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While discrete (metric) connections have become a staple of 𝑛-vector field
design and analysis on simplicial meshes, the notion of torsion of a discrete
connection has remained unstudied. This is all the more surprising as torsion
is a crucial component in the fundamental theorem of Riemannian geometry,
which introduces the existence and uniqueness of the Levi-Civita connection
induced by the metric. In this paper, we extend the existing geometry pro-
cessing toolbox by providing torsion control over discrete connections. Our
approach consists in first introducing a new discrete Levi-Civita connection
for a metric with locally-constant curvature to replace the hinge connection
of a triangle mesh whose curvature is concentrated at singularities; from this
reference connection, we define the discrete torsion of a connection to be the
discrete dual 1-form by which a connection deviates from our discrete Levi-
Civita connection. We discuss how the curvature and torsion of a discrete
connection can then be controlled and assigned in a manner consistent with
the continuous case. We also illustrate our approach through theoretical
analysis and practical examples arising in vector and frame design.
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1 Introduction
Connections on manifolds play a key role in the modern theory
of differential geometry. It is thus hardly surprising that discrete
connections are used throughout geometry processing from the
design of vector fields and stripe patterns on surfaces [Crane et al.
2010; Knöppel et al. 2015; Liu et al. 2016], to vectorization of 2D
sketches [Gut,an et al. 2023], and design tools for several forms of
fabrication [Montes Maestre et al. 2023; Mitra et al. 2023, 2024]. In
the smooth setting, connections on surfaces can be studied using
Cartan’s method of moving frames, where they are characterized by
two quantities: their scalar-valued curvature, and their vector-valued
torsion. However, existing work on connections focuses almost ex-
clusively on curvature, neglecting torsion entirely.
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Fig. 1. Torsion-controlled vector heat method. The connection Lapla-
cian used in the vector heat method of Sharp et al. [2019] can be formed for
any connection. In this example, we compute a logarithmic map—a sort of
global polar parameterization—using the connection Laplacian of an ordi-
nary torsion-free connection (left), and using a connection with prescribed
non-zero torsion equal to the gradient of a torsion potential (right), which
introduces a distinct twist into the radial lines of the parameterization.

This paper enriches the geometry processing toolbox by introduc-
ing a discretization of torsion on triangle meshes and demonstrating
its relevance to vector and frame field design applications.

2 Background and Related Work
Sections 2.1 and 2.2 review the relevant Riemannian geometry, and
Sections 2.3 and 2.4 contrast our approach with existing work.

2.1 Vector Fields and Moving Frames
Vector field design is ubiquitous in geometry processing [de Goes
et al. 2016; Vaxman et al. 2017]. The method of moving frames pro-
vides a convenient way of calculating with vector fields on smooth
surfaces, and arises naturally in applications such as parameteriza-
tion [Coiffier and Corman 2023], shape deformation [Corman 2024],
and hexahedral meshing [Corman and Crane 2019; Fang et al. 2023].

basis
vectors

basis vector
fields

Just as one can express a
vector 𝑣 in the plane as a
linear combination of basis
vectors 𝑒1 and 𝑒2, one can ex-
press a vector field 𝑉 (𝑥) on
a surface patch as a linear
combination of basis vector fields 𝐸1 (𝑥) and 𝐸2 (𝑥), i.e.

𝑉 (𝑥) = 𝑐1 (𝑥)𝐸1 (𝑥) + 𝑐2 (𝑥)𝐸2 (𝑥), (1)

where 𝑐1 (𝑥) and 𝑐2 (𝑥) are scalar-valued coefficient functions. The
basis fields 𝐸1 and 𝐸2 are often thought of as the columns of a
single spatially-varying matrix 𝐸 (𝑥), referred to as a moving frame.
For simplicity, we will always assume that 𝐸 is an orthonormal
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frame. Note that it may be impossible to find a globally-defined
moving frame—or even a single nonvanishing vector field (see the
Poincaré–Hopf theorem). Hence, basis fields are usually defined
locally: one can perform any desired calculation using different
basis fields on each small patch, stitching the results together to
obtain global results on the whole surface.
When working with moving frames, it is convenient to use the

language of differential forms. Crane et al. [2013] provide a detailed
introduction focused on the discrete theory, while Dray [2014] pro-
vides an introduction to the continuous theory. We make frequent
use of the exterior derivative 𝑑 , which generalizes curl and diver-
gence to differential forms; the wedge product ∧, which generalizes
the cross product; the sharp operator ♯, which uses the metric of a
surface to map a differential 1-forms to corresponding vectors; and
the Hodge star operator ★𝑘 which on surfaces turns 𝑘-dimensional
differential forms into (2 − 𝑘)−dimensional forms.

