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Fig. 1. Our method computes locally injective, discretely conformal maps even for near-degenerate triangulations (turquoise meshes) and extremely di�icult
configurations of cone singularities (magenta meshes). We also compute globally bijective conformal maps to the sphere (yellow meshes).

This paper describes a numerical method for surface parameterization, yield-
ing maps that are locally injective and discretely conformal in an exact
sense. Unlike previous methods for discrete conformal parameterization,
the method is guaranteed to work for any manifold triangle mesh, with no
restrictions on triangulation quality or cone singularities. In particular we
consider maps from surfaces of any genus (with or without boundary) to
the plane, or globally bijective maps from genus zero surfaces to the sphere.
Recent theoretical developments show that each task can be formulated as a
convex problem where the triangulation is allowed to change—we complete
the picture by introducing the machinery needed to actually construct a
discrete conformal map. In particular, we introduce a new scheme for track-
ing correspondence between triangulations based on normal coordinates,
and a new interpolation procedure based on layout in the light cone. Stress
tests involving di�cult cone con�gurations and near-degenerate triangula-
tions indicate that the method is extremely robust in practice, and provides
high-quality interpolation even on meshes with poor elements.
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1 INTRODUCTION

Angle-preserving or conformal maps play a key role in applied ge-
ometry [Gu et al. 2020], ranging from biological shape analysis
to digital fabrication to machine learning [Koehl and Hass 2015;
Konaković et al. 2016; Maron et al. 2017]. Conformal maps are desir-
able for many reasons: they provide canonical mappings between
shapes [Lipman and Daubechies 2011; Baden et al. 2018]; typically
involve only sparse linear systems or easy convex problems (hence
scale to very large meshes); and provide both low angle and area
distortion when enriched with well-placed cuts or cone singulari-
ties [Kharevych et al. 2006; Ben-Chen et al. 2008; Sharp and Crane
2018; Soliman et al. 2018].
To date, however, conformal mapping algorithms fail to guar-

antee that a valid map is always found: if the input surface is too
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Fig. 3. For meshes with low-quality elements, standard linear interpolation
yields a poor conformal map (le�). We describe how to perform projective
interpolation across triangulations, yielding a much nicer map (right).

poorly triangulated, or the target curvatures are too extreme, exist-
ing methods �nd a map that is not locally injective, or simply fail
to �nd any map at all. Such failures hinder the reliability of broader
geometry processing algorithms that depend on conformal maps.

In the smooth setting, existence of conformal maps is guaranteed
by the uniformization theorem [Abiko� 1981]. Very recently, Gu
et al. [2018a,b] and Springborn [2019] established an analogous
discrete uniformization theorem for triangle meshes. However, these
theoretical results fall short of providing practical algorithms, since
they do not describe how to construct the mapping between the
input and target domain. We develop the �rst end-to-end algorithm
for computing and evaluating this map—in particular, we provide:

• a novel combinatorial data structure for tracking correspon-
dence between di�erent triangulations (Section 5),

• a new interpolation scheme for evaluating the discrete con-
formal map based on the light cone (Section 6), and

• critical details needed to implement discrete uniformization
including a careful treatment of numerics, boundary condi-
tions, and subtleties of the spherical case.

Our optimization procedure is a simple modi�cation of the CETM
algorithm (from Springborn et al. [2008], Conformal Equivalence
of Triangle Meshes): we minimize the same energy, but evaluate
it on a triangulation that changes according to the current scale
factors. However, since the triangulation may now change, this
procedure does not yield an explicit parameterization of the input. To
improve the quality of the map, we also �ip the input to an intrinsic
Delaunay triangulation. The main di�culty in developing a practical
algorithm is therefore tracking and evaluating the correspondence
between three triangulations—Figure 2 gives an overview of the
whole process.

2 RELATED WORK
2.1 Discrete Conformal Equivalence
In the smooth setting, conformal maps pre-
serve angles—naïvely, one might therefore
require that for triangle meshes, discrete con-
formal maps preserve the angles at all cor-
ners. However, this condition is far too rigid: since each triangle
can only scale and rotate, its neighbors—and in turn, the entire
surface—may only scale by a constant amount. As a result, many
other notions of discrete conformal maps have been explored; Crane
[2020] gives a detailed account.
A particularly successful approach is the notion of discrete con-

formal equivalence. In the smooth setting, two Riemannian metrics
�, �̃ (which determine angles) are conformally equivalent if they are
related by a positive scaling �̃ = e

2u
� for some real-valued function

u. On a triangle mesh, the Riemannian metric is captured by the
lengths `i j of all edges ij, and two sets of lengths `, ˜̀ are called
discretely conformally equivalent if

˜̀i j = e
(ui+uj )/2`i j (1)

scale

for some assignment of scale factors ui 2 R
to vertices i [Roček and Williams 1984; Luo 2004]. This innocent-
looking de�nition leads to a rich discrete theory which is just as
�exible as the smooth one [Bobenko et al. 2015]. Bücking [2016,
2018] and Gu et al. [2019] consider convergence under re�nement.

map to cone metric

cut &
unfold

into plane

Fig. 4. Conformal parameteri-
zation with cone singularities.

2.1.1 Discrete Uniformization.
Conformal equivalence o�ers an ap-
pealing strategy for parameterization:
rather than solve directly for a map to
the plane, �rst �nd scale factors that
describe a discretely conformally equiv-
alent �at surface—perhaps with target
angle defects�⇤i prescribed at just a few
isolated cone points (Figure 4, top right).
This new surface is then cut open and
unfolded into the plane (Figure 4, bot-
tom). In the smooth setting, existence of
such scale factors is guaranteed by the
uniformization theorem [Abiko� 1981]
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Fig. 2. Steps of our algorithm. Throughout we color the input mesh TA red, its intrinsic Delaunay triangulation TB yellow, the uniformized triangulation TC

blue, and the common refinement S of all three green. (Note: triangulations in dashed boxes are purely intrinsic and never actually embedded in Rn .)
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Fig. 5. Performing Euclidean edge flips at arbitrary moments in the flow
can badly distort the conformal structure. Here, we flip edge i j , scale edges
incident on k by a factor euk /2, and undo the flip. The cross ratio c̃ki of
edge ki (Equation 4) is not preserved, and in fact can take almost any value.

and its generalization to cone metrics [Troyanov 1991]. In the dis-
crete setting, however, there is a critical problem: for a �xed tri-
angulation, there may be no scale factors that achieve the target
angle defects. One must therefore adopt an expanded notion of dis-
crete conformal equivalence that allows the triangulation to change
(Section 2.1.2).

To actually compute the scale factors, Luo [2004] proposed the
discrete Yamabe �ow

d
dt ui (t) = �⇤i � e�i (t). (2)

Here e�i (t) are the angle defects induced by the scale factors u(t).
However, since there may be no scale factors that achieve the target
angle defects, this �ow can fail to reach a critical point d

dt ui = 0,
where e�i = �⇤i . In this case, the scaled edge lengths ˜̀will eventually
violate the triangle inequality—at which point the �ow becomes ill-
de�ned and cannot continue. Springborn et al. [2008] and Bobenko
et al. [2015] describe this �ow as gradient descent on an explicit
convex energy E , leading to the more e�cient, 2nd-order CETM
algorithm. CETM extends E to be well-de�ned even for invalid edge
lengths—but if the minimizer is found in this extended region, it
fails to describe a valid parameterization (Figure 25).

Flipping Edges. Luo [2004] conjectured that degenerate triangles
might be avoided by applying Euclidean edge �ips at the exact mo-
ment when triangles degenerate, as implemented by Campen and
Zorin [2017b, Section 7.3.1], but this idea has two fatal �aws. First,
mixing �ips with vertex scaling can yield lengths that are not confor-
mally equivalent to the original ones (Figure 5). Second, it can cause
discontinuities in the value of E , voiding any guarantee that the
�ow will converge (Figure 7). This lack of guarantees is a problem
even for methods that care only about injectivity, and not confor-
mal maps [Chien et al. 2016; Campen and Zorin 2017b,a; Campen
et al. 2019]. Likewise, the generalized method of Chen et al. [2016,
Algorithm 1] takes a step of arbitrary size before performing power
Delaunay �ips, and [Yu et al. 2017, Algorithm 1] takes an arbitrary
step before performing Euclidean �ips. Both algorithms can hence
distort conformal structure, or worse, produce edge lengths that
violate the triangle inequality—at which point the �ow is unde�ned
and cannot continue. Our use of Ptolemy �ips ensures the �ow is
always well-de�ned and exactly preserves the conformal structure
(see Section 3.3.4, and the use of Algorithm 11 within Algorithm 4).

=

input (polyhedral)

Fig. 6. We adopt a notion of conformal equivalence that yields the same
discrete conformal map, no ma�er how the input polyhedral surface is
triangulated. Here a mesh with planar faces is triangulated two di�erent
ways, yielding identical results.

flip when triangles degenerate (Euclidean)
flip to Delaunay triangulation (Ptolemy)

Fig. 7. Flipping edges when triangles degenerate causes the energy E to
jump discontinuously—voiding any guarantee of convergence (top). In con-
trast, flipping to Delaunay via Ptolemy flips before evaluating the energy
ensures that we always reach the correct solution (bo�om). Here we consider
a coarse double torus with target angle defects +3� /4 at all but one vertex,
which has large negative curvature. We take small steps to clearly plot the
energy; vertical lines indicate flip times.

2.1.2 Variable Triangulations. A recent theoretical breakthrough
is a notion of discrete conformal equivalence that does not depend
on how a polyhedral surface is triangulated (Figure 6), along with
associated discrete uniformization theorems for the Euclidean [Gu
et al. 2018a], hyperbolic [Gu et al. 2018b], and spherical [Springborn
2019] cases. This work is intimately linked to realization results
for ideal hyperbolic polyhedra [Rivin 1994; Fillastre 2008; Prosanov
2020]. The theorems guarantee one can always �nd a conformally
equivalent triangulation with prescribed angle defects �⇤, so long
as they satisfy Gauss-Bonnet. This solution is unique up to scale
(Euclidean case) or Möbius transformations (spherical case).

Fig. 9. Either triangula-
tion of a circular quad
satisfies the local Delau-
nay property � +�  � .

There are two equivalent de�nitions of
discrete conformal equivalence—a key idea
introduced by Gu et al. [2018a] is to con-
sider an intrinsic Delaunay triangulation of
the input (Section 3.4).

One de�nition is that twoDelaunay trian-
gulations are conformally equivalent if they
are related by an alternating sequence of
vertex scalings (Equation 1) and concyclic
Euclidean edge �ips (Figure 9), which main-
tain the Delaunay property [Gu et al. 2018a,
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Fig. 8. Top: Triangle meshes with di�erent connectivity (but the same vertices) are considered discretely conformally equivalent if they are the same up to a
conformal rescaling of edge lengths, followed by Ptolemy edge flips to a Delaunay triangulation. Bo�om: This definition, and the use of Ptolemy (rather than
Euclidean) edge flips, arises from a hyperbolic perspective, where we simply retriangulate a hyperbolic polyhedron without changing its geometry.

De�nition 1.1]. Algorithms that adopt this de�nition must stop and
�ip whenever two triangles become concylic. Wu [2014] shows
that only �nitely many �ips are needed, ensuring that computation
terminates. Sun et al. [2015] present an implementation of such a
scheme, but do not evaluate the pointwise map between the domain
and target (as needed for, e.g., texture mapping or remeshing).

We adopt an alternative de�nitionwhich is theoretically equivalent—
though this is far from obvious: the two triangulations are discretely
conformally equivalent if they describe the same ideal hyperbolic
polyhedron [Bobenko et al. 2015, De�nition 5.1.4]. As observed by
Springborn [2019], a discretely conformally equivalent triangulation
can be obtained by applying an arbitrary vertex scaling, then �ipping
to a Delanuay triangulation via Ptolemy �ips (Section 3.3.4), rather
than ordinary Euclidean �ips—see Figure 8, top. Since Ptolemy �ips
are well-de�ned even when edge lengths fail to satisfy the triangle
inequality, one need not worry about maintaining a valid Euclidean
metric, nor about triangles being concyclic: at any moment, one
can simply scale to an invalid metric, then �ip to a valid one. This
procedure always works, because it corresponds to retriangulat-
ing the associated ideal hyperbolic polyhedron (Figure 8, bottom).
Concurrent work by Campen et al. [2021] also takes this approach.

By adopting this de�nition, we cast discrete conformal parameter-
ization as an unconstrained convex optimization problem where the
only variables are the scale factorsui . The optimizer need not worry
about edge �ips, which appear only within a black-box callback rou-
tine that evaluates the energy and its derivatives. Moreover, we can
use a 2nd-order Newton method to achieve fast convergence, since
the energy we minimize is twice continuously di�erentiable (C2)
even across di�erent triangulations, and the Hessian is easy to com-
pute (just the cotan-Laplacian). Overall this approach is generally
faster than stopping to perform �ips (see Figure 10 and Section 8.3),
and also accommodates the more di�cult spherical case, which
involves additional bounds constraints (Section 7).

