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8 Horocycles and lengths

Last time we saw that in the hyperboloid model there is a nice way to write down
horocycles: they can be given by sets of the form

hv = {w : 〈v, w〉 = 〈w,w〉 = −1} (1)

where v is a null vector. On the other hand, it is often more convenient to work
in the upper half-plane. Here the boundary is RP1 and we saw previously that there
is a way to write down from a vector (a, b) ∈ R2 a null vector (2ab, a2 − b2, a2 + b2),
and this gives a map from RP1 to null vectors, which give horocycles. It would be
nice to be able to avoid this and directly describe the horocycle associated to (a, b)
in the upper half-plane.

Last time we also described the λ-length

λ(h1, h2) =

√
−1

2
〈v1, v2〉 =

1

2
|det(w1, w2)| (2)

between two horocycles in terms of the inner product of the corresponding null
vectors and then in terms of the determinant of the corresponding vectors in R2.
This is some function f(`(h1, h2)) of the length which we have not yet worked out.
To compute this function, we will work in the upper half-plane with a horocycle at
0 and a horocycle at ∞ (which is a horizontal line). We have one more degree of
freedom, so we will choose the diameter of the horocycle at 0 to be 1.

Figure 1: Two horocycles in the upper half-plane.

Then the horocycle at ∞ is the line y = c for some c and the distance between
them is
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∫ c

1

dy

y
= log c. (3)

The nicest case is when we also have c = 1, in which case the distance is 0. We can
do this by scaling the horocycle at ∞ by 1

c
without scaling the horocycle at 0. This

is not an isometry, so it will change the length and λ-length. In intrinsic hyperbolic
terms, we move each point of the horocycle by log c away from∞. To determine what
this does to vi or wi we need to determine the corresponding element of PSL2(R). As
a fractional linear transformation, this is x 7→ x

c
, which is associated to the matrix[ 1√

c
0

0
√
c

]
∈ SL2(R). (4)

Now we should figure out what w1 and w2 are (the elements of R2 associated to
our horocycles). We will have w1 = (0, y1) for some y1 and w2 = (x2, 0) for some x2.
Scaling by 1

c
multiplies w2 by 1√

c
and changes the λ-length to 1 by our normalization,

so

λ(h1, h2) =
√
c = exp

(
`(h1, h2)

2

)
. (5)

Exercise 8.1. Find λ(h1, h2) in terms of the Euclidean geometry of two horocycles
in the upper half-plane.

Given a decorated and triangulated ideal polygon, we can ask about how λ-lengths
change when we change triangulations. Hyperbolically this is a messy computation,
but algebraically it becomes nicer. For an ideal quadrilateral determined by four
vectors w1, w2, w3, w4, we want to compute one of the corresponding determinants in
terms of the others.

Writing the λ-lengths of the four sides as A,B,C,D and writing the λ-lengths of
the diagonals as E,F , we get the following result.

Lemma 8.2. (Ptolemy relation) λ(F )λ(E) = λ(A)λ(C) + λ(B)λ(D).

This relation is named after the corresponding relation for a quadrilateral inscribed
in a circle in Euclidean geometry.

Proof. This is really a statement about a 2× 4 matrix (assembled from the wi)[
x1 x2 x3 x4
y1 y2 y3 y4

]
, (6)

namely a quadratic relation between the 2×2 minors. Both sides of this quadratic
relation are invariant under scaling any of the columns, so assuming that the yi 6= 0
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Figure 2: λ-lengths in a decorated ideal quadrilateral.

we may assume WLOG that the yi are all equal to 1. Then the quadratic relation
becomes

(x2 − x4)(x1 − x3) = (x1 − x2)(x3 − x4) + (x1 − x4)(x2 − x3). (7)

Alternatively, by a suitable change of coordinates we can arrange x1 = 1, x2 =
0, y1 = 0, y2 = 1, which simplifies the relation considerably.

Alternatively, let a =
∑
xiei and b =

∑
yiei be vectors in R4 with ei the standard

basis. Then a ∧ b has components which are the 2× 2 minors above in the standard
basis ei ∧ ej, i < j of Λ2(R4). We have (a ∧ b) ∧ (a ∧ b) = 0 by standard properties of
the exterior product, and expanding this out in the standard basis gives the relation
above.

This is also known as the Plücker relation.

Exercise 8.3. Relate λ(h1, h2) to Euclidean geometry in the disk model. Prove the
hyperbolic Ptolemy relation using the Euclidean one.

Exercise 8.4. Relate the cross-ratio of four ideal points to λ-lengths of a correspond-
ing decorated ideal quadrilateral.

Since a decorated ideal n-gon is determined by its n horocycles, specifying such
an n-gon is equivalent to specifying a collection of n points in R2/{±1} modulo
the action of PSL2(R), which is very close to specifying a point in the Grassmannian
Gr2,n except that there are some cyclic order and positivity conditions. The positivity
condition is equivalent to specifying a 2× n matrix all of whose minors have positive
determinant.
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Let’s consider more general surfaces than the hyperbolic plane, such as the punc-
tured torus. This surface admits a complete hyperbolic metric of constant curvature
−1, and so we can talk about geodesics on it, which go to infinity (the puncture). We
can write down three such geodesics giving an ideal triangulation of the torus.

Figure 3: Three views of a punctured torus and three geodesics on it.

We want to measure lengths by decorating using horocycles as before. Here by
horocycle we mean a curve which lifts to a horocycle in the universal cover (which is
the hyperbolic plane).

Theorem 8.5. Decorated hyperbolic structures on the punctured torus are parame-
terized by the three λ-lengths in a triangulation.

Alternatively, let T g,n be the space of complete hyperbolic structures on a (com-
pact, orientable) surface of genus g with n punctures up to isotopy (Teichmüller
space), and let T̃ g,n be the space of correspondingly decorated hyperbolic structures,
where we also choose horocycles (decorated Teichmüller space). Then T̃ 1,1 is homeo-
morphic to R3 with the homeomorphism given by λ-lengths.

There is an interesting relationship between these ideas and number theory. A
Markov triple is a solution to x2 + y2 + z2 = 3xyz. There is an obvious solution
(1, 1, 1), and new solutions can be generated from old solutions by permutation or by
applying
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(x, y, z) 7→ (x, y,
x2 + y2

z
). (8)

Consider the Ptolemy relation for a decorated ideal triangulation of a punctured
torus. This gives λ(C)λ(C ′) = λ(A)2 + λ(B)2 where C ′ is the fourth diagonal, or

λ(C ′) =
λ(A)2 + λ(B)2

λ(C)
. (9)

What is the relationship? In the special case that λ(A) = λ(B) = λ(C) = 1
(equilateral; all of the horocycles touch), the Ptolemy relation allows us to compute
other λ-lengths, such as the lengths of various diagonals, and these are precisely the
Markov triples we get starting from (1, 1, 1).

Figure 4: Changing triangulations on an equilateral torus.

A Markov number is a number occurring in a Markov triple.

Conjecture 8.6. For every Markov number n, the Markov triples containing n can
be connected by the transformation above without removing n.

Equivalently, the simple length spectrum of the equilateral punctured torus is
simple up to symmetries. The length spectrum is the multiset of lengths of closed
geodesics. The simple length spectrum is the multiset of lengths of closed simple (non-
intersecting) geodesics. A multiset is simple if every element occurs with multiplicity
1.
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