2.2 Connections and Parallel Transport
While the directional derivative 𝐷𝑋 𝑓 of a scalar function 𝑓 simply
measures the rate of change of 𝑓 as one moves along a tangential
direction 𝑋 , directional derivatives of vector fields on surfaces are
more involved: vectors at different points on the surface belong to
different tangent spaces, and a priori cannot be compared directly.
A connection is a choice of operator ∇𝑋𝑉 acting as a directional
derivative of a tangent vector field𝑉 in direction𝑋 ; unlike the case of
scalar functions, there are infinitely many meaningful connections.

Connections in a moving frame. If we pick a moving frame 𝐸 (𝑥)
to express our vector field𝑉 (𝑥) using its coefficient functions 𝑐1 (𝑥)
and 𝑐2 (𝑥), then any connection can be written in the form

∇𝑋

(
𝑐1 (𝑥)
𝑐2 (𝑥)

)
=

(
𝐷𝑋 𝑐

1 (𝑥)
𝐷𝑋 𝑐

2 (𝑥)

)
+

(
𝜔1

1 (𝑋 ) 𝜔1
2 (𝑋 )

𝜔2
1 (𝑋 ) 𝜔2

2 (𝑋 )

) (
𝑐1 (𝑥)
𝑐2 (𝑥)

)
, (2)

where the 𝜔 𝑗
𝑖
terms are 1-forms, i.e., linear functions of a tangent

vector 𝑋 at point 𝑥 . Different choices of 1-forms 𝜔 𝑗
𝑖
yield different

connections. Equation 2 is often written more concisely as

∇ = 𝑑 + 𝜔, (3)

where 𝑑 is the componentwise exterior derivative, and 𝜔 is under-
stood as a matrix-valued 1-form, known as the connection 1-form.

x

y

V

γ

A connection allows us to parallel transport vectors
along curves: if we have a vector𝑉 at point 𝑥 , and a
curve 𝛾 connecting 𝑥 to another point 𝑦, we obtain
a transported vector at 𝑦 by taking the unique ex-
tension of 𝑉 along 𝛾 whose directional derivative
in the direction of 𝛾 stays identically zero.
The 1-form 𝜔 which we use to write our connection depends

crucially on the choice of frame 𝐸: if we pick a new frame, we have
to use a different connection 1-form to describe the exact same
connection. These 𝜔 values are only meaningful locally, and do not
fit together into a globally-defined matrix-valued 1-form on the
whole surface. However, the difference between two connections
is always a globally-defined 1-form. Indeed, connections form an
affine space: starting from a connection ∇, we can write any other
connection as the sum of ∇ and a globally-defined 1-form.

Metric-compatible connections. A connection ∇ is said to bemetric
if parallel transport preserves the lengths of vectors. Since our frame
𝐸 (𝑥) is orthonormal, ∇ is a metric connection if and only if the
connection 1-form 𝜔 is skew-symmetric, i.e., of the form

𝜔 (𝑋 ) =
(

0 −𝛼 (𝑋 )
𝛼 (𝑋 ) 0

)
, (4)

for some scalar-valued 1-form 𝛼 . We restrict attention to metric
connections, and often use the identification between matrix-valued
connection 1-forms 𝜔 and the equivalent scalar-valued 1-forms 𝛼
such that 𝜔 = J𝛼 , where J denotes the matrix

( 0 −1
1 0

)
.

Curvature and torsion. As observed by Cartan, one can picture
parallel transport as a description of the motion of a surface as it
locally rolls around on the tangent plane of some point [Cartan 1923;
Sharpe 1997]. Curvature and torsion capture two key features of this
rolling behavior: curvature measures how much the surface rotates
when rolled along an infinitesimal loop, while torsion measures how
far it translates. Both curvature and torsion have simple expressions
in the language of differential forms. If our connection is encoded
by a connection 1-form 𝜔 in moving frame 𝐸, then the curvature of
our connection is the matrix-valued 2-form Ω∇ = 𝑑𝜔 + 𝜔 ∧ 𝜔 . For
metric connections on surfaces, 𝜔 ∧ 𝜔 = 0, so the curvature is just

Ω∇ = 𝑑𝜔 = J𝑑𝛼 (5)