2.2 Discrete Conformal Mapping
The triangulation produced by uniformization cannot be used in
most applications unless we know how tomap data back to the input
mesh. Two basic strategies have been developed for this purpose.
Fisher et al. [2007] maintain an explicit mesh of the common re�ne-
ment of two triangulations, guaranteeing correct connectivity (Sun
et al. [2015] adopt a similar approach). Sharp et al. [2019b] observe
that explicit encodings incur signi�cant cost, and instead implicitly
encode correspondence via signposts at vertices. This �oating-point
encoding can however fail to describe correct connectivity in ex-
treme situations (such as Figure 27). We provide the best of both
worlds: an implicit, integer-based encoding that can be updated
without resolving intersections, yet guarantees the right connectiv-
ity (Section 5). This encoding is based on normal coordinates, a tool

concyclic flips
[Sun et al 2015]

Ptolemy flips
[our method]

Fig. 10. A slice of the energy landscape for a tetrahedron. Each conformal
scaling u induces a Delaunay triangulation—white curves delineate regions
with a common triangulation. Previous algorithms must stop and flip at
each region boundary (where triangles become concyclic), whereas we can
flip at any moment—since Ptolemy flips commute with scaling.
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from 3-manifold geometry [Kneser 1929; Haken 1961] and computa-
tional topology [Schaefer et al. 2002; Agol et al. 2006; Erickson and
Nayyeri 2013]. We enrich this construction with a combinatorial
analogue of signposts, which we call roundabouts (Section 5).
The other question is how to interpolate data across triangula-

tions, such as vertex or texture coordinates. The natural choice for
discrete conformal maps is to use piecewise projective interpola-
tion [Bobenko et al. 2015], which can be implemented via standard
homogeneous coordinates [Springborn et al. 2008, Section 3.4]. We
extend this idea to variable triangulations by laying out triangles in
the light cone rather than the Euclidean plane (see Section 6.0.1).
Importantly, our approach to discrete conformal mapping de-

pends critically on the hyperbolic picture. Without this picture, one
could not use the implicit connectivity encoding (which depends on
hyperbolic straightening), and would be forced to explicitly main-
tain the full connectivity of the common re�nement, as done by
Sun et al. [2015]. Likewise, our high-quality interpolation scheme
(shown in Figure 3) relies on calculations in the light cone model of
the hyperbolic plane.

2.3 Other Methods
Conformal Mapping. Other methods for conformal parameteriza-

tion do not provide a general solution. For instance, early methods
based on linear �nite elements [Lévy et al. 2002; Desbrun et al. 2002;
Mullen et al. 2008] do not guarantee injectivity, nor do they handle
cone singularities. More recent linear methods support cones [Ben-
Chen et al. 2008; Vintescu et al. 2017; Sawhney and Crane 2017], but
injectivity is still missing. Orbifold methods (e.g., [Aigerman and
Lipman 2016]) provide injectivity, but support only a restricted set of
cone con�gurations where cone angles cannot be prescribed. Angle-
based methods [She�er et al. 2005] rely on nonconvex optimization,
with no general convergence guarantees. Finally, Bobenko et al.
[2015] and later Zhang et al. [2014] provide connections between
discrete conformal equivalence and circle patterns.

Injective Mapping. Discrete uniformization has a special relation-
ship to methods for locally injective mapping, since CETM is often
used for initialization [Chien et al. 2016; Campen and Zorin 2017b;
Campen et al. 2019]; we provide even stronger guarantees. Unlike
[Mandad and Campen 2019; Shen et al. 2019] we do not claim to
guarantee injectivity in �oating point—yet still achieve injectivity in
extremely challenging scenarios (Section 8.3.2). Overall we observe
that the freedom to modify the triangulation during optimization
leads to signi�cantly improved robustness—see Section 8.3.

3 PRELIMINARIES
This section provides essential de�nitions needed to motivate and
derive our algorithms; some readers may wish to skip ahead to Sec-
tion 4, and return here for reference. The most important concept is
illustrated in Figure 14: any triangle mesh can be interpreted as both
a Euclidean polyhedron (Section 3.2) and a decorated ideal polyhedron
(Section 3.3), leading to a de�nition of conformal equivalence across
di�erent triangulations (Section 3.5). For further background, see
Bobenko et al. [2015] and Springborn [2019].

Fig. 11. An edge or triangle
in a �-complex might not be
uniquely determined by its
vertices. Here, performing in-
trinsic edge flips on an octahe-
dron yields two distinct edges
between the same pair of ver-
tices i and j , and two triangles
with the same vertices i , j , and
k . The sphere depicts the ab-
stract connectivity.

i

j

k i

k j

3.1 Combinatorial Polyhedra
Throughout we use T = (V, E, F) to denote the connectivity of a
manifold triangulation with vertices V, edges E, and faces F; we
assume T is orientable purely to simplify exposition. Even when
the input is an ordinary (simplicial) triangulation, we may need
to construct triangulations where, e.g., multiple edges connect the
same two vertices, or two triangles share the same three vertices
(Figure 11). Formally, we use triangulation to mean a �-complex
in the sense of Hatcher [2002, Section 2.1], which we encode via
a halfedge data structure [Botsch et al. 2010, Section 2.3]. Though
edges and faces are not uniquely determined by their vertices, for
brevity we will still denote them by vertex pairs ij 2 E and triples
ijk 2 F, resp., where i , j, and k need not be distinct. The notation
�
jk
i indicates a quantity � at corner i of a triangle ijk .

!ip
i

i

k

k

l

l

j

j

3.1.1 Combinatorial Edge Flip. For two tri-
angles sharing a common edge, an edge
�ip replaces this edge with the opposite
diagonal—we will need this operation in
order to construct intrinsic Delaunay trian-
gulations (Section 3.4). If we locally index
the vertices of these two triangles as de-
picted in the inset �gure, then the edge �ip
replaces the original triangles ijk and jil

with jkl and lki . Any other data stored on
the triangulation must also be updated, as depicted in Figure 12 and
discussed in Sections 3.2.1, 3.3.4, 5.1.1 and 5.2.1.

3.2 Euclidean Polyhedra
A Euclidean polyhedron is a surface that
looks like the �at Euclidean plane every-
where except at a �nite collection of cone
points. The canonical example is an ordinary
triangle mesh in R3, where the neighbor-
hood around each vertex is isometric to a
piece of a circular cone (see inset). For uni-
formization, however, we do not need to
keep track of how the surface is embedded
in space. Instead, we can store a purely in-
trinsic description of the geometry, given by
the edge lengths ` : E! R>0 of a triangula-
tion T = (V, E, F). If these lengths satisfy the
triangle inequalities in each triangle ijk 2 F,
then we call ` a discrete metric. Other quantities such as corner
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angles � jki can be recovered from edge lengths via standard trigono-
metric formulas. In particular, each vertex i 2 V has an angle defect
�i := 2� �Õ

i jk 2F �
jk
i , which characterizes the �atness of the ver-

tex, and is equal to the integral of Gaussian curvature over a small
neighborhood around the cone point.

3.2.1 Euclidean Edge Flip. This description also enables us to change
the triangulation of a Euclidean polyhedron without changing its
intrinsic geometry. In particular, given only the edge lengths, the
new edge length `kl resulting from an edge �ip can be determined
by laying out the known triangles ijk and jil in the Euclidean plane,
and measuring the distance between vertices k and l . More robust
numerical strategies are discussed by Fisher et al. [2007] and Sharp
et al. [2019b].

3.2.2 Conformally Equivalent Edge Lengths. We say that two dis-
crete metrics `, ˜̀ : E! R>0 on the same triangulation T = (V, E, F)
are discretely conformally equivalent if at all edges ij 2 E

˜̀i j = e
(ui+uj )/2 `i j (3)

for some assignment of vertex scale factors u : V ! R. These
metrics are conformally equivalent if and only if they induce the
same length cross ratios [Springborn et al. 2008, Section 2]

ci j =
`il `jk

`l j`ki
. (4)

We will give a de�nition of conformal equivalence for Euclidean
polyhedra with di�erent connectivity in Section 3.5.

3.3 Hyperbolic Polyhedra
3.3.1 Models of Hyperbolic Geometry. Just as the sphere S2 is a
surface of constant curvature K = +1, the hyperbolic plane H2 is a
surface of constant negative curvature K = �1. Unlike S2, there is
no way to smoothly embed H

2 in Euclidean R3 isometrically, i.e.,
without distorting its geometry [Hilbert 1901]. Instead, we must
visualize it through one of several models, each of which faithfully
represents only some of its geometric features. A good analogy is
the Mercator projection of the globe, which preserves angles but

normal coordinates
i

j

k

l

Euclidean lengths

i

j

k
l

5 0
1

l

k

j
i

2
3

4

roundabouts

Penner coordinates

i

j

lk

Fig. 12. For each edge flip, we need to update any data stored on edges.
Here we indicate quantities involved in updating Euclidean edge lengths
(top le�), Penner coordinates (top right), normal coordinates (bo�om le�)
and roundabouts (bo�om right).
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Poincaré diskideal
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point

H2 H2

H 2
ideal point

horocycle horocycle

ideal
triangle

ideal
triangle

Klein disk

hyperboloid

geodesic

horocycle

geodesic
idealtriangle

Fig. 13. Since the hyperbolic plane H 2 cannot be isometrically embedded
in R3, it must be understood through the use of several “models”—here we
illustrate how several key quantities are realized in each model.

distorts the size of land masses. Figure 13 depicts three models that
are useful for our purposes. For further background on hyperbolic
geometry, see Cannon et al. [1997]; Alekseevskij et al. [1993].

In the Poincaré disk model, points in H
2 are identi�ed with points

in the open unit disk D
2 := {p 2 R2 : |p | < 1}. Although this

disk looks like a �nite piece of the Euclidean plane, lengths at a
point p 2 D2 get scaled by 2/(1 � |p |2) so that short distances near
the boundary @D2 represent large distances in H

2. One can hence
travel any distance along a straightest curve or geodesic without ever
reaching the boundary—limit points on @D2 are called ideal points.
Though geodesics are straight in H

2, in the Poincaré model they
appear as circular arcs orthogonal to @D2. The Poincaré model is
conformal: angles between circular arcs give the true angle between
geodesics in H

2. Finally, just as a straight line in R2 can be viewed
as a circle of “in�nite radius,” a horocycle is the limit of a family of
increasingly large circles tangent at a common point—drawn in the
Poincaré model as a circle tangent to the boundary.
The Beltrami-Klein model is much like the Poincaré model, but

with a di�erent metric. Geodesics appear as straight lines, but Eu-
clidean angles no longer give the true angles inH2, i.e., the Beltrami-
Klein model is not conformal. Horocycles in the Beltrami-Klein
model appear as ellipses. This model helps explain the relationship
between Euclidean and hyperbolic polyhedra (Section 3.3.3).

lig
ht c

on
ehyper boloid

The hyperboloid model represents H2 as the
upper sheet of the two-sheeted hyperboloid.
Just as the sphere is the set of all points p 2
R3 such that hp,pi = 1, this hyperboloid is
the set of all points satisfying hp,pi2,1 = �1,
where hp,qi2,1 := pxqx + p�q� � pzqz is the
Lorentz inner product; this inner product is also
used to measure the angles and lengths of vectors tangent to the
hyperboloid. Geodesics in H

2 correspond to intersections of the
hyperboloid with planes through the origin, and ideal points are
identi�ed with lines in the light cone L := {p 2 R3 : hp,pi2,1 = 0}.
Horocycles are obtained by taking a plane tangent to L, shifting it
in the positive z-direction, and intersecting with the hyperboloid.
Thus, we can identify horocycles with points in the positive light
cone L+ := {p 2 L : pz > 0}; each point p 2 L+ also corresponds
to the plane {q 2 R3 : hp,qi2,1 = �1}. The hyperboloid model is
essential for developing our interpolation scheme—see Section 6.4.
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Fig. 14. An ordinary triangle mesh (le�) can always be viewed as an ideal
hyperbolic polyhedron (right), i.e., surface made from triangles of constant
negative curvature and all three vertices at infinity.

3.3.2 Ideal Polyhedra. An ideal hyperbolic polyhedron is a surface
of constant negative curvature, and a �nite collection of cusps anal-
ogous to Euclidean cone points (Figure 14, right). We can construct
ideal polyhedra by gluing together ideal triangles: regions of H2

bounded by three geodesics approaching three ideal points at in-
�nity (Figure 13). A strange fact about ideal triangles is that they
are all congruent, i.e., they are iden-
tical up to isometries of H2. Hence,
the geometry of an ideal polyhedron is
determined entirely by how neighbor-
ing triangles ijk, jil are glued together—
namely, how far we slide them along
the shared geodesic ij. One way to
quantify gluings is to use shear coor-
dinates, which for each edge ij give the
distance Zi j 2 R between the altitudes
dropped from opposite vertices k and l (see inset). Alternatively, we
can pick an arbitrary horocycle at each vertex, yielding a decorated
ideal polyhedron. Though edges of an ideal triangle do not have
�nite length, there is now a �nite distance �i j 2 R between the
horocycles at i and j—these values are called the Penner coordinates.
Shear and Penner coordinates are related by

Zi j =
1
2 (�il � �l j + �jk � �ki ) (5)

(see [Penner 2012, Corollary 4.16, p. 40]). Note that if the horo-
cycles at i and j overlap, �i j will be negative. Yet unlike negative
Euclidean lengths, negative Penner coordinates will cause no trou-
ble for discrete uniformization. Likewise, whereas Euclidean lengths
must satisfy the triangle inequality, any three Penner coordinates
�i j , �jk , �ki 2 R (whether positive or negative) can be realized by
some choice of horocycles.

3.3.3 Euclidean-Ideal Correspondence. Every Euclidean polyhedron
gives rise to an ideal polyhedron, in the following way. Any triangle
ijk 2 F drawn in its Euclidean circumdisk can be interpreted as
an ideal triangle in the Beltrami-Klein model. To glue two ideal
triangles ijk, jil together along an edge ij, we simply identify the
same points as in the Euclidean polyhedron. An ideal polyhedron
constructed this way will have shear coordinates Zi j = log ci j , and
if we assign Penner coordinates

�i j = 2 log `i j (6)

we get a decorated version of the same polyhedron. In general, we
can move from Euclidean to hyperbolic polyhedra by “taking a
logarithm”—for example, Equation 5 now just becomes the loga-
rithm of Equation 4. More importantly, for a �xed triangulation, a
conformal scaling of edge lengths à la Equation 3 corresponds to a
shift in horocycles of the form

�̃i j = �i j + ui + uj . (7)

In other words, conformally equivalent edge lengths `, ˜̀ describe
the same ideal polyhedron, just decorated with di�erent horocycles.

