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6 Dehn-Thurston coordinates (Alex)

We want to study the action of the mapping class group on isotopy classes of curves
on a surface. Ideally this action should be faithful. Dehn-Thurston coordinates are a
way to parameterize isotopy classes of curves.

Let S, be a compact orientable surface of genus g with negative Euler charac-
teristic, possibly with boundary. (The Euler characteristic condition only excludes
the sphere, the torus, the cylinder, and the disks.) We will consider multicurves on
Sy, which are 1-dimensional submanifolds such that no component bounds a disk
and such that no component is homotopic to an arc on the boundary. This gives a
collection of non-intersecting, non-self-intersecting, non-null-homotopic curves.

We parameterize multicurves by first choosing a decomposition into pairs of pants.
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Figure 1: A pair of pants decomposition.

We want to know the intersections of a multicurve with the boundary of each pair
of pants. This gives a collection of intersection numbers my, ...m,,. Additionally, we
have N twisting numbers which tell us how to glue the pairs of pants together. If S,
has no boundary, then N = 3g — 3.

Definition The geometric intersection number of two curves is

(’Ya 5) = minc,d|c N dl (1)

where ¢, d are curves isotopic to 7, d respectively.

The claim we need for these intersections to determine a multicurve is that up to
isotopy preserving the boundary componentwise, a multicurve on a pair of pants is



determined by its intersection numbers with the boundary (except for components
parallel to a boundary component).

Fix intervals on the boundary components of the pants; these are windows. We
will require that our curves only intersect the boundaries in windows. This only gives
a few possibilities for the components of a multicurve: it can either connect adjacent
windows, loop around to connect a window with itself, or loop around a leg (parallel
to a boundary component).

Figure 2: Curves on a pair of pants.

To define twisting numbers, we will now decompose S, into pairs of pants and
cylinders (and again fix windows).

Figure 3: Pairs of pants and cylinders.

In a given cylinder, the twisting number is then the geometric intersection of a



multicurve with either of two curves connecting the boundaries of the windows, with
sign determined by handedness.

Figure 4: Twisting numbers in a cylinder.

We also need twisting numbers counting components parallel to boundary com-
ponents.

In summary, we parameterize multicurves by elements of the set Zigo_g x 73973
quotiented by the equivalence relation (0,z) ~ (0, —z). -

Theorem 6.1. The mapping class group is generated by Dehn twists.

If an element of the mapping class group does not act faithfully on multicurves,
then it fixes all such curves (up to isotopy), hence commutes with all Dehn twists,
hence lies in the center. To show that the action of the mapping class group on
multicurves is faithful, it suffices to show that the center is trivial. This will be true
whenever g > 2 and S, does not have boundary.

To see this we will draw a suitable collection of circles on §,. Any element of the
center preserves (up to isotopy) every circle, so it preserves the graph describing how
circles intersect.

But when g > 2 we can arrange these circles so that the corresponding graph
has no automorphisms. It follows that up to isotopy an element of the center of the
mapping class group fixes the graph pointwise.

The complement of the graph is a collection of disks, and a homeomorphism of the
disk fixing the boundary is isotopic to the identity through homeomorphisms fixing
the boundary, so we conclude.
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Figure 5: Circles on a 4-holed torus.
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Figure 6: A graph describing the intersections of the circles which has no automor-
phisms.

This argument does not work when g = 2, when we can take a 180° rotation. This
is a reflection of the fact that when g = 2 a smooth projective algebraic curve over
C is hyperelliptic, so alwways has a hyperelliptic involution, but when g > 2 not all
curves are hyperelliptic.

Dehn-Thurston coordinates were discovered by Dehn and rediscovered by Thurston.



7 More about ideal polygons

Last time we discussed two methods for understanding ideal polygons. One was to
send three of their vertices to 0,1, 00, and another was to choose horocycles around
the vertices and count distances. We want a more natural version of this picture
(which does not depend on a choice of triangulation).

Consider the hyperboloid model 22 + y? = 2?2 — 1. What do horocycles look like
here? First, what do circles look like? Using the projection to a plane, they come
from cones coming from the other hyperboloid.

Figure 7: A cone and the corresponding circle.

Alternatively, we can intersect the hyperboloid with a plane (analogous to what
happens with a sphere). On a sphere, the center of the corresponding circle is the
unique point whose tangent plane is parallel to the intersecting plane, and the same
is true on the hyperboloid.

This is clearest to see for the lowest point on the hyperboloid, and everything is
invariant under SO™(2,1), so it follows everywhere.

To get horocycles, we take tangent planes to the cone (circles centered at infinity),
then translate them so that they intersect with the hyperboloid.

We want to describe this situation algebraically in terms of the inner product on
R3 with corresponding quadratic form z? + 3> — 2z2. The hyperboloid is the set of
vectors v such that (v,v) = —1. The (null) cone is the set of vectors v such that
(v,v) =0 (null vectors). Planes can be described in the form
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Figure 8: A plane intersecting a sphere and the corresponding circle.

Figure 9: A plane intersecting a hyperboloid and the corresponding circle.

P, =A{w: (v,w) = k}. (2)

When v is a null vector, v € P,,. To get horocycles, we take hyperplanes of the

form P, _; and intersect them with the hyperboloid. In other words, horocycles have
the form

hy = {w : {(v,w) = (w,w) = —1}. (3)

We therefore have a natural correspondence between horocycles and nonzero null
vectors in the upper cone (z > 0). Now, given two vectors vy, vs at which we have



centered two horocycles hq, hy, we want to describe algebraically the corresponding
length. We begin by defining the A-length
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This is some function f(¢(h1,hs)) of the length. To explain the factor of 1, first
take v; = (1,0,1). The corresponding horocycle contains = = (0,0, 1), and so does
the horocycle corresponding to vy = (—1,0,1). In fact, the horocycles are tangent
at x, so {(hy,he) = 0 in this case. On the other hand, (vi,vy) = —2, so the above
normalization gives A(hy, hy) = 1.

Now we should talk more about the relationship between the upper half-plane
model and the hyperboloid model. In the former the isometry group is PSLy(R)
while in the latter the isometry group is SO*(2,1). In the former the ideal points
are RP' while in the latter the ideal points are rays in the null cone. We would like
a correspondence between them, hence a way to take vectors in R? to null vectors in
R21,

We can do this by thinking of R%! as symmetric 2 x 2 matrices with the negative
of the determinant as the quadratic form. Given a vector in R?, we can now tensor
it with itself to get such a symmetric matrix, giving

a a? ab
Habd g
Exercise 7.1. Check that diagonalizing this quadratic form gives a map (a,b) —

(a* — b?,2ab, a® + b*) from R? to null vectors in R**.

This gives a map from R? to horocycles. What is the A-length in these terms?
Given (a,b) and (¢, d), the dot product of the corresponding null vectors is

1 1 1 ?
abed — §(a2d2 +b%c?) = —é(ad —be)? = —3 det { Z fl ] . (6)

So the corresponding A-length is

det[‘b‘ 2” (7)

Exercise 7.2. Was this detour necessary? Is there a natural way to write down
horocycles as subsets of CP! (which contains both the disk and the half-plane models)
and do these computations there instead?
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