For any pair of tangent vectors 𝑋,𝑌 at some point 𝑝 , the matrix
Ω∇ (𝑋,𝑌 ) describes the rotation applied to the tangent plane at 𝑝
when the surface is rolled along the infinitesimal parallelogram
spanned by 𝑋 and 𝑌 . The component 𝑑𝛼 measures the rotation
angle, and acts as a scalar measurement of curvature, generalizing
the Gaussian curvature of a surface to arbitrary metric connections.
The torsion of our connection is the vector-valued 2-form Θ∇, with

Θ∇ = 𝑑𝜃 + 𝜔 ∧ 𝜃 . (6)

Here 𝜃 is the dual frame associated to our moving frame 𝐸, which
takes in a tangent vector and returns the components of that tan-
gent vector in the basis 𝐸. Unlike the connection 1-form 𝜔 , which is
only defined relative to a choice of frame 𝐸 (𝑥) in a local neighbor-
hood, the curvature and torsion yield well-defined global 2-forms,
meaningful in any coordinates on the surface.

Compatibility conditions between curvature and torsion. Starting
from a given connection ∇ and for any globally-defined 1-form 𝛼 ,
we can define a new connection as ∇̃=∇ + J𝛼 . Note that

J𝛼 ∧ 𝜃 = 𝛼 ∧ J
(
𝐸1

𝐸2

)
= 𝛼 ∧

(
−𝐸2

𝐸1

)
= −

(
𝛼1
𝛼2

)
𝐸1 ∧ 𝐸2, (7)

where 𝛼 = 𝛼1𝐸1 + 𝛼2𝐸2 is expressed in the 1-forms (𝐸1, 𝐸2) dual to
𝐸. Thus, the changes in curvature and torsion between the new and
the old connections are given by

Ω∇̃ − Ω∇ = J𝑑𝛼, and Θ∇̃ − Θ∇ = −𝛼♯ 𝑑𝐴, (8)

which implies that these changes are linked: the change in curvature
is the curl of the change in torsion.
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Fig. 2. Metric-compatible connections. Even in R2 equipped with the
standard metric and standard basis, parallel transport of vectors by a metric
connection may look very different from a simple translation. Here we
consider four connection 1-forms 𝛼 , and plot parallel vector fields for each
connection (top row), as well as the curvature (bottom row, scalar density) and
torsion (bottom row, vector field) of each connection. All four connections
are compatible with the standard metric—as their parallel fields are unit
vector fields—but the rotations and singularities present in their parallel-
transported vector fields can become arbitrarily complicated.

The Levi-Civita connection. For any metric on a surface, there
is a unique metric connection with zero torsion. This connection,
called the Levi-Civita connection ∇LC = 𝑑 + J𝛼LC encodes the geom-
etry of the surface in important ways: for instance, the curvature
of the Levi-Civita connection gives the surface’s Gaussian curva-
ture 𝜅 = −𝑑𝛼LC. And once you know the Levi-Civita connection,
the calculation of curvature and torsion for all other connections
also simplifies: Equation 8 shows that the curvature tensor of a
connection ∇̃ = ∇LC+J𝛼 is J(𝑑𝛼 − 𝜅𝑑𝐴), and the torsion Θ∇̃ is

Θ∇̃ = −𝛼♯ 𝑑𝐴. (9)

This notion of torsion as a deviation from the Levi-Civita connection
will be leveraged in our work.

It is important to emphasize that the Levi-Civita connection is just
one of many connections compatible with a given surface metric.
While a metric connection preserves the lengths of vectors, it may
not encode the surface geometry like the Levi-Civita connection
does. For instance, the curvature of a metric connection may be
completely different from the Gaussian curvature defined by the
metric (Figure 2). The only relationship between them is that on
closed surfaces, the connection curvature must obey the Gauss-
Bonnet theorem: just like the ordinary Gaussian curvature, it must
sum to 2𝜋 times the surface’s Euler characteristic.

2.3 Connections on Discrete Surfaces
Most existing work using connections on triangle meshes follows
the basic strategy of Crane et al. [2010] (or its dual variant), where
one picks an arbitrary basis to encode tangent vectors in each face
and then encodes the connection using an angle-valued dual 1-form
giving the angle by which a vector must be rotated when parallel
transporting it from one face to an adjacent one. These tangent bases
on each face act as a globally-defined moving frame, allowing the
connection to be represented as a discrete globally-defined 1-form,

without the need to use locally-defined frames on surface patches.
The curvature of a discrete connection at a primal mesh vertex is
then obtained by summing up the connection angles on the dual
loop around that vertex. This curvature depends linearly on the
connection 1-form, so is easy to find connections with any desired
set of curvatures—such as trivial connections with only a few non-
zero curvatures. However, while this strategy suffices to discretize
curvature, no discrete notion of torsion was ever proposed.