3.3.4 Ptolemy Flip. Penner coordinates are easily updated during
edge �ips via Ptolemy’s relation [Penner 2012, Corollary 4.16, p. 40].
Letting `i j = e

�i j /2 for each edge in Figure 12 (top right), we compute

`kl = (`ki `l j + `jk `l i )/`i j . (8)

The new Penner coordinate is then �kl = 2 log(`kl ) (Figure 12, top
right). Since Equation 8 is a rational expression in `, it is often
simplest to just store and manipulate the edge lengths ` rather than
the Penner coordinates �. See Section 8.1 for further discussion of
numerics.

Importantly, this so-called Ptolemy �ip is the same as a Euclidean
edge �ip if and only if the two Euclidean triangles are concyclic
(Figure 9). In general, Euclidean �ips may distort the discrete con-
formal structure even though they preserve the Euclidean geometry
(Figure 15), whereas Ptolemy �ips always preserve the hyperbolic
metric, hence the conformal structure. Moreover, Euclidean �ips
are well-de�ned only when the triangle inequalities are satis�ed,
whereas Ptolemy �ips are always well-de�ned.

3.4 Delaunay Triangulations
For polyhedral surfaces, discrete conformal equivalence is de�ned
in terms of Delaunay triangulations—not because they are “nice”
in a numerical sense, but because they are key to establishing the
discrete uniformization theorem mentioned in Section 1. Delaunay
triangulations have similar but distinct de�nitions in the Euclidean
and ideal hyperbolic settings.

3.4.1 Intrinsic Delaunay Triangulations. A planar triangulation is
Delaunay if there are no vertices on the interior of any triangle
circumcircle. Equivalently, we can ask that every interior edge ij
contained in triangles ijk, jil satisfy the local Delaunay condition

�
i j
k + �

ji
l  � . (9)

This characterization generalizes to Euclidean
polyhedra, since the edge lengths ` are su�-
cient to determine the angles � . Such intrinsic

Delaunay triangulations can be found using a simple greedy algo-
rithm: while any edge fails to satisfy Equation 9, perform a Euclidean
�ip (à la Section 3.2.1). This algorithm terminates after �nitely many
�ips [Indermitte et al. 2001; Bobenko and Springborn 2007], and
in practice takes about |E| �ips on real-world meshes [Sharp et al.
2019b, Figure 10]. Note if two triangles are inscribed in a common
circle, then either diagonal satis�es Equation 9 (Figure 9).

3.4.2 Ideal Delaunay Triangulations. A hyperbolic analogue is an
ideal Delaunay triangulation [Springborn 2019, Section 4]: if ` = e

�/2
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optimize optimizeinput Delaunay

Delaunaynon-Delaunay

Fig. 15. Top: uniformization should leave a flat region unchanged, but unless
one first flips to an intrinsic Delaunay triangulation, Ptolemy flips performed
during optimization will distort the given shape. Bo�om: in general, flipping
to intrinsic Delaunay first tends to yield a be�er map.

are edge lengths associated with given Penner coordinates �, then
every edge must satisfy the local ideal Delaunay condition

`2i j (`jk `ki + `il `l j ) < (`il `ki + `jk `l j )(`il `jk + `ki `l j ), (10)

which we obtain by combining Equations 3 and 10 from Springborn
[2019]. We can again �nd such a triangulation by greedily �ipping
edges, but this time using Ptolemy �ips. Remarkably, if Equation 10
is satis�ed globally, then the lengths ` always describe a valid Eu-
clidean intrinsic Delaunay triangulation [Springborn 2019, 4.14].
Yet working in the ideal setting enables us to start with lengths
that do not describe a valid Euclidean metric and �ip to a valid one
(Figure 8).

3.5 Discrete Conformal Equivalence
We can now state what it means for polyhedra with di�erent tri-
angulations to be discretely conformally equivalent. Consider in
particular two Euclidean polyhedra with the same vertex set V,
encoded as intrinsic Delaunay triangulations (T, `) and (T̃, ˜̀). Two
mathematically equivalent de�nitions provide not only di�erent
geometric perspectives, but also lead to di�erent algorithms.

Euclidean perspective. One de�nition of discrete conformal equiv-
alence is that there must exist a sequence of Euclidean intrinsic
Delaunay triangulations

(T, `) = (T1, `1), . . . , (Tn, `n ) = (T̃, ˜̀)
where each consecutive pair (Ti , `i ), (Ti+1, `i+1) is related by ei-
ther (i) a conformal scaling of edge lengths, à la Equation 3, or (ii)
Euclidean edge �ips of concyclic triangle pairs, à la Section 3.2.1.

Hyperbolic perspective. The other de�nition says that (T, `) and
(T̃, ˜̀) are discretely conformally equivalent if the associated ideal
hyperbolic polyhedra (as de�ned in Section 3.3.3) are isometric,

i.e., if they simply describe di�erent triangulations of the same
negatively-curved surface. Concretely, anymodi�cation of the initial
Penner coordinates via Equation 7 followed by Ptolemy �ips to an
ideal Delaunay triangulation will yield a discretely conformally
equivalent surface. This perspective is illustrated in Figure 8.
An important di�erence between these two perspectives is that

in the Euclidean case one must stop to perform edge �ips whenever
the triangulation becomes non-Delaunay, whereas in the hyperbolic
case scaling and �ipping are decoupled: one can adjust Penner
coordinates freely, and need not stop to perform �ips.

4 UNIFORMIZATION
Here we describe our procedure for planar parameterization—see
Section 7 for the spherical case. This procedure is outlined in Fig-
ure 2; detailed pseudocode can be found in the supplement.
Given an input mesh TA, we �rst �ip to an intrinsic Delaunay

triangulation TB (à la Section 3.4.1), which preserves the Euclidean
geometry and de�nes the discrete conformal structure. We then
solve an optimization problem for scale factors u that transform
TB into a triangulation TC with the prescribed angle defects (Sec-
tion 4.3). After optimization, we lay TC out in the plane (Section 4.5).
However, this layout does not yet provide a mapping of the input
mesh to the plane—Sections 5 and 6 describe how to construct such
a map. Note that if we skip the �rst step (i.e., do not �ip to intrinsic
Delaunay) then we could work with just two triangulations, and
get a map that is still locally injective, but may exhibit conformal
distortion (see Figures 15 and 24).

4.1 Variational Formulation
The input to our discrete uniformization procedure is the intrinsic
Delaunay triangulation TB , and target angle defects �⇤ : V ! R
which must satisfy a discrete Gauss-Bonnet condition:

1
2�

’
i 2V

�⇤i = |V| � |EB | + |FB | (11)

(see Section 4.4 for a generalization to surfaces with boundary).
Note that target defects �⇤i must be smaller than 2� , since the sum
of angles around a vertex is always positive. Minimizing a convex
energy E then yields scale factors u relative to TB .

Note that unlike CETM we �ip to Delaunay whenever we need to
evaluate the energy or its derivatives (as detailed in Section 4.2). This
process is completely hidden inside a callback routine—from the per-
spective of the optimizer, one simply has to solve an unconstrained
problem that is convex and twice continuously di�erentiable (C2).

4.2 Energy Evaluation
To evaluate our energy for any given u, we �rst compute the edge
lengths ˜̀i j = e

(ui+uj )/2`Bi j , and �ip to the corresponding ideal De-
launay triangulation eT = (V,eE,eF) using Ptolemy �ips. These �ips
change the Euclidean geometry but preserve the discrete confor-
mal structure. We will use �̃, �̃ , and e� to denote the corresponding
Penner coordinates, interior angles, and angle defects, resp.
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4.2.1 Energy. The discrete conformal energy is then given by

E(u) =
’
i 2V

(2� � �⇤i ) ui �
’
i j 2eE

��̃i j +
’
i jk 2eF

2f (�̃i j , �̃jk , �̃ki ),

where f (�̃i j , �̃jk , �̃ki ) is given by

1
2

⇣
�̃
jk
i �̃jk + �̃

ki
j �̃ki + �̃

i j
k �̃i j

⌘
+ Л(�̃ jki ) + Л(�̃kij ) + Л(�̃ i jk ).

Here Л denotes Milnor’s Lobachevsky function

Л(� ) := �
π �

0
log |2 sinu | du,

which is related to Clausen’s integral via Л(� ) = 1
2Cl2(2� ); the lat-

ter is implemented in standard numerical packages [Galassi et al.
1994]. Unlike CETM, which extends the energy linearly to han-
dle lengths that violate the triangle inequality, we always evaluate
this energy on the intrinsic Delaunay triangulation implied by the
current scale factors. Constant shifts relative to [Springborn et al.
2008, Equation 7] ensure that, when evaluated this way, the energy,
its gradient, and its Hessian vary continuously with the log scale
factors u—even though di�erent scale factors can induce di�erent
triangulations [Springborn 2019, Proposition 7.12]. Note also that a
Euclidean edge �ip preserves this energy E if and only if the two
participating triangles are concyclic—again motivating the use of
Delaunay triangulations.

4.2.2 Gradient. At each vertex i 2 V, the gradient of the energy is

@ui E = e�i � �⇤i
Note, then, that any stationary point @uE = 0 achieves the desired
angle defects e� = �⇤.

4.2.3 Hessian. The Hessian is given by the
positive-semide�nite cotan Laplacian L 2
R |V |⇥ |V | [MacNeal 1949, Section 3.2]; [Crane
et al. 2013a, Chapter 6]. Since a � complex
may contain more than one edge with the
same endpoints (see for example Figure 11),
the o�-diagonal entries Li j and Lji are obtained by summing the
values 1

2 (cot�
i j
k + cot�

ji
l ) over all edges ij 2 eE with endpoints i and

j , where k, l are the vertices opposite the edge. For each vertex i 2 V,
we then have a diagonal entry Lii = �

Õ
i j 2eE Li j , where the sum is

taken over all edges incident on i . Note that self-edges (where i = j)
make no contribution.

4.3 Optimization
Since the energy E is convex and globallyC2, it can be minimized us-
ing any standard method for convex optimization. We use Newton’s
method with backtracking line search, as described in Algorithms
9.5 and 9.2 of Boyd and Vandenberghe [2004], resp. In particular, we
use the descent direction v 2 R |V | obtained by solving the linear
system

Lv = @uE, (12)
where @uE 2 R |V | encodes the gradient de�ned in Section 4.2.2.
Note that the matrix L has a one-dimensional kernel of constant vec-
tors. We simply use the solution v that has no constant component
(which corresponds to a global scaling). Although L is rank de�cient,

circular disk

convex

orthogonal

scale control

minimal area
distortion

polygonal

Fig. 16. Our algorithm guarantees existence of a locally injective discrete
conformal map for any prescribed boundary lengths or angles, which can
be used to achieve a rich variety of behavior. Spherical uniformization also
provides a globally injective conformal map to the unit disk.

the system is solvable: Gauss-Bonnet ensures that the right-hand
side sums to zero. We initialize Newton’s method with u = 0, but
since the energy is convex this choice will not a�ect the result (apart
from a global scale).

4.4 Surfaces with Boundary
For a smooth surfaceM with boundary @M , the space of conformal
maps to the plane is parameterized by a real-valued function along
the boundary—geometrically, this function can be determined by
prescribing either the scale factors u or the curvature density � ds

along @M (see [Sawhney and Crane 2017, Section 4.2] for further
discussion). We can specify such conditions by either a scale factor
ui or target exterior angle �

⇤
i at each boundary vertex i 2 @V.

To enforce these conditions, we glue together two copies of the
input mesh along the boundary (as in Jin et al. [2004]), reducing
the problem to the no-boundary case. Unlike CETM, we can hence
always �nd a solution with the prescribed boundary data. Note
that this construction extends Springborn [2019], which does not
consider surfaces with boundary; Sun et al. [2015] describe a similar
scheme in the case of prescribed boundary curvature. Maps to the
circular disk are handled in a similar fashion, but using the spherical
uniformization from Section 7.

double4.4.1 Fixed Boundary Curvature.
Suppose we want our �attened do-
main to have an exterior angle �⇤i at
a boundary vertex i . The angle sum
at i must then be equal to � � �⇤i ,
hence on the doubled domain we
prescribe an angle defect �⇤i = 2��
2(� � �

⇤) = 2�⇤i . Since the solu-
tion is unique, it must be symmetric
across the two copies of the original
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mesh. Hence, if we cut the uniformized surface along the original
boundary curve, each half will exhibit the desired angles �⇤. The
only requirement is that the angle defects and exterior angles satisfy
a Gauss-Bonnet condition

Õ
i 2V �⇤i +

Õ
i 2@V �⇤i = |V| � |E| + |F|.

In Figure 16 we assign target angles that yield convex (�⇤i > 0),
orthogonal (�⇤i 2

�
2 Z), or polygonal boundaries (�

⇤
i = 0 almost

everywhere).

4.4.2 Fixed Boundary Scale Factors. To prescribe boundary scale
factors, we �x the values ui at vertices i of the doubled domain
corresponding to the original boundary. For instance, setting ui = 0
at all boundary vertices yields minimal area distortion [Chebyshev
1899, p. 242] in the sense that it minimizes the variation in scale
factors [Springborn et al. 2008, Appendix E]—see Figure 16. Fixing
these values restricts the convex energy E to a linear subspace;
hence we are still solving a convex problem. To compute the descent
direction, we now solve the same system (Equation 12), except that
we set zero Dirichlet boundary conditions at the boundary vertices,
since we do not want these values to change. The minimizer will
exhibit the target angle defects at interior vertices, since the gradient
still only vanishes when e� = �⇤.

