO*(2,1) acts transitively on the hyperboloid, so to check the
signature of the metric it is enough to check the signature at a point. We will use
the point (0,0,1). The tangent plane at this point is the xy-plane, and the induced
metric is Riemannian as desired.

The hyperboloid may be thought of as a sphere of radius 7. This is not as silly
as it sounds; it turns many trigonometric identities into hyperbolic trigonometric
identities.

We now have three models for the hyperbolic plane. To do computations in the
future, we will choose whichever model makes our computations easiest.