η

A canonical connection on triangle meshes,
that was leveraged by Crane et al. [2010] and
which we will call the hinge connection 𝜂, is
found by unfolding the hinge between two
faces and measuring the angle 𝜂𝑖 𝑗 between
the chosen frames on these two faces (see in-
set, where the rotation angle 𝜂𝑖 𝑗 aligns frame
𝐸𝑖 𝑗𝑘 with frame 𝐸𝑖 𝑗𝑙 ). Crane et al. refer to this
connection as “the discrete Levi-Civita connection”, since its par-
allel transport is locally a translation in the isometric hinge map
and its curvature is the usual discrete Gaussian curvature. Indeed,
the hinge connection is exactly the Levi-Civita connection of the
mesh, viewed as a polyhedral surface with piecewise-flat metric.
Our approach also singles out this hinge map as a convenient “ref-
erence” connection from which we can encode other connections
through dual 1-forms, but we also introduce a new discrete Levi-
Civita connection which offers lower torsion (seen as the deviation
from the Levi-Civita connection of an underlying smooth surface)
by spreading vertex curvatures over dual faces. This spreading of
curvature is reminiscent of the primal as-Levi-Civita-as-possible
connection of Liu et al. [2016], which spreads curvature over primal
faces, but Liu et al. use a more complex parameterization of vector
fields, considering tangent vectors which may lie on mesh vertices,
edges, or faces. Finally, we note that Braune et al. [2024] recently
proposed a theory of discrete exterior calculus for vector-valued
forms, leading to a definition of torsion for meshes via Equation 6.
Unfortunately, their constructions are highly nonlinear, making
it prohibitively difficult to solve for connections with prescribed
torsions, or even for torsion-free connections.

2.4 Overview of Our Approach
In the remainder of this paper, we present a practical approach to
torsion processing on surface meshes. First, we introduce a new
discrete Levi-Civita connection which views a mesh not as a poly-
hedral surface with curvature concentrated at singularities, but as
an approximation to a smooth surface with locally-constant cur-
vature. We then describe how the discrete notion of torsion of a
connection can be defined to mirror the continuous definition from
Equation 9, i.e., we consider the discrete torsion of a connection as
the discrete dual 1-form by which a connection deviates from the dis-
crete Levi-Civita connection. This choice makes little difference in the
continuous world, where the spaces of vector-valued 2-forms, vector
fields, and 1-forms are all isomorphic. However, in our discrete set-
ting, this discretization offers a practical and robust computational
framework for torsion manipulation: we can trivially control the
torsion of a connection while keeping its curvatures, and vice-versa
as shown on several geometry processing applications in Section 4.
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3 Torsion on Discrete Surfaces
In this section, we first outline our notation in Section 3.1, and
introduce a new discrete Levi-Civita connection which distributes
curvature smoothly over dual faces in Section 3.2. From this low-
torsion “reference” connection, we introduce a discrete notion of
torsion modeled after Equation 9, i.e., we define the torsion of a
connection as the discrete dual 1-form by which it deviates from the
discrete Levi-Civita connection. In Section 3.3, we review the various
ways to prescribe torsion, with or without preserving curvatures.

3.1 Notation and Conventions
Surfacemesh and quantities. Wework on amanifold trianglemesh

𝑀 = (V, E, F ) with vertices 𝑖 ∈ V , edges 𝑖𝑗 ∈ E,
and faces 𝑖𝑗𝑘 ∈ F . We use ⇀𝑖𝑗 to denote an oriented
halfedge from 𝑖 to 𝑗 . A value 𝑢𝑖 denotes a quantity
𝑢 at vertex 𝑖 , and similarly for edges and faces (see
inset), while a value 𝑢 𝑗𝑘

𝑖
denotes a quantity at the

corner of face 𝑖𝑗𝑘 incident on vertex 𝑖 , and a value
𝑢⇀
𝑖𝑗 denotes a quantity at halfedge ⇀

𝑖𝑗 . For instance, the position
of vertex 𝑖 is 𝑝𝑖 ∈ R3, the length of edge 𝑖𝑗 is ℓ𝑖𝑗 ∈ R, the area
of face 𝑖𝑗𝑘 is 𝐴𝑖𝑗𝑘 ∈ 𝑅, and the angle at corner 𝑖 of face 𝑖𝑗𝑘 is
𝜑
𝑗𝑘
𝑖

∈ [0, 𝜋). We use standard discrete exterior calculus operators
such as the exterior derivatives 𝑑0 ∈ RE×V and 𝑑1 ∈ RF×E and
Hodge star ★1 ∈ RE×E—see Crane et al. [2013] for more details.