4.5 Planar Layout
The �nal scale factors u provide an intrinsic description of the �at-
tened surface, which we then lay out in the plane. Just as we do
during optimization, we �rst scale the edge lengths (à la Equation 3)
and �ip to Delaunay using Ptolemy edge �ips to get a �nal triangula-
tion (TC , `C ). Since the �nal edge lengths `C describe a triangulation
that is �at away from cone singularities (Figure 4), we can simply lay
the triangles out in the plane one at a time to get a parameterization
with no �ipped triangles. (Section 8.2 discusses a numerically robust
alternative.) Since coordinates are discontinuous across cuts, we
store values z jki 2 R2 at corners.

5 CORRESPONDENCE
We now describe a data structure for tracking correspondence be-
tween di�erent triangulations of the same polyhedron. In particular,
we introduce an implicit, integer-based encoding that is easily up-
dated via local formulas during each edge �ip. An explicit geometric
correspondence is later extracted from this information once all �ips
have been performed (e.g., after uniformization)—see Section 6. Since
this encoding uses only integer data, it avoids robustness issues that
can arise with �oating-point representations (e.g., Figure 27).

Explicitly, to encode the correspondence between any two trian-
gulations T1, T2 with the same vertex set V, we store

• normal coordinates, which count the number of times T1
crosses each edge of T2 (Section 5.1), and

• roundabouts, which give the circular ordering of edges from
both T1 and T2 around each vertex (Section 5.2).

Normal coordinates enable us to later trace geodesic segments from
each vertex i to all neighboring vertices j in T1, yielding curves
along T2 (Section 6.1). Roundabouts provide the correspondence
between these traced segments and logical edges of T1. This latter
data is needed because the two endpoints i, j of a traced segment
may not uniquely determine an edge (Figure 11).

i

j

k
edges leaving corner k

edges crossing corner k

normal coordinates nij

edge of T1
edge of T2

1

0
0

0
01

1 3

0

i

j

k

Fig. 17. Le�: normal coordinates ni j count the number of times each edge
i j in a triangulation T2 crosses any edge of another triangulation T1 trans-
versely. Right: these coordinates can be used to determine other quantities,
such as how many edges of T1 cross or leave a corner of a triangle from T2.

For our �attening procedure we use this scheme to track the
correspondence both between TA and TB , and between TB and TC

(see Figure 2). Note that in the remaining sections we use H to
denote the halfedges associated with edges E, i.e., the two possible
orientations*ij ,*ji of each edge ij in E.

5.1 Normal Coordinates
Normal coordinates count the number of times a collection of curves
cross each edge of a �xed triangulation (Figure 17). Our use of
normal coordinates deviates from the standard treatment in two
ways. First, rather than closed topological curves, we consider open
geodesic segments that terminate at vertices. Second, we always
assume that our normal coordinates encode the edges of another
triangulation of the same vertex set. These assumptions enable us to
develop a novel edge �ip formula, given in Section 5.1.1. In particular,
for each edge ij of T2, we store the number of times ni j 2 Z�0 that
any edge of T1 crosses ij transversely (Figure 17, left). Hence, for
edges ij shared by both T1 and T2 we have ni j = 0. From these
numbers we can determine how many edges in T1 emanate from
corner k of a triangle ijk in T2 (excluding those along edges of T2):

e
i j
k = max

⇣
0,ni j � njk � nki

⌘
. (13)

Likewise, the number of edges in T1 that cross corner k of ijk is

c
i j
k =

1
2

⇣
max

⇣
0,njk + nki � ni j

⌘
� e jki � e

ki
j

⌘
. (14)

See Figure 17, right for examples. i

j

l

k

5.1.1 Normal Coordinate Edge Flip. Consider
two triangles ijk, jil from T2. In the simple case
where no edge from T1 terminates in a corner of
either triangle (see inset), there is an edge �ip up-
date that resembles the Ptolemy relation [Mosher
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1988]; [Thurston and Yuan 2012, Equation 1]:

nkl = max(nki + nl j ,njk + nl i ) � ni j .
In the general case, we must derive a more complicated formula
(see supplement):

nkl = max
⇣
0, c jil +c

i j
k +

1
2

���cilj � ckij
���+ 1

2

���cl ji � c jki
���� 1

2e
ji
l �

1
2e

i j
k

+ e
l j
i + e

jk
i + e

il
j + e

ki
j + �ni j

⌘
. (15)

Here �x is the Kronecker delta, equal to 1 for x = 0 and 0 otherwise.

5.2 Roundabouts

i
0

03

1

4 4

0
0

12

3

4

halfedge of T1

halfedge of T2

both T1 and T2

roundabout

Fig. 18. For each halfedge
of T2, the roundabout gives
the next halfedge of T1.

Although normal coordinates completely
describe a triangulation sitting on top
of T2, they do not tell us how the edges
of this triangulation correspond to the
edges of T1 since, as noted above, two
endpoints may not uniquely identify
an edge (Figure 11). We therefore aug-
ment our normal coordinates with what
we call roundabouts, in analogy with
roundabouts or tra�c circles found on
roadways. At each vertex i 2 V, these
roundabouts describe how the outgoing
halfedges of the two triangulations are
interleaved.
More explicitly, for each halfedge *ij 2 H2, the roundabout

gives the �rst halfedge from T1 following
*
ij , encoded as an index

r
*i j 2 Z�0 (Figure 18). These indices start at zero, and enumerate the
halfedges from T1 in counter-clockwise order, starting at some arbi-
trary but �xed halfedge. Note that if a halfedge from T2 coincides
with a halfedge from T1, the roundabout points to this halfedge, as
indicated by self-arrows.

5.2.1 Roundabout Edge Flip. Using per-vertex indices (instead of a
map from H2 to H1) reduces the edge �ip update to integer arith-
metic. In particular, to update roundabouts after �ipping an edge ij
with opposite vertices k, l , we �rst update the normal coordinates
as described in Section 5.1.1. We then have

r
*kl = mod(r*ki + eilk + �nki , deg1(k)),

r
*lk = mod(r*l j + e

jk
l + �nl j , deg1(l)),

l

j

i

k

where deg1(i) is the degree of ver-
tex i in the triangulation T1. In other
words, to �nd the �rst outgoing
halfedge of T1 following *kl 2 H2,
we start at*ki and add the number
of edges eilk of T1 that emanate from
corner k of triangle kil . Also, if*ki
is coincident with a halfedge from
T1, we add 1 to advance past this halfedge. The mod operation
accounts for wraparound. See inset for an example. This update re-
sembles a combinatorial version of the signpost update from Sharp
et al. [2019b, 3.2.1]: integer indices r*i j play the role of real-valued
directions; the integer counts e jki play the role of real-valued angles.

lig
ht

 co
ne

hyperboloid

Fig. 19. By drawing triangles in the light cone (le�), the map between
surfaces can be found by drawing a straight line through the origin (center),
which also works for two di�erent triangulations (right).

6 MAPPING
Following uniformization (Section 4), we have three triangulations:
the input TA with vertex positions f , its intrinsic Delaunay trian-
gulation TB , and the �attened mesh TC with texture coordinates
z (Figure 2). For most tasks (e.g., texture mapping or remeshing),
we will need an explicit map between TA and TC , which we now
construct. Using the correspondence data from Section 5 we �rst
trace out geodesics to identify the points where edges of TA and
TC intersect edges of TB (Section 6.1). We then use these points to
construct a common re�nement S, i.e., the smallest polygonal tes-
sellation that contains all three triangulations (Section 6.3). Finally,
we interpolate the functions f and z across S (Section 6.4). The
result is an ordinary polygon mesh with vertex coordinates fi 2 R3
and texture coordinates z jki at each triangle corner; these texture
coordinates can be used for either piecewise projective or standard
piecewise linear interpolation.

6.0.1 Layout in the Light Cone. As discussed in [Springborn et al.
2008, Section 3.4], conformally equivalent edge lengths naturally
induce a piecewise projective map. However, when the triangulation
is allowed to change, constructing this map becomes more di�-
cult. A useful perspective, di�erent from previous work [Bobenko
et al. 2015; Sun et al. 2015; Springborn 2019], is to consider chordal
triangles in the light cone—leading to simple interpolation formu-
las in homogeneous coordinates (e.g., Equation 16). We here give
a brief sketch, which is made more precise in the supplement. In
particular, take any Euclidean triangle and place it in R3 so that its
vertices sit at points qi ,qj ,qk on the light cone (Figure 19, left). As
discussed in Section 3.3, these points also de�ne the vertices of a
decorated ideal triangle. Hence, central projection from any point
x on the Euclidean triangle to the hyperboloid provides an explicit
mapping between the Euclidean and ideal triangle. Moreover, if we

edge of T2

edge of T1

traced edge of T1

roundabout

2
3

4
5

p=1

p=3

p=4

p=5p=6

Fig. 20. Le�: we index crossings along each halfedge i j by an integer p .
Right: for each halfedge we trace out curves leaving the opposite corner.
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apply a scaling q̃i = e
uiqi to each vertex, we get another chordal

triangle; central projection between points x and x̃ then gives the
circumcircle-preserving projective map used for interpolation in
Springborn et al. [2008] (Figure 19, center). The real power of this
construction is that it enables us to map between di�erent trian-
gulations of the same vertices. Consider for instance two chordal
triangles ijk, jil—if we apply a �ip and then scale the vertices q as
before, we get two chordal triangles lki,kl j sitting “above” the other
ones (Figure 19, right). The map between these triangle pairs is still
given by central projection, and can be expressed as a piecewise pro-
jective map on the four triangles of their common subdivision. This
idea is extended in the supplement to general pairs of triangulations.

6.1 Tracing Edges
For the moment, consider just two triangulations T1, T2. We use the
normal coordinates n : E2 ! Z�0 to trace out the sequence of edges
in T2 crossed by each edge of T1 (Section 6.1.1). The roundabouts
r : H2 ! Z�0 uniquely identify each traced sequence with the
appropriate element of E1. To get the curve geometry, we lay out
a triangle strip in the Euclidean or hyperbolic plane, and draw a
straight line between endpoints (Section 6.2). The �nal curve is en-
coded by 1D barycentric coordinates s, t 2 [0, 1] on each intersected
edge. We enumerate points where edges of T1 cross a halfedge

*
ij

of T2 by a crossing index p 2 {1, . . . ,ni j } (see Figure 20, left).

6.1.1 Topological Tracing. To trace out all the edges of T1 over T2,
we iterate over the halfedges*ij 2 H2 and trace edges emanating
from the opposite corner k (Figure 20, right), namely, the edges with
indices p = 1 + nki , . . . , 1 + nki + e*i j . This procedure is detailed
in Algorithm 1. We identify the edge of T1 corresponding to each
traced curve p by incrementing the roundabout r*ki by p � nki � 1.
(By marking traced edges in T1, we avoid tracing edges twice.) Note
that roundabouts must be used even for curves shared by both
triangulations, since after a sequence of edge �ips they may no
longer correspond to the same logical edge.

The procedure N���E��� (Algorithm 2) uses the normal coordi-
nates n to determine the next halfedge*ij and crossing index p along
the curve. The image below depicts the four possible cases—this
pattern of edge crossings can be determined solely using the normal
coordinates for the triangle jil , via the formulas given in Section 5.1.
See Appendix A.2 for further details.

i

j l

k i

j l

k i

j l

k i

j l

kcase 1 case 2 case 3 case 4

Note that the tracing procedure gives us each edge from T1 as a
sequence of edge crossings on T2. To express the edges from T2 as
sequences of T1 edge crossings, we allocate an array of size ni j for
each edge ij 2 E2. Each time a traced edge ab 2 T1 crosses ij, we
store a reference to ab in entry p of the array (using roundabouts to
get the edge index).

6.2 Recovering Geodesics
To get the geometry of each traced edge ab 2
E2, we use the crossing sequences computed in
Section 6.1 and the edge lengths ` to incremen-
tally lay out a triangle strip in the (Euclidean
or hyperbolic) plane. We then intersect each
interior edge ij of this strip with the line from
a to b—by construction, this line will be con-
tained entirely inside the strip. In particular, if
xi 2 R2 are the vertices of a Euclidean triangle
strip, we can solve the equation

(1 � s)xa + sxb = (1 � t)xi + tx j
for the barycentric coordinates s, t 2 [0, 1] of the intersection point.
The hyperbolic case is conceptually the same except that we work
in the hyperboloid model, and and also compute a scale factor u at
each intersection point—see Appendix A.3 for details.

6.3 Common Refinement

vertex

edge fragment
face
 point

edge
point 

segment

edge of TA

edge of TB

edge of TC

faceWe now construct the common re�ne-
ment S of TA, TB , and TC . Here and in
Appendix B we will refer to points along
edges of TB (resulting from tracing) as
edge points, and any new vertices inserted
into polygons as face points, reserving
vertex for elements of V. Likewise, an
edge is the complete edge of some trian-
gulation, a segment is the restriction of an edge to a triangle, and a
fragment is a piece of a segment (see inset).

i

j

k
6.3.1 Connectivity. First, for each edge ij 2 EB ,
we use the procedures from Sections 6.1 and
6.2 to trace out (i) a Euclidean geodesic over
TA to obtain edge sequences and barycentric
coordinates (s, t), and (ii) a hyperbolic geodesic
over TC to obtain edge sequences, barycentric
coordinates, and scale factors u. To determine
the connectivity of S we slice up each triangle
ijk 2 FB independently, via a strategy similar
to Sharp et al. [2019b, Section 3.4]. To avoid computing segment-
segment intersections directly (which is not numerically robust),
we devise a strategy that takes advantage of combinatorial informa-
tion. Floating-point values serve only to determine the ordering of
intersection points along edges—and since neighboring triangles
have identical barycentric coordinates along their shared edge, we
always obtain a consistent tessellation. See Appendix B for details.

6.4 Interpolation
The vertex coordinates fi and texture co-
ordinates z jki de�ne piecewise functions
over the faces of TA and TC , resp.; we now
sample these functions onto S. To do so,
we will also need the scale factors u ob-
tained while tracing hyperbolic geodesics.
We again process each triangle ijk 2 TB
independently. First, we interpolate data
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onto each edge ij of the triangle. For each edge point p along an
edge ab 2 EA, let sp , tp be the barycentric coordinates along ab and
ij, resp.. Then fp = (1 � sp )fa + sp fb . Similarly, for an edge point q
along cd 2 EC we have homogeneous texture coordinates

ẑq = e
�uq �

(1 � sq )(zc , 1) + sq (zd , 1)
�
, (16)

where (z, 1) indicates that a 1 has been appended to z. The scale
factors eu arise from projective rather than linear interpolation—
see supplement for details. To get values of f at edge points q,
and values of ẑ at edge points p, we linearly interpolate between
adjacent known values along ij . Finally, to get the values at each face
point, we write the endpoints of the two incident fragments in 2D
barycentric coordinates relative to ijk , and compute the intersection
point via Equation 19. The resulting s, t values are then used to
linearly interpolate f and ẑ from the segment endpoints. Note that
since texture coordinates are discontinuous across cuts, we store ẑ
at corners rather than vertices. The �nal surface can be visualized
by tessellating polygons into triangles; just as in [Springborn et al.
2008, Section 3.4] we perform a homogeneous divide on texture
coordinates ẑ at each sample point (e.g., each pixel).

7 SPHERICAL UNIFORMIZATION
We now consider conformal maps to the sphere S2. Given a genus-0
Delaunay triangulation T = (V, E, F) with edge lengths ` : EB !
R>0, we give an algorithm that computes vertex positions f : V!
S
2 ⇢ R3 that describe a discretely conformally equivalent convex
sphere-inscribed polyhedron. The solution is guaranteed to exist,
and is unique up to a Möbius transformation of the sphere.

The strategy used by CETM is essentially to delete the neighbor-
hood of a special vertex i⇤, conformally map this modi�ed surface to
a �at disk, and apply stereographic projection to the sphere, where
the removed vertex i⇤ is re-inserted. For a �xed triangulation, there
are several problems. First, as discussed previously, a discretely con-
formally equivalent �at disk may not exist. Even if we allow the
triangulation to vary, it is not immediately clear what to do about
boundary edges (which cannot be �ipped). Second, the �nal polyhe-
dron may not be convex. In fact, many combinatorial triangulations
do not admit any convex embedding in the sphere—conformal or
otherwise [Rivin 1996]. Third, the map may become non-injective
when vertex i⇤ is re-inserted.

Imagine that we instead start with the object we want: a convex
sphere-inscribed polyhedron P conformally equivalent to the input
surface. If we stereographically project this polyhedron to the plane
through any vertex i⇤, we get a planar disk where all boundary ver-
tices j are connected to the same vertex i⇤ at in�nity (Figure 21, left).
Stereographic projection preserves discrete conformal equivalence
with the input, and since the polyhedron is convex, its stereographic
projection will be a planar Delaunay triangulation [Brown 1979]—
and has hence a convex boundary. Hence, if we can construct such
a triangulation, we can obtain the desired spherical conformal map
(via stereographic projection).

To solve this problem, Springborn [2019] reformulates it in the hy-
perbolic setting where one can freely �ip edges without invalidating
the hyperbolic metric. Here, the Penner coordinates �i⇤j = 2 log `i⇤j
incident on the special vertex i⇤ are now in�nite—e�ectively push-
ing the horocycle at i⇤ o� to in�nity (Figure 21, right). This decorated

Fig. 21. Le�: a convex polyhedron inscribed in the sphere can also be viewed,
via stereographic projection, as a planar Delaunay triangulation with all
boundary vertices connected to a vertex i⇤ at infinity. Right: in the Poincaré
model, the horocycle at i⇤ shrinks to a point, and the incident Penner
coordinates �i⇤j go to infinity.

polyhedron can be found via the same uniformization procedure
as in Section 4, but with a few important modi�cations. For one,
it uses a modi�ed Delaunay �ipping procedure which accounts
for edges of in�nite length (Section 7.1), and a modi�ed energy
which accounts for the boundary vertices j adjacent to i

⇤ (Sec-
tion 7.2). Linear inequality constraints on u ensure that the edges
i
⇤
j are convex and have the right cross ratios (Section 7.3). Solving a

bounds-constrained optimization problem (Section 4.3) yields scale
factors u that describe the desired planar disk, which we can then
stereographically project back onto the sphere.

7.1 Modified Delaunay Flips

i

j

k
Since some Penner coordinates are now in�nite
(Figure 21, right), we can no longer check the
Delaunay condition using Equation 10. How-
ever, just as the Euclidean Delaunay condition
is expressed in terms of angles (Equation 9), we
can still express the ideal Delaunay condition
in terms of the arc length �

jk
i of the horocycle at vertex i within

triangle ijk (see inset). Initially, all edge lengths ` are well-de�ned
and we have

�
jk
i =

`jk

`ki `i j
. (17)

Scaling lengths à la Equation 1 then gives new arc lengths

�̃
jk
i = e

�ui� jki .

At the special vertex i⇤, where ui⇤ = 1, we hence get �̃ jki = 0 as
expected. An edge ij then satis�es the ideal Delaunay condition if

�̃
ji
k + �̃

i j
l < �̃

jk
i + �̃

l j
i + �̃

ik
j + �̃

l i
j . (18)

i

j

l

k

If this condition is not satis�ed, we perform
a Ptolemy �ip (Equation 8). However, rather
than compute ˜̀kl directly (which may be in-
�nite), we �rst compute `kl via the Ptolemy
relation and then scale to get ˜̀kl . Importantly,
if Equation 18 is satis�ed with equality for
an edge kl opposite the special vertex i⇤, we
must pick the �ip that connects kl to i

⇤—since for any sequence
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…

!ip (more !ips)

Fig. 23. To find a triangulation connecting the special vertex i⇤ to all other
vertices j , we put a finite horocycle at i⇤ and send all other horocycles to
infinity. Modified Delaunay flips then yield the desired triangulation.

of �nite horocycles around i⇤ approaching in�nity, this is the edge
that would belong to an ideal Delaunay triangulation.

7.2 Spherical Variational Principle
As in the Euclidean case, the energy and its derivatives are always
evaluated on the triangulation eT obtained by updating the Penner
coordinates of TB (à la Equation 7) and �ipping to an ideal Delaunay
triangulation (à la Section 7.1). In particular, let T� := (V�, E�, F�)
be the mesh obtained by removing the special vertex i⇤ together
with its incident edges and faces fromeT. The energy for spherical
uniformization is then

ES2 (u) = 2�
’
i 2V�

ui � �
’
i j 2E�

�̃i j +
’

i jk 2F�
2f (�̃i j , �̃jk , �̃ki )

(see Springborn [2019, Equation 56 and Theorem 7.18], which di�ers
by a constant that does not a�ect minimizers). For each vertex i 2 V�,
its gradient is

@uj ES2 = e�j + � (degF� (j) � degE� (j)),
where degE� (j) and degF� (j) are the number of edges and faces of
T� containing j, resp.; this degree di�erence will be �1 for vertices
adjacent to V� (and zero otherwise). �⇤ does not appear because we
do not consider cone singularities in the spherical case. The Hessian
is again cotan-Laplace, where cotangents from any removed face
are set to zero.

7.3 Constraints

Fig. 22. Peacock triangulation.

In the �xed triangulation case,
Bobenko et al. [2015, Proposition
3.2.1] observe that setting uj = ��i⇤j
ensures that the boundary edges i⇤j
exhibit the right length cross ratio.
However, in the variable triangula-
tion case we do not know a priori
which vertices j will ultimately be ad-
jacent to the removed vertex i⇤ (since
this set may change due to edge �ips).
Instead, as proposed by Springborn
[2019], we impose the inequality con-
straint uj � ��i⇤j for all vertices j 2 V�, where �i⇤j is the geodesic
distance between horocycles in the input triangulation. At a mini-
mizer, these inequalities will be satis�ed with equality for vertices j
adjacent to i⇤.

To compute the geodesic distances, we �rst construct a trian-
gulation that connects i⇤ to all other vertices j 2 V� by minimal
geodesics. To do so, we send all the horocycles except the one at i⇤
to in�nity—in the Poincaré model, the representative circles shrink
down to points (Figure 23, left). In general, an edge connecting
two vertices j1, j2 , i

⇤ cannot be Delaunay, since the horocyclic
arc length � at both vertices will be zero—hence smaller than the
arc length of the complementary vertices (see Figure 23 and Equa-
tion 18). By �ipping to a Delaunay triangulation, we ensure that
any edge leaving a vertex j , i

⇤ connects only to i
⇤ (Figure 23,

right). Moreover one can show that, due to the global Delaunay
property, every such edge is a minimal geodesic [Springborn 2019,
Proposition 5.16]. All other edges go from i

⇤ back to i⇤, resulting in
what we call a peacock triangulation (Figure 22). To get the values
�i⇤j , we then read o� the distances between the original horocycles
(rather than those that have been scaled down to points).

7.4 Optimization
Once we know �i⇤j , we can solve the convex optimization problem

min
u :V�!R

ES2 (u)
s.t. uj � ��i⇤j , 8j 2 V�.

This problem can be solved via a bounds-constrainedNewtonmethod;
see Section 8.1 for further discussion.

7.5 Spherical Layout
After optimization, we have scale factors u at vertices that describe
a �at metric on the topological disk T�. We lay this disk out in the
plane using the same procedure as described in Section 4.5, then
stereographically project to get coordinates z on the unit sphere
S
2 ⇢ R3 (re-inserting the special vertex i

⇤ at the center of stere-
ographic projection). This �nal map is unique only up to Möbius
transformations of the sphere; we compute a canonical Möbius
transformation via Baden et al. [2018, Algorithm 1], using vertex
rather than face areas to express the center of mass.

7.6 Spherical Interpolation
Interpolation is done as in Section 6, except we now lift coordinates
z 2 R3 to homogeneous coordinates ẑ 2 R4, and scale factors must
now account for both uniformization and stereographic projection.
Let ˜̀i j be the edge lengths ofP , and `i j be the lengths from TB after
applying the same sequence of Ptolemy �ips used for uniformization.
Then solving Equation 3 within each triangle ijk yields

ui = log

 
˜̀i j
`i j

`jk
˜̀jk

˜̀ki
`ki

!

(and similarly for uj ,uk ). Since stereographic projection preserves
discrete conformal equivalence, these values agree across triangles.
Also, since P is convex, normalizing interpolated coordinates gives
an injective map to the unit sphere (for, e.g., texture mapping).

8 EVALUATION
This section evaluates the empirical behavior of our method, here re-
ferred to as conformal equivalence of polyhedral surfaces (CEPS). Our
main points of comparison are the CETM algorithm of Springborn
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CETM CEPS

Fig. 24. Even when CETM succeeds, the quality of the map may be lower
since it e�ectively considers a di�erent notion of conformal equivalence
(based on the input rather than Delaunay triangulation).
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Fig. 25. Timings for our method (CEPS) on two datasets. Note that CETM
fails on a large percentage of models where we succeed (highlighted in red).

et al. [2008], which does not use �ips, and what we call uniformiza-
tion with Euclidean edge �ips (UEF) [Sun et al. 2015], which stops to
�ip concylic triangle pairs, as described in Section 2.1.2. All methods
use identical code for tracking correspondence, à la Section 5. We
also brie�y consider other methods for spherical conformal mapping
(Section 8.3.3) and non-conformal injective mapping (Section 8.3.1).

The overall observation is that CEPS succeeds on far more models
than CETM, and exhibits better scaling than UEF. Even when CETM
does succeed, it may not provide as good of an approximation of a
smooth conformal map (Figure 24). Moreover, our UEF implemen-
tation is more e�cient than the one suggested by Sun et al. [2015]
since it uses the implicit tracking scheme from Section 5 (which
depends critically on the hyperbolic perspective), rather than an
explicit overlay à la Fisher et al. [2007].

8.1 Implementation
Algorithms were implemented in double precision in C++ using the
halfedge implementation in GeometryCentral [Sharp et al. 2019a].
For cone �attening, we used Newton’s method with backtracking
line search [Boyd and Vandenberghe 2004, Algorithms 9.2 and 9.5],
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Fig. 26. Speedup of our method over UEF (total wall-clock time for comput-
ing scale factors). Beyond about 1k vertices, CEPS is typically faster.

signposts normal
coordinates

Fig. 27. Le�: The signpost data structure fails to be numerically robust in
extreme situations, such as when tracing the “peacock triangulation.” Right:
our integer-based encoding ensures we get the right connectivity.

using CHOLMOD to solve linear systems [Chen et al. 2008]. For
spherical uniformization, we used bounds-constrained Newton’s
method with backtracking line search [Balay et al. 2019, 1997; Mun-
son et al. 2014]. In practice, we use the implementation found in the
PETsc/TAO library—speci�cally, we use the TAOBNLS solver [Ben-
son et al. 2003, Section 4.2.1]. Timings were measured on an Intel
i9-9980XE with 32 GB of RAM, using a single thread.

8.2 Numerics
Our algorithms are guaranteed to work in exact arithmetic for any
valid input—in a real implementation we must also be careful about
�oating point error. Here we describe several useful techniques,
though of course other improvements may be possible. Note that we
mollify input edge lengths as described by Sharp and Crane [2020]
(using � = 10�12) which helps with near-degenerate models and
otherwise leaves the input untouched.

8.2.1 Euclidean Uniformization. One way to evaluate the intrinsic
Delaunay condition (Equation 9) is to use the angle cotangents;
Fisher et al. [2007] provide details. We instead check the hyperbolic
condition (Equation 10)—even when constructing the Euclidean
Delaunay triangulation—since it yields the same triangulation, but
only involves rational arithmetic on edge lengths. When triangles
are nearly concyclic, this condition may be violated (or satis�ed)
both before and after the edge �ip, due to �oating point error. Hence,
we check Equation 10 for all edges, and perform a �ip only if it
increases the di�erence between right- and left-hand side.