Frame fields. A discrete frame field consists of a choice of frame
per face of our mesh. These frames can be written explicitly as matri-
ces 𝐸𝑖𝑗𝑘 ∈ R3×2 associated to each face 𝑖𝑗𝑘 , where the two columns
of 𝐸𝑖𝑗𝑘 are orthonormal vectors in R3 tangent to face 𝑖𝑗𝑘 . One can
also store frames intrinsically as 2 × 2 matrices, interpreting the
columns as tangent vectors in a fixed basis on face 𝑖𝑗𝑘 . As mentioned
in Section 2.2, we use J to denote 90◦ rotation matrix

( 0 −1
1 0

)
.

Dual mesh and orientations. We also consider
the dual of𝑀 , which has a face ∗𝑖 correspond-
ing to each vertex of 𝑀 , and edge ∗𝑖𝑗 corre-
sponding to each edge of𝑀 , and a vertex ∗𝑖𝑗𝑘
corresponding to each face of𝑀 . Our algorithm
works with any choice of dual (e.g. circumcen-
tric or barycentric), but we find that circumcentric duals can perform
poorly on low-quality meshes (Section 4.4). As on the primal mesh,
we denote value 𝑢 on dual edge ∗𝑖𝑗 as 𝑢∗𝑖𝑗 , etc. We also use ∗⇀𝑖𝑗 to
denote the oriented halfedge running along dual edge ∗𝑖𝑗 , picking
the orientation that places ∗⇀𝑖𝑗 counterclockwise of ⇀𝑖𝑗 .

Discrete connections. A discrete metric con-
nection provides a rotation angle 𝛼∗⇀𝑖𝑗 on each
halfedge describing how the coordinates of a
vector 𝑣𝑖𝑙 𝑗 written in the frame of the right-
hand face should be transformed to obtain a
parallel-transported vector 𝑣𝑖𝑗𝑘 in the frame of the left-hand face
(see inset). As in the smooth setting, the angles 𝛼 depend on the
choice of frames, but once we write any connection 𝛼0 in these
frames, every other connection can be expressed as the sum of 𝛼0

with a discrete dual 1-form. We follow Crane et al. [2010] and write
our connections as offsets from the hinge connection 𝜂, but one
could equally well pick any other connection to start from.

3.2 A New Discrete Levi-Civita Connection
As mentioned in Section 2.3, the hinge map is the exact Levi-Civita
connection of a triangle mesh, viewed as a polyhedral surface with

constant
curvature

approximation

constant
curvature

approximation
smooth
surface
smooth
surface

conical
approximation

conical
approximation

curvature concentrated at its
vertices (see inset). However,
this singular geometry differs in
many ways from the geometry of the smooth surface which the
mesh is supposed to approximate. We instead introduce a new con-
nection𝜔LC=J𝛼LC derived by spreading the curvature to be constant
on each 1-ring instead. We find that this constant-curvature local
approximation of the surface yields a connection with consistently
lower error than the hinge map compared to the continuous Levi-
Civita connection (Figure 5) without much added complexity. We
propose a new connection written in closed form as an offset from
the hinge map 𝜂𝑖𝑗 (Section 2.3) through the following expression:

𝛼LC
𝑖𝑗 =𝜂𝑖𝑗 +

1
♢𝑖𝑗

(
𝐾𝑖𝐴∗𝑖𝑗

(
𝐴∗𝑖𝑗
𝐴𝑖

−
𝜑∗𝑖𝑗
Φ𝑖

)
−𝐾𝑗𝐴∗𝑗𝑖

(
𝐴∗𝑗𝑖
𝐴 𝑗

−
𝜑∗𝑗𝑖
Φ𝑗

))
, (10)

where 𝐴∗𝑖𝑗 is the area of the triangle formed by
dual edge ∗𝑖𝑗 and vertex 𝑖 , 𝜑∗𝑖𝑗 is the corner angle
of this triangle at vertex 𝑖 , ♢𝑖𝑗 =𝐴∗𝑖𝑗 +𝐴∗𝑗𝑖 is the
area of the edge diamond, 𝐴𝑖 is the area of the
dual cell ∗𝑖 , Φ𝑖 is the angle sum at vertex 𝑖 , and
𝐾𝑖 is the angle defect 2𝜋 − Φ𝑖 , i.e. the integrated
discrete Gaussian curvature. Note that in the case of a local region of
the triangulation with only equilateral triangles, the ratios 𝐴∗𝑖 𝑗/𝐴𝑖
and 𝜑∗𝑖𝑗/Φ𝑖 are all precisely 1