8.2.2 Spherical Uniformization. For most models the choice of spe-
cial vertex i⇤ makes no di�erence, but on models with long, thin
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Thing ID: 662115Thing ID: 112917

Fig. 28. Our implementation robustly handles extremely poor triangulations
(le�) failing only on the most pathological inputs (right). See Figure 1 for
more examples.

features a useful heuristic is to put the vertex i
⇤ at the intrinsic

median Sharp et al. [2019c, 8.3]; in practice we use the findCenter
method from GeometryCentral [Sharp et al. 2019a]. When construct-
ing the peacock triangulation in Section 7.3, values of ` can become
large enough to result in �oating point over�ow. We therefore work
instead with the values � = 2 log `, which occupy a much smaller
range. In particular, to compute the values � jki , we evaluate the log
of Equation 17: log� jki = 1

2 (�jk � �ki � �i j ), then exponentiate,
and multiply by the scale factor e�ui (which equals zero for all ver-
tices but i⇤). As before, Equation 18 gives the Delaunay condition in
terms of � . We also use the log-sum-exp trick [Blanchard et al. 2019,
Equation 1.3] to help with numerical precision when applying the
Ptolemy relation `kl = (`ki `l j + `jk `l i )/`i j . This means we write
the log of the numerator as

1
2�ki +

1
2�l j + log(1 + e

(�jk /2+�l i /2)�(�ki /2+�l j /2)),

where, without loss of generality, we label the vertices so that �ki +
�l j > �jk + �l i . We then subtract 1

2�i j to get the �nal log length
for the new edge kl . (When building the peacock triangulation, we
never explicitly compute the values of `.)

Layout. One could lay out triangles incrementally, as in [Spring-
born et al. 2008, Section 3.3]. We found it more robust to use the
spectral layout of Mullen et al. [2008], which we use in all examples.
This algorithm requires only the cotan-Laplace and mass matrices,
which can be built directly from the �nal edge lengths `C . Since
lengths describe a �at metric, spectral layout incurs no further dis-
tortion.

Mapping. When laying out triangle strips (Section 6.2), we found
that it improves �oating point robustness to �rst incrementally com-
pute the angles for each halfedge, and then use these angles to re-
cover �nal vertex positions x 2 R2. In meshes with near-degenerate
triangles, we �nd that the hyperbolic layout procedure can some-
times fail to place points on the light cone due to �oating-point
errors. In particular, the new vertex coordinates ql might be at the
origin, or contain NaNs. In this case, we replace the global strip lay-
out with a local iterative straightening procedure (akin to nonlinear
Gauss-Seidel). In particular, we consider two consecutive triangles
at a time and update the location where the geodesic intersects the
common edge—see supplement for details.

8.3 Experiments

optimization
layout

flipping

refinement

tracing

MPZ

layout

flipping

refinement
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Thingi10k

optimization

Fig. 29. Average break-
down of costs in CEPS;
green tasks are shared by
CETM.

8.3.1 Di�icult Cone Configurations. We
ran our method on the standard bench-
mark of Myles et al. [2014], referred to
as MPZ, which contains challenging cone
con�gurations. CEPS succeeds on all 114
models, including extraction of the com-
mon re�nement. Maps were discretely
conformal up to �oating point error, with
an average length cross ratio error of
about 10�9, and no worse than about
10�4. In contrast, CETM succeeded on only
73 models (Figure 25, top) and was less
than 2x faster (Figure 29, top). Moreover,
the tracing and re�nement steps of CEPS
could be trivially parallelized over edges
and faces, resp. UEF also succeeds on these
models, but is generally slower than CEPS
(Figure 26, left).

Many injective but non-conformal
methods do not do as well on this di�cult
benchmark: as reported by Bright et al.
[2017, Section 8.1], their method and the methods of Chien et al.
[2016], Aigerman et al. [2014], Levi and Zorin [2014], and Lipman
[2012] succeed on 104, 102, 97, 93, and 90 models, resp.Many of these
methods have running times on the order of minutes or (on the most
di�cult examples) hours, versus seconds for our method. On the
other hand, we must change/re�ne the triangulation, whereas these
methods keep the triangulation �xed. Like CEPS, the combinatorial
method of Zhou et al. [2020] succeeds on all MPZ models, but can
yield highly distorted maps that are expensive to optimize; cost is
again on the order of minutes to hours.

8.3.2 Di�icult Triangulations. As a stress test of �oating-point be-
havior, we parameterized all manifold meshes from Thingi10k, split-
ting disconnected meshes into their connected components (32,744
examples in total), and using a time out of 2000 seconds. Note that
previous work on cone parameterization does not even attempt this
benchmark, which has dramatically worse element quality than
MPZ. For these examples we apply the greedy cone placement strat-
egy from Springborn et al. [2008, Section 5.1], stopping when all log
scale factors ui are in the range [�5, 5] (i.e., a max scale factor of
about 150). Here CEPS successfully computes a parameterized mesh
S for 98.6% of models, yielding an injective map on 97.7%. Examples
where we fail are quite pathological (e.g., Figure 28, right). Overall
about 68% and 15% of failures were due to failure of iterative straight-
ening or optimization (resp.) to converge within the time limit, and

Fig. 30. Since we allow edge
flips, we need not worry how
coarse the mesh is near large
cones. Here we set all but one
angle defect to almost 2�—the
remaining vertex has an angle
defect of �1032.79.
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Fig. 32. In the genus-0 case, our method guarantees a bijective discrete
conformal map to a convex polyhedron with vertices on the sphere.

for about 13% Delaunay �ipping failed due to �oating point error.
The worst cross ratio error was typically around 10�5. CETM fails
on almost half of these examples (Figure 25), and performance of
UEF su�ers as models get larger (Figure 26, right).

Fig. 31. Past spherical
methods o�en exhibit
foldover, and cannot
guarantee convexity.

8.3.3 Spherical Conformal Parameterization.
We ran our spherical algorithm on two other
datasets: the Spherical Demon brain scan
dataset of Yeo et al. [2009], and the anatomi-
cal surface dataset of Boyer et al. [2011] (Fig-
ure 32). On the brain dataset, where each
model has about 230k faces, we obtained in-
jective discrete conformalmaps to the sphere
on all 78 brain hemispheres, taking an av-
erage of 493 seconds per hemisphere. The
anatomical surface models are topological
disks, so we compute conformal maps to a
hemisphere. We succeed in computing these maps on all 187 of the
manifold meshes without handles in the dataset. One of our maps
contains degenerate triangles, but none have �ipped triangles. The
models take an average of 14.4 seconds to uniformize.
Past methods for spherical conformal parameterization largely

compute maps to the sphere that are harmonic with respect to piece-
wise linear Dirichlet energy [Gu et al. 2004]. However, unless the
input mesh is already Delaunay, such maps can have �ipped trian-
gles (Figure 31, right). More fundamentally, it is impossible for any
method that uses a �xed triangulation to guarantee convexity—no
matter what algorithm is used, or where the vertices are placed—
since not all combinatorial triangulations admit a convex embedding
in the sphere [Rivin 1996]. In practice, �ipped triangles and non-
convex edges are quite common in discrete harmonic maps: on the
brain dataset we observed, on average, foldover at about 100 edges
and nonconvexity at about 20k edges when using the method of
Kazhdan et al. [2012] (see inset). Other techniques for spherical
conformal mapping gave very similar results [Crane et al. 2013b;
Dym et al. 2019].

Fig. 33. We can handle multiply-connected domains by simply triangulating
holes prior to fla�ening, then removing these triangles a�er fla�ening.

8.4 Multiply-Connected Surfaces
Many surfaces encountered in practice will have multiple bound-
ary components. Though uniformization can be used to �nd a �at
metric on such surfaces, this metric cannot always be laid out in
the plane without additional cuts, due to nontrivial monodromy
around boundary cycles (see for instance Hefetz et al. [2019, Fig-
ure 6]). Extension of discrete uniformization to multiply-connected
circle domains and slit domains has been considered by Bobenko
et al. [2016], but there is an even simpler alternative appropriate for
practical texture mapping: just triangulate each of the holes, then
remove these triangles after parameterization. Figure 33 shows one
such example. A natural question is how to more directly control
boundary behavior by setting the intrinsic lengths of inserted edges.

9 LIMITATIONS AND FUTURE WORK
The ability to modify the input triangulation is ultimately what
enables one to establish a discrete uniformization theorem where
existence is guaranteed. From a practical point of view, it comes at a
small cost: the output mesh has di�erent connectivity than the input.
Importantly, however, the common re�nement S can be stored as a
standard mesh with ordinary vertex and texture coordinates that
can be used downstream. Our implementation also outputs a sparse
|VS | ⇥ |VA | matrix that interpolates values from the input mesh
to the larger set of vertices in S. The re�nement is around 1.5–3x
bigger than the input on common models (e.g., those in MPZ), and
around 5x on most of Thingi10k—though on pathological models
even initial Delaunay �ipping can increase size by 45x or more. To
reduce the �nal mesh size, it may be possible to “un-�ip” many edges
of the planar layout (à la Kharevych et al. [2006, Section 5]), which
incurs some conformal distortion but preserves injectivity. If one
cares purely about injectivity, the initial Delaunay retriangulation
step can also be skipped. The method is guaranteed to work only in
exact arithmetic—it is natural to consider numerical improvements,
or ways to further reduce dependence on �oating-point arithmetic
(e.g., during mesh extraction). We did not consider uniformization
over hyperbolic domains, though this case is well-supported by the
same theory—see Springborn [2019] for further discussion.
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A EXTRACTING GEODESICS
Here we give a detailed description of how to extract geodesics
from normal coordinates. Note that in this appendix, and in the
supplement, we use hu,�i := u1�1 + u2�2 + u3�3 to denote the
Euclidean inner product for vectors u,� 2 R3, and hu,�i2,1 :=
u1�1 + u2�2 � u3�3 for the Lorentz inner product.

A.1 Projective Segment Intersection

a

u
v

b

d

c

a

b
c

d

For several of our calculations,
it will be useful to express the
intersection between two pla-
nar line segments ab and cd in
terms of the homogeneous co-
ordinates of their endpoints. In
particular, if a,b, c,d 2 R3 are
any homogeneous coordinates
for the endpoints, we seek a so-
lution to

(1 � t)a + tb = e
u ((1 � s)c + sd).

Letting� := a⇥b andw := c⇥d , we can write the solution explicitly
as

t =
hw,ai
hw,a � bi , s =

h�, ci
h�, c � di , u = log

✓ h�,d � ci
hw,a � bi

◆
. (19)

A.2 Tracing
We here detail the algorithms for topological tracing, described in
Section 6.1.1. In particular, Algorithm 2 considers the four cases
depicted in Section 6.1.1. In case 1, several curves end at vertex l .
Here there are three possibilities: the curve either continues through
il , terminates at l , or continues through l j. In case 2, several curves
end at j. This time, the curve must continue through ij. Similarly,
in case 3, several curves end at i , and the curve must continue
through*l j . In case 4, no curve ends at any vertex of il j, and the
curve continues through either*il or*l j .

Algorithm 1 T����E���(n,*ij ,p)
Input: Normal coordinates n : E2 ! Z�0, a triangle corner spec-

i�ed via the opposite halfedge *ij , and the index p of the
curve to be traced.

Output: A list of pairs � = ((*ij 0,p0), . . . , (*ij n,pn )) specifying how
the traced curve crosses T2.

1: � = () .initialize list of crossings
2: do
3: A�����(� , (*ij ,p))
4: (*ij ,p) N���E���(n,*ij ,p)
5: while p , 0 .not yet at a vertex
6: return �
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Algorithm 2 N���E���(n,*ij ,p)
Input: Normal coordinates n on T2, a halfedge *ij 2 H2, and an

index p.
Output: The next halfedge*ij 0 and index p0 along the curve.
1:
*
ji  T���(*ij )

2: if ni j > njl + nil then .Case 1
3: if p  nil then return (*il ,p)
4: else if nil < p  ni j + �njl then return (l, 0)
5: else return (*l j ,p � (ni j � njl ))
6: else if nl j > ni j + nil then return (*l j ,p + njl � ni j ) .Case 2
7: else if nil > ni j + nl j then return (*il ,p) .Case 3
8: else .Case 4
9: c

i j
l = (nl j + nil � ni j )/2

10: if p  nil � ci jl then return (*il ,p)
11: else
12: c

l j
i  (nil + ni j � nl j )/2

13: return (*l j ,p � cl ji + c
i j
l )

A.3 Hyperbolic Geodesics
We here describe how to extract the points where a hyperbolic
geodesic �ab intersects the sequence of halfedges computed via
Algorithm 1. For each such halfedge*ij we extract the barycentric
coordinates s, t along �ab and*ij , resp., plus a log scale factor u asso-
ciated with the intersection. As in Section 6.2 we lay out a triangle
strip, but this time place vertices on the light cone L (Section 3.3.1).
As derived in the supplement, the �rst triangle aij has vertices

qa = 2p
3
`ai `aj`�1i j (1, 0, 1),

qi = 2p
3
`ai `i j`�1aj (cos(2�/3), sin(2�/3), 1),

qj = 2p
3
`aj`i j`�1ai (cos(4�/3), sin(4�/3), 1).

For any triangle kjl following a known triangle ijk , we use the
Ptolemy relation to get `il , then solve for the unknown position

ql =
`il

`ik `i j

⇣
� `jl `kl

`il
qi +

`ik `kl
`jk

qj +
`jl `i j
`jk

qk

⌘
.