6 , and this connection reduces back to
the hinge map. But in irregular regions, the two will generally differ.
We provide the derivation of this expression in Appendix A, where
we construct local constant-curvature connections in each vertex
one-ring and stitch them together to define our discrete connection
consistently over the whole mesh. The basic idea is that each vertex 𝑖
has a total curvature𝐾𝑖 which must be distributed to its neighboring
dual edges ∗𝑖𝑗 . One can show that in our flattened one-ring parame-
terization, the hinge map distributes curvature proportional to the
normalized tip angles 𝜑∗𝑖𝑗/Φ𝑖 , whereas our connection instead dis-
tributes curvature proportional to the incident areas 𝐴∗𝑖𝑗/𝐴𝑖 (and
thus, the difference between the two connections in Equation 10 fea-
tures both terms). The distinction is reminiscent of the calculation
of vertex normals, where one may choose to average the incident
face normals using area weights or angle weights.

3.3 Discrete Torsion of a Connection
Once we have a discrete Levi-Civita 1-form 𝜔LC = J𝛼LC, we can
understand torsion in the discrete realm via Equation 9: in the
continuous case, the torsion of a connection measures its deviation
from the Levi-Civita connection. We thus define the discrete torsion
of a discrete connection 𝜔 = J𝛼 as the dual 1-form

𝜏 ≔ 𝛼 − 𝛼LC . (11)

This definition exactly parallels the continuous definition and pro-
vides a simple and straightforward way not only to define torsion,
but also to offer torsion processing on connections through Hodge
decomposition [Crane et al. 2013] of this dual 1-form by controlling
its curl, divergence, and harmonic components as we described next.
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minimal torsion
vector field

prescribed torsion
vector fields

prescribed torsion
cross field

minimal torsion
cross field

torsion
potential

torsion
potential

torsion
potential

Fig. 3. Torsion-controlled trivial connections. Here we explore the impact of torsion on vector field design: a parallel vector field for a minimal-torsion
trivial connection with prescribed singularities is shown on the left, while parallel fields for trivial connections with additional gradient components in their
torsion are shown in the center, along with the prescribed scalar potentials. A compact potential changes the field locally (center left), while a globally-supported
potential causes larger-scale changes (center right). Torsion can also be incorporated into the design of 𝑛-vector fields such as cross fields (right).

Curl-constrained assignment of torsion. Since the curl of any change
of torsion corresponds to a change in curvature (Equation 8), we
can modify a connection 𝜔 = J𝛼 while keeping its curvature fixed
by solving for a new connection whose torsion has the same curl.
Explicitly, we maintain the connection’s holonomy around collapsi-
ble dual cycles if and only if we add to 𝛼 a harmonic dual 1-form, a
dual gradient field 𝑑𝑇1 𝑓 (where 𝑓 is a dual 0-form, i.e., a set of values
on the mesh faces) — or both. Note that adding a harmonic form
will affect the holonomy of each homology generator of the surface;
so the higher the genus of a surface, the more ways the torsion can
be edited, which can potentially be useful in applications such as
quadrangulation, e.g., with holonomy of multiples of 𝜋/2.

Divergence-constrained assignment of torsion. Conversely, given a
discrete connection 𝜔 =J𝛼 , one can preserve the divergence of its
torsion by adding ★1𝑑0𝑝 for a scalar potential 𝑝 defined on vertices.
As the additional connection is the 90◦−rotated gradient of 𝑝 , it is
divergence-free, and will not alter the above-mentioned gradient
component of torsion 𝑑𝑇1 𝑓 . In other words, such a perturbation is
the minimal change needed to modify the connection’s curvature.
We show examples of torsion editing in Section 4 to emphasize

how torsion affects the notion of parallel transport in various ge-
ometry processing applications.

3.4 Trivial Connections
Crane et al. [2010] proposed to design tangent 𝑛-vector fields over a
given mesh by prescribing their singularities and associated indices.
They solve for a metric connection — dubbed a trivial connection —
with zero holonomy around all mesh vertices and around the gener-
ators if the genus is non-trivial, except on each of the singularities
where the holonomy is set based on the singularity index. These
constraints amount to a set of linear equations fixing the curvature
around each vertex and the holonomy about each homology gen-
erators. Since these linear constraints are less numerous than the
number of dual edges, the authors proposed taking the solution with
the minimal 𝐿2 norm, reasoning that this choice ensures that the
connection is as close to the original hinge connection, and thus per-
turbs the notion of parallel transport the least. The final vector field

with prescribed singularities is then constructed from an arbitrary
unit vector on a face that is parallel-transported throughout the
mesh via this new connection. Since the connection is compatible
with the metric, this construction generates a unit vector field.