This process repeats until we have laid out the whole strip, including
the endpoints qa and qb—to account for uniformization, we scale
just these endpoints by e�ua and e�ub , resp. If we then imagine that
points q 2 R3 in the light cone are homogeneous coordinates for
points x 2 R2 from the Beltrami-Klein model, then Equation 19
gives us the desired values s , t , and u at each intersection.

B REFINING FACES
We here describe how to build a graph G = (V, E) describing the
connectivity of S within a face ijk 2 TB . Recall the nomenclature
de�ned in Section 6.3. In Step I below we determine which edge
points connect to form segments; in Step II we determine which
segments intersect; in Step III we extract faces of G. We �rst sort all
edge pointsp in counter-clockwise order (starting at any edge point),
assigning them indices�p 2 Zwhich provide a sort of combinatorial
analogue to the angle around the boundary.

Step I Step II Step III

segments face points polygons

Fig. 34. The three stages of connectivity extraction.

i

j

kStep I (Segments). We compute the segments
from TA and TC independently, à la Sharp et al.
[2019b, Section 3.4]. In each case, the number of
edge points determine three normal coordinates
mi j ; e

jk
i and c jki are then de�ned as in Section 5.1.

If e jki , 0, we connect the �rst ckij edge points
along jk to the �rst ckij edge points along ji , the
next e jki edge points to vertex i , and the remaining
ones to the edge points along ki (see inset).

i

j

k

i

j

k

Step II (Segment-Segment Intersections). To �nd
face points, we consider all pairs of segments ab
and cd from TA and TC , resp. Two segments cross
if the values of � are interleaved, i.e., if they come
in a (cyclic) order like �a,�c ,�b ,�d . If so, we add
a new face point, maintaining a list of all face
points along each segment, sorted by � (which
de�nes the fragments). After computing intersec-
tions, we use the � values at segment endpoints
to sort the fragments around each face point.

Step III (Polygons). To extract the �nal polygons, we iterate over
fragments. For each fragment we visit the next vertex, then the next
fragment in counter-clockwise order, until we return to the original
fragment. If desired, the �nal (global) tessellation S can be collected
in an ordinary mesh whose vertices consist of all face points, edge
points, and vertices from the original vertex set V.

Note that the sorting procedure in Step II is the only moment
where �oating point errors have any chance of invalidating the
connectivity of the re�nement.
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Supplemental Material

This supplement provides additional pseudocode for the main uni-
formization algorithm, details for improving numerical robustness,
and derivations of formulas.

C PSEUDOCODE
Below we give complete pseudocode for the uniformization pro-
cedure described in Section 4; note that this code does not track
correspondence, as described in Section 5, nor handle the spherical
case. The only routines not given here are either elementary numer-
ical/geometric calculations, or operations that depend on the choice
of mesh data structure. In particular:

• S����(A, x,b) — solves the linear system Ax = b using a
sparse linear solver that can handle a positive-semide�nite
matrix A, such as sparse Cholesky or LDL factorization.

• C������(x)— Clausen’s integralCl2(x), provided by standard
numerical libraries [Galassi et al. 1994].

• A����(`i j , `jk , `ki )— given the edge lengths of a triangle ijk ,
computes angle � jki at corner i (e.g., using the law of cosines).

• O�������V�������(ij, T) — given an edge ij contained in
faces ijk, jil of a triangulation T, returns the vertices k and l .

• I�D�������(T, `, ij) — true if edge ij satis�es the local ideal
Delaunay condition (Equation 10), false otherwise.

• I����D�������(T, `)— same as I��������D�������, except
F���E�������� is replaced with F���P������.

• P���(Q, ij), P��(Q) — push/pop an edge to/form queue Q .
• I�����T��������(T, i1j1k1, i2j2k2, . . .),
E����T��������(T, i1j1k1, i2j2k2, . . .)—add/remove the given
triangles to/from a triangulation T.

Note that we do not detail the routine L����� which cuts the �nal
mesh and lays it out in the plane—such algorithms arewell-described
in, e.g., Springborn et al. [2008, Section 3.3] and Mullen et al. [2008],
resp. Note also that there may be better numerical implementations
of some methods (e.g., for computing angles or their cotangents);
see [Sharp et al. 2019b, Appendix A] for further discussion.

Algorithm 3 F������M���(TA, f ,�⇤)
Input: A triangle mesh TA = (V, EA, FA), vertex positions f : V!

R3, and target cone angles �⇤ : V ! R that satisfy Equa-
tion 11.

Output: A triangle mesh TC = (V, EC , FC ) with texture coordinates
z : V! R2.

1: `Aij  | fj � fi |, 8ij 2 EA .measure edge lengths
2: (TB , `B ) I��������D�������(TA, `A) .Euclidean �ips §3.4.1
3: u  M�������E�����(TB , `B ,�⇤)
4: (TC , `C ) S����C��������(u, TB , `B )
5: z  L�����(TC , `C ) .§4.5
6: return (TC , z)

Algorithm 4 M�������E�����(T, `,�⇤)

Input: A triangle mesh T = (V, E, F), edge lengths ` : E! R, and
target cone angles �⇤ : V! R that satisfy Equation 11. A
constant parameter � > 0 determines the stopping tolerance,
and parameters � 2 (0, 1/2), � 2 (0, 1) control line search
(for details, see Boyd and Vandenberghe [2004] Algorithms
9.2 and 9.5).

Output: Scale factors u : V! R that realize the given angle defects.
1: u  0 2 R |V | .initial scale factors
2: while true do .run Newton’s method
3: � G�������(u, T, `,�⇤) .§4.2.2
4: L H������(u, T, `) .§4.2.3
5: S����(L, v,��) .compute descent direction v
6: if vT�  2� then .check for convergence
7: break
8: �  1
9: E0  E�����(u, T, `) .§4.2
10: while E�����(u + �v, T, `) > E0 + ���Tv do .line search
11: �  ��

12: u  u + �v .take Newton step
13: return u

Algorithm 5 S����C��������(u, T, `)
Input: A triangulation T = (V, E, F), edge lengths ` : E ! R, and

conformal scale factors u : V! R.
Output: A conformally equivalent Delaunay triangulation (eT, ˜̀).
1: ˜̀i j  e

(ui+uj )/2, 8ij 2 E .scale edge lengths §3.2.2
2: (eT, ˜̀) I����D�������(T, ˜̀) .Ptolemy �ips §3.4.2
3: return (eT, ˜̀)

Algorithm 6 E�����(u, T, `)
Input: A triangulation T = (V, E, F), edge lengths ` : E ! R,

conformal scale factors u : V! R, and target angle defects
�⇤ : V! R.

Output: The conformal energy at u (Section 4.2.1).
1: (eT, ˜̀) S����C��������(u, T, `)
2: E  0 .will accumulate energy into E
3: for each ij 2 eE do �̃i j  2 log ˜̀i j .Penner coordinates §3.3.3
4: for each jk

i 2 eT do �̃
jk
i  A����( ˜̀i j , ˜̀jk , ˜̀ki ) .at all corners

5: for each i 2 V do E  E + (2� � �⇤i )ui
6: for each ij 2 eE do E  E � ��̃i j
7: for each ijk 2 eF do
8: E  E + �̃ jki �̃jk + �̃

ki
j �̃ki + �̃

i j
k �̃i j

9: E  E +C������(2�̃ jki +C������(2�̃kij ))+C������(2�̃ i jk )
10: return �

Algorithm 7 G�������(u, T, `,�⇤)
Input: A triangulation T = (V, E, F), edge lengths ` : E ! R,

conformal scale factors u : V! R, and target angle defects
�⇤ : V! R.
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Output: A vector � 2 R |V | giving the gradient of the conformal
energy E at u (Section 4.2.2).

1: (eT, ˜̀) S����C��������(u, T, `)
2: for each i 2 V do
3: e�i  2� .measure current angle defect
4: for each ijk 2 eF containing i do e�i  e�i�A����( ˜̀i j , ˜̀jk , ˜̀ki )
5: �i  �⇤i � e�i

6: return �

Algorithm 8 H������(u, T, `)
Input: A triangulation T = (V, E, F), edge lengths ` : E ! R, and

conformal scale factors u : V! R.
Output: A matrix L 2 R |V |⇥ |V | giving the Hessian of the conformal

energy E at u (Section 4.2.3).
1: (eT, ˜̀) S����C��������(u, T, `)
2: L 0 2 R |V |⇥ |V | .initialize empty sparse matrix
3: for each ij 2 E do
4: k, l  O�������V�������(ij, T)
5: �

i j
k  A����( ˜̀ki , ˜̀i j , ˜̀jk )

6: �
ji
l  A����( ˜̀l j , ˜̀ji , ˜̀il )

7: wi j  1
2 (cot�

i j
k + cot�

ji
l ) .cotangent weight

8: Lii , Lj j+ = wi j
9: Li j , Lji� = wi j

10: return �

Algorithm 9 I��������D�������(T, `)
Input: A triangulation T = (V, E, F) with edge lengths ` : E! R.
Output: An intrinsic Delaunay triangulation eT with edge lengths

˜̀ : eE! R that encode the same Euclidean polyhedron.
1: (eT, ˜̀) (T, `) .copy input
2: for each ij 2 eE do P���(Q, ij) .initialize queue Q
3: while !E����(Q) do
4: ij  P��(Q)
5: if !I�D�������(ij,eT, ˜̀) then
6: (eT, ˜̀) F���E��������(ij,eT, ˜̀)
7: k, l  O�������V�������(ij,eT)
8: P���(Q, jk)
9: P���(Q,ki)
10: P���(Q, il)
11: P���(Q, l j)
12: return (eT, ˜̀)
Algorithm 10 F���E��������(T, `, ij)
Input: A triangulation T = (V, E, F), edge lengths ` : E ! R, and

an edge ij 2 E.
Output: An updated triangulation (T, `) where ij has been �ipped,

and ` encodes the same Euclidean polyhedron.
1: k, l  O�������V�������(ij, T)
2: � lki  A����(`i j , `jk , `ki ) + A����(`il , `l j , `ji )
3: `kl  

q
`2ik + `

2
il � 2`ik `il cos�

lk
i .law of cosines

i

j

l

k

(1)

i

j

l

k
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j

l
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l
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l

k
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Fig. 35. Edges come in 6 types

4: E����T��������(ijk, jil)
5: I�����T��������(ilk, jkl)
6: return (T, `)

Algorithm 11 F���P������(T, `, ij)
Input: A triangulation T = (V, E, F), edge lengths ` : E ! R, and

an edge ij 2 E.
Output: An updated triangulation (T, `) where ij has been �ipped,

and ` encodes the same discrete conformal structure.
1: k, l  O�������V�������(ij, T)
2: `kl  (`ki `l j + `jk `l i )/`i j
3: E����T��������(ijk, jil)
4: I�����T��������(ilk, jkl)
5: return (T, `)

D NORMAL COORDINATE UPDATE RULE
To derive Equation 15 of Section 5.1.1, consider �rst the case that lk
is not an edge of T1. Then the edges of T1 intersect the interior of
the quadrilateral ikjl in segments of the following types (Figure 35):

(1) crossing corner l of ijl or crossing corner k of ijk
(2) crossing corners i of ijl and j of ijk , or crossing corners j of ijl

and i of ijk
(3) emanating in corner i or j of ijl or ijk
(4) the edge ij
(5) crossing both corners i of ijk and ijl or both corners j of ijk

and ijl
(6) emanating in corner l of ijl or emanating in corner k of ijk

Segments of types 1–4 are counted by
(1) ci jl + c

i j
k

(2) 1
2
��cilj � ckij �� + 1

2
��cl ji � c jki �� � 1

2e
ji
l �

1
2e

i j
k

(3) el ji + e
jk
i + e

il
j + e

ki
j

(4) �ni j
and each contributes 1 to njk , while segments of types 5–6 con-
tribute 0. To see the counting formulas for cases 2 and 4, note that
1
2
��cilj � ckij �� + 1

2
��cl ji � c jki �� counts #{type 2} + 1

2 #{type 6}, and that
ni j = 0 if and only if ij is also an edge of T1.
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Finally, consider the case that lk is an edge of T1. Then term 2
above equals �1 and terms 1, 3, and 4 are zero. So Equation 15 is
satis�ed with both sides equal to zero.

E NUMERICALLY-ROBUST HYPERBOLIC GEODESICS
The hyperbolic layout procedure of Appendix A.3 can sometimes
fail on meshes with near-degenerate triangles due to �oating point
issues. On many meshes, this can be ameliorated by tracing TC

over TB instead of tracing TB over TC (Appendix E.1). When this
is not su�cient, we fall back to an iterative straightening scheme
(Appendix E.2).

E.1 Tracing Over the Intermediate Triangulation
In many examples, the �nal triangulation TC has lower-quality
triangles than the intermediate triangulation TB . So although we
need to trace TB over TC to interpolate texture coordinates, the
algorithm performs better numerically if we trace TC over TB and
then transpose to obtain the edges of TB traced out over TC . How-
ever, normal coordinates accumulated during the uniformization
stage (Section 4) do not allow us to trace TC over TB directly. Our
solution is to perform topological tracing (Section 6.1.1) of TB over
TC , “transpose” these data to obtain topological edges of TC traced
over TB , then straighten those curves to geodesics along TB , and
then transpose once more to obtain the edges of TB traced out as
geodesics along TC .

E.2 Iterative Straightening
Consider the curve ab that we want to straighten to a hyperbolic
geodesic passing through two adjacent ideal triangles ijk and kjl .
Let x be the point where it intersects their common edge jk , and let
� and z be the other edge intersection points. We will discuss the
case where� = ab\ij and z = ab\lk shown in Figure 36. The other
cases can be treated similarly. In each iteration of our straightening
procedure, we update the barycentric coordinates of x such that the
curve is geodesic within these two triangles.
Though we never actually compute homogeneous coordinates

vectors qi ,qj ,qk ,ql in R3, suppose for the moment that we write
the homogeneous coordinates vectors of � and z as

q� = �� ((1 � ti j )qi + ti jqj ),
qz = �z ((1 � tlk )ql + tlkqk ).