Our discrete theory of torsion introduces a new interpretation of
this optimization problem: the 𝐿2 norm that Crane et al. minimize is
akin to our Equation 11, except that it measures the distance to the
hinge map rather than the distance to our new discrete Levi-Civita
connection. Moreover, we obtain a new geometric interpretation of
the space of trivial connections with prescribed singularities—these
are precisely the connections whose torsion 1-forms have a fixed
curl. Inside this space, we can move beyond the idea of minimizing
torsion to explore the effects of prescribing different torsions. As
discussed in Section 3.3, we can easily ensure that our new torsion
obeys the curl constraints as long as we only modify it by adding
the gradient of a scalar potential. As Figure 3 demonstrates, this
alteration of the trivial connection may have a substantial impact.

4 Evaluation and Results
Now we explore the effect of torsion prescription in scenarios like 𝑛-
vector field design (Section 4.1), connection Laplacians (Section 4.2),
before moving on to discuss convergence to ground-truth analytic
connections in several scenarios (Section 4.3), and discussing the
choice of dual mesh (Section 4.4).

4.1 𝑁−Vector Field Design
As observed by Crane et al. [2010], one can use a connection to
design tangent vector fields on a surface: if we have a connection,
we can obtain a vector field by picking one vector at an arbitrary
point, and parallel transporting that vector to all other points of the
surface. The resulting vector field will be continuous if and only if
the connection is trivial—meaning that its curvature at every vertex
is a multiple of 2𝜋 , as its holonomy around every loop.

As discussed in Section 3.4, imposing these curvature constraints
fixes the curl and harmonic components of the torsion, leaving
exactly the torsion’s gradient component free to prescribe. In Fig-
ure 3 we show several vector fields generated from different trivial
connections all sharing the same curvature constraints. In general,

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



6 • Braune, Gillespie, Tong, and Desbrun

optimized via Levi-Civita connection Laplacian

optimized via connection Laplacian with torsion

torsion
potential

Fig. 4. Optimal vector fields for different connections. Just as the ordi-
nary Laplacian measures the smoothness of scalar functions, the connection
Laplacian defines a notion of smoothness for vector fields. Computing an
optimal vector field in the sense of Knöppel et al. [2013] using the discrete
Levi-Civita connection to build the connection Laplacian yields a field whose
streamlines are as straight as possible in 3D space (top), whereas using a
connection with a nontrivial torsion (here, the gradient of a potential) intro-
duces twists into the streamlines (bottom).

modifying the torsion by the differential 𝑑𝑇1 𝑓 of a potential function
𝑓 will introduce a twist into the parallel vector fields, with more
twist in regions where the magnitude of 𝑓 is greater.
The case of 𝑛-vector field design is no different: setting singu-

larities with indices being multiple of 2𝜋/𝑛 will generate tangent
direction fields that are smooth up to local rotations by multiples of
2𝜋/𝑛, such as cross fields for instance for 𝑛=4 (Figure 3, right).

4.2 Connection Laplacians
A connection on a surface can also be used to define a connection
Laplacian, which measures the smoothness of vector fields just as
the ordinary Laplacian measures the smoothness of scalar func-
tions. This connection Laplacian thus plays an important role in
algorithms throughout geometry processing [Knöppel et al. 2013;
Liu et al. 2016; Sharp et al. 2019], and our connections can be di-
rectly used to construct more general dual connection Laplacians
for face-based vector fields. In the primal setting, it is also easy to
add a primal 1-form to any choice of connection to obtain a primal
connection Laplacian with torsion. Figure 1 illustrates the impact
of torsion on the vector heat method of Sharp et al. [2019], where
the (primal) connection Laplacian is used to solve a discrete vector
diffusion problem, approximating parallel transport of vectors along
shortest paths. As pointed out by Sharp et al. [2019, §6.1.3] using
a connection Laplacian for a new connection then approximates
parallel transport using your new connection. Sharp et al. show that
one can apply vector diffusion to a pair of vector fields to compute
a logarithmic map, approximating the distance and direction from
a single source vertex to all other vertices. By modifying one of
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Fig. 5. Convergence test. Here we plot the 𝐿2 errors of the hinge map vs.
our discrete Levi-Civita connection compared to the smooth Levi-Civita
connection on several hundred randomly generated quadratic surfaces. The
plotted lines show the average error across all experiments, while shaded en-
velopes show the maximum and minimum errors. Both discrete connections
converge at the same linear rate, but our discrete Levi-Civita connection
offers lower error in every case. Two sample surfaces are shown on the right

the diffusion equations to use a connection with torsion, we can
effectively “twist” the polar parameterization.