(20)

(The scale factors �� and �z are necessary because we do not assume
the homogeneous coordinates to be normalized in any way.) Writing

qx = (1 � tjk )qj + tjkqk
we determine tjk using det(q� ,qz ,qx ) = 0 :

tjk =
det(q� ,qz ,qj )

det(q� ,qz ,qj ) � det(q� ,qz ,qk )
. (21)

We substitute the expressions from Equation 20 into Equation 21
to obtain terms involving determinants of various combinations of
qi ,qj ,qk ,ql . Using the equation

| det(qi qj qk )| = 4 `i j`jk `ik . (22)

(see Section F.1 for a derivation) and taking the orientations of the
triangles into account, we can express these determinants purely in

Fig. 36. In our iterative straightening procedure, we lay out two triangles at
a time, and connect our segment’s endpoints by a straight line.

terms of the known edge lengths `i j , `jl , `lk , `ki , `jk and the length
`il obtained via Ptolemy’s formula (Equation 8). This enables us
to calculate the barycentric coordinate tjk of x directly from the
known edge lengths, without ever actually laying out any triangles.
Once this iterative straightening has converged, we compute

some additional data. To get the barycentric coordinate s�z of the
intersection point along the segment from � to z, as well as the
factor �jk > 0 relating the two intersection points, we solve the
linear system

(1 � s�z )q� + s�zqz = �jk ((1 � tjk )qj + tjkqk ).
As before, since we don’t know the coordinates q we take inner
products with the homogeneous coordinate vectors qj and qk to
get an equivalent linear system purely in terms of the edge lengths
(using Equation 24 from the next section). In the event that this
system is singular, we take inner products with q� and qz as well
to get a full-rank system. This equation also provides us with the
intersection’s scale factor �jk . We obtain the log scale factor as
ujk := log(�jk ).

Finally, we still need the barycentric coordinate sab ,x for x rel-
ative to the whole geodesic ab—however, we do not yet know the
exact barycentric coordinates sab ,� and sab ,z for � and z. To get an
estimate, we therefore just take a weighted combination

sab ,x  (1 � s�z ) sab ,� + s�zsab ,z .
At the endpoints a and b of ab, we simply use barycentric coordi-
nates 0 and 1, resp..

F JUSTIFICATION OF HYPERBOLIC LAYOUT
FORMULAS

F.1 Euclidean Triangles in the Hyperboloid Model

lig
ht

 co
ne

hyperboloid
In the hyperboloid model of H2, three
points qi ,qj ,qk on di�erent rays in the
positive light cone L+ determine an
ideal hyperbolic triangle decorated with
horocycles at the vertices (Section 3.3.1,
Figure 13). If we connect qi ,qj ,qk by
straight lines in R3, we obtain a triangle
in the a�ne plane spanned by the three
points, whose sides are chords of the
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light cone (see inset). The restriction of the Lorentz inner product
h·, ·i2,1 to this plane is positive de�nite, whenever the Euclidean
slope is less than 45�. In this case, the a�ne plane is called space-
like because the Lorentz inner product provides a Euclidean metric,
turning the chord triangle in Lorentz space into a genuine Euclidean
triangle with side lengths

`i j =
1
2

q
hqi � qj ,qi � qj i2,1. (23)

(See the Remark below for an explanation of the factor 1
2 ). Since

qi ,qj are light-like (i.e., hq,qi2,1 = 0), we have

hqi � qj ,qi � qj i2,1 = �2hqi ,qj i2,1,
and therefore

hqi ,qj i2,1 = �2`2i j . (24)

The a�ne plane spanned by qi ,qj ,qk is spacelike if and only if
the chord lengths `i j , `jk , `ki obtained from Equation 23 satisfy
the triangle inequalities. This gives us a direct mapping between
any Euclidean triangle and its ideal hyperbolic counterpart: take
the Euclidean triangle, and �nd points qi on the light cone such
that kqi � qj k2,1 = 2`i j , yielding a copy of the Euclidean triangle
sitting in R2,1. Each point x in the Euclidean triangle (except the
vertices, which are light-like) can be normalized to obtain a point
x
0 = x/

p
�hx, xi2,1 on the unit hyperboloid, which we identify with

the hyperbolic plane (see the inset at the beginning of this section).
Equation 22 expresses the determinant of the three light-like

vectors qi ,qj ,qk in terms of the Euclidean edge lengths, at least up
to the sign. To derive this equation, note that

� 2 ©≠
´

0 `2i j `2ik
`2i j 0 `2jk
`2ik `jk 0

™Æ
¨
=
©≠
´
hqi ,qi i2,1 hqi ,qj i2,1 hqi ,qk i2,1
hqj ,qi i2,1 hqj ,qj i2,1 hqj ,qk i2,1
hqk ,qi i2,1 hqk ,qj i2,1 hqk ,qk i2,1

™Æ
¨

= (qi qj qk )T
⇣ 1 0 0
0 1 0
0 0 �1

⌘
(qi qj qk )

and take determinants.

Remark. In Equation 23measuring length in Lorentz space, we insert
the global scale factor 1

2 to be consistent with Equation 6 describing
the relation between truncated hyperbolic lengths � and Euclidean
lengths `. This relation was originally derived by Bobenko et al.
[2015] (and used in this form by Springborn et al. [2008]) via a
di�erent construction involving ideal tetrahedra in hyperbolic 3-
space. Both constructions provide the same correspondence between
Euclidean and decorated ideal triangles, up to scale. The natural
scale for Euclidean lengths in the construction of Bobenko et al.
[2015] happens to di�er from the natural scale in the light cone by
a factor of 2.

F.2 Vertex Scaling and Projective Interpolation
Now consider the points q̃i = e

uiqi ,
q̃j = e

ujqj , q̃k = e
ukqk on the same

rays in the light cone, describing the
same ideal triangle but decorated with
di�erent horocycles. By Equation 24,
their chordal distances ˜̀ are related to
the chordal distances ` by Equation 3.

Moreover, if the scaled lengths ˜̀ sat-
isfy the triangle inequalities, then the second triangle is also Eu-
clidean and the circumcircle preserving projective map between
them [Springborn et al. 2008, Section 3.4] is just central projection
mapping a point x to the point x̃ in the same ray from the origin
(see inset).

More explicitly, suppose we have a linear function on trianglefijk de�ned by values f̃i , f̃j , f̃k at the vertices. We want to pull this
function back to the lower triangle ijk by de�ning f (x) = f̃ (x̃).
Suppose

x = �iqi + � jqj + �kqk .

Since q̃i = e
uiqi , we can also write

x = �ie
�ui q̃i + � je�uj q̃j + �ke

�uk q̃k .

To scale x to lie in the triangle spanned by q̃i , q̃j , q̃k , we just have
to normalize its coe�cients to sum to 1:

x̃ =
�ie�ui q̃i + � je�uj q̃j + �ke�uk q̃k

�ie�ui + � je�uj + �ke�uk
.

Finally, we can evaluate our function f . Since f̃ is linear, we �nd
that

f (x) = f̃ (x̃) =
�ie�ui f̃i + � je�uj f̃j + �ke�uk f̃k

�ie�ui + � je�uj + �ke�uk
.

This is precisely the circumcircle-preserving projectivemap between
our two triangles. We can write it more compactly by introducing
homogeneous coordinates.

h(x) = �ie
�ui ( f̃i , 1) + � je�uj ( f̃j , 1) + �ke�uk ( f̃k , 1), (25)

and we obtain f (x) by dividing the �rst component of h(x) by
the second component. In the end, our interpolation amounts to
linearly interpolating the values e�ui ( f̃i , 1) and then performing
this homogeneous divide.

F.3 Edge Flips
The real power in the hyperboloid is that it allows us to interpo-
late between di�erent triangulations of the same vertex set using
exactly the same procedure. Consider for example a pair of trian-
gles which have been �ipped (by a Ptolemy �ip) and rescaled.
In the hyperboloid model, the Ptolemy
�ip really does correspond to an extrin-
sic �ip, since the extrinsic Lorentz dis-
tance corresponds to the hyperbolic dis-
tance between horocycles. So if we take
two triangles, perform a Ptolemy �ip,
and then rescale the edge lengths, we end up with two pairs of
triangles with one hanging above the other. We can map between
the two triangle pairs by rescaling, exactly as in the 1-triangle case.
The rescaling map is a piecewise-projective map on the common
re�nement of the two meshes. Since the map is piecewise-projective,
we can specify the whole map by computing how much it scales by
at each vertex, and at each projective intersection of edges. In this
case, we can �nd the intersection point and the map’s scale factor
at the intersection by applying Equation 19.
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F.4 Piecewise-Projective Interpolation
Now, suppose the triangulations di�er
by more than just an edge �ip. As we
observed above, the piecewise projec-
tive map depends only on scale factors
at vertices, and at the intersections be-
tween edges of the two triangulations.
We know the scale factors at vertices,
so in order to compute the piecewise-projective map, we need to
determine where the edges of the two triangulations intersect, and
what the appropriate scale factor is at each intersection. In our algo-
rithm, we need to trace edges of TB over TC . For each edge ab 2 EB ,
this amounts to laying out the strip of triangles from TC which ab

crosses in the light cone, drawing the edge from qa to qb above it,
and computing barycentric coordinates and scale factors for each
intersection. Since q̃a = e

uaqa , we simply place qa and qb by rescal-
ing the triangle strip’s endpoints by e�ua and e�ub respectively in
Appendix A.3. Once we have computed these scale factors, we do
projective interpolation using Equation 25 on each triangle of the
common re�nement. The �nal expression appears as Equation 16.

F.5 Discrete Uniformization: Hyperboloid Model POV
To understand mapping between the intrinsic Delaunay triangu-
lation (TB , `) and the discretely conformally equivalent intrinsic
Delauny triangulation (TC , ˜̀) that is obtained by vertex scaling with
logarithmic factors u and Ptolemy �ips, it is useful to picture this
process in the hyperboloid model as follows.
First, imagine laying out the triangulation TB in the light cone.

We will provide more detail in the following two sections, but the
idea is straightforward: Place the vertices qi , qj , qk of a �rst triangle
ijk on arbitrary rays in L+ so that the chordal distances are `i j , `jk ,
`ki . Then for a neighboring triangle, say jil , the position ql 2 L+
of the third vertex is determined by the side lengths `il , `jl . Note
that as you layout the triangles around one vertex, this will never
close up. Instead, if you keep laying out, each triangle of TB will
correspond to in�nitely many chordal triangles. The result is a
polyhedral surface P1 with vertices in the light cone, all of which
have in�nite degree. Yet, every ray from the origin contained in
the light cone will intersect this polyhedral surface exactly once.
Moreover, the ideal Delaunay condition on (TB , `B ) is precisely
the condition that this polyhedral surface is convex [Penner 2012,
Lemma 1.7, p. 128].
The next step, corresponding to the vertex scaling (Equation 3),

is to slide all the laid out vertices along their rays in the light cone
by applying the scale factors eu as in Appendix F.2. The resulting
polyhedral surface P2 will in general not be convex, nor will all its
triangles span spacelike planes.
The process of applying Ptolemy �ips to obtain the ideal Delau-

nay triangulation (TC , ˜̀) corresponds, in the hyperboloid model, to
applying extrinsic edge �ips to the polyhedral surface P2 to obtain
a convex surface P3. All of its triangles will then automatically be
in spacelike planes. Finally, the map from P1 to P3 is just central
projection from the origin.

F.6 Layout in the Light Cone I: Placing the First Triangle
We will now derive some practical equations for laying out a Eu-
clidean triangulation in the light cone. Note that in practice we only
ever lay out triangle strips of one triangulation that are crossed by
an edge of another triangulation.

To lay out the �rst triangle ijk we place the vertices at the points

qi = wi (1, 0, 1),
qj = w j (cos(2�/3), sin(2�/3), 1),
qk = wk (cos(4�/3), sin(4�/3), 1),

in L+, where the positive scalar factorswi ,wi ,wi are determined
by the edge lengths via Equation 24:

`2i j = � 1
2 hqi ,qj i2,1 = 3

4wiw j

`2jk = �
1
2 hqj ,qk i2,1 = 3

4w jwk

`2ki = �
1
2 hqk ,qi i2,1 = 3

4wkwi

The solution of this system of equations is

wi =
2 `i j`kip
3 `jk

, w j =
2 `jk `i jp
3 `ki

, wk =
2 `ki `jkp

3 `i j
.

F.7 Layout in the Light Cone II: Placing the Next Triangle
Supposewe have already determined the vertex positionsqi ,qj ,qk 2
L+ of the triangle ijk , and we want to determine the position ql of
third vertex in the adjacent triangle jil . Note that qi ,qj ,qk form a
basis of R3 so and we can write the unknown vertex position ql as
a linear combination. To obtain more symmetric expressions, we
will determine coe�cients ci , c j , ck , cl for which

ciqi + c jqj + ckqk + clql = 0. (26)

By taking the inner product of Equation 26 with each of the four
vertex positions q and using Equation 24, we get a system of linear
equations

266666664

0 `2i j `2ik `2il
`2i j 0 `2jk `2jl
`2ik `2jk 0 `2kl
`2il `2jl `2kl 0

377777775

26666664

ci
c j
ck
cl

37777775
=

26666664

0
0
0
0

37777775
,

where `i j , `jk , `ki , `il , `l j are the sides lengths of the triangles ijk
and jil , and `kl is determined by Ptolemy’s formula (Equation 8). A
solution of this system is given by

ci =
`jl `kl
`il
, c j = � `ik `kl

`jk
, ck = �

`jl `i j
`jk
, cl =

`ik `i j
`il
.

We can use these coe�cients in Equation 26 to get the next vertex
position ql .
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