As another example, Knöppel et al. [2013] proposed an algorithm
to compute smooth direction fields as eigenfunctions of a connection
Laplacian. Using a connection Laplacian with torsion encourages
a similar twisting behavior in direction fields, creating interesting
branching patterns if the direction fields are visualized using the
stripe pattern algorithm of Knöppel et al. [2015], see Figure 4.

4.3 Convergence
In this section, we measure the convergence of our discrete connec-
tions to analytic solutions under mesh refinement.

Convergence of our discrete Levi-Civita connection. In Figure 5, we
plot the 𝐿2 errors of the hinge map and our discrete Levi-Civita
connection compared to the true Levi-Civita connection on smooth
surfaces of the form 𝑧 = 𝜆1𝑥2 + 𝜆2𝑦2. These examples are universal,
in the sense that locally, any smooth surface can be approximated
up to second order by a quadratic surface 𝑧 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2,
and moreover any such quadratic form can be diagonalized by a
simple rotation of the 𝑥𝑦-plane, reducing to the simple quadratic
surfaces which we consider. We generated 500 random quadratic
surfaces with values of 𝜆1 and 𝜆2 chosen uniformly at random in the
range of [−2.5, 2.5]. As expected, both discrete connections converge
linearly under refinement, but our discrete Levi-Civita connection
has consistently lower error than the hinge map — around 30%
lower in this particular example. To ensure that we compare the
accuracy of the two connections over the whole surface, rather
than merely along dual edges, we measure the error in each vertex
one-ring by fitting a linear 1-form to the discrete connection values
on the adjacent dual edges, and compute the 𝐿2 distance to a 2nd-
order-accurate approximation to the smooth Levi-Civita connection
within this region—we provide a derivation of the reference solution
in Section 2 of the supplemental material.
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Convergence of trivial connections. Our identification of torsion
with deviation from the Levi-Civita connection allows us to derive
closed form expressions for trivial connections with prescribed sin-
gularities on smooth surfaces. In Appendix C we derive an analytic
expression for minimal-torsion trivial connections on the sphere,
and in Figure 6, we plot the 𝐿∞ error of trivial connections on the
sphere computed starting from our discrete Levi-Civita connection,
and from the hinge map, compared to an analytic reference solu-
tion with minimal torsion and one with nonzero prescribed torsion.
Because the ground truth trivial connection blows up near the sin-
gularities, we measure the error on a small surface patch away from
the singularities. Note that the prescribed torsion arising from the
potential is captured almost perfectly by the discretization, so both
trivial connections have near-identical errors.
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Fig. 6. Convergence to trivial connections. Here we plot the 𝐿∞ error
of a discrete trivial connections compared to an analytic reference solution
with minimal torsion (left) and with prescribed torsion (right). Since the
solutions blow up around singularities, we measure the error on a patch of
the sphere away from the singularities.

4.4 Sensitivity to Dual Mesh
We finally point out that the choice of dual mesh can have an impact
on the robustness of our discrete Levi-Civita connection. The use of
the circumcentric dual simplifies many expressions (e.g., the half-
diamond areas 𝐴∗𝑖𝑗 and 𝐴∗𝑗𝑖 in Equation 10 become equal, and
the angle 𝜑∗𝑖𝑗 subtended by a dual edge can be written explicitly

αLC-parallel transport 
(barycentric dual)

αLC-parallel transport 
(barycentric dual)

αLC-parallel transport 
(circumcentric dual)

αLC-parallel transport 
(circumcentric dual)

in terms of the corner angles opposite edge 𝑖𝑗
as 𝜋 − 𝜑𝑖𝑗

𝑘
− 𝜑 𝑗𝑖𝑚 ). However, using the circumcen-

tric dual may lead to flipped dual edges (even
on otherwise high-quality meshes), which may
lead to large numerical errors. In practice, we
find that implementing our method using the
barycentric dual mesh leads to significantly less
sensitivity to triangle quality without requiring
a large increase in implementation complexity or
degrading solution quality on well-conditioned
meshes. Other choices, such as the hybrid ap-
proach of Meyer et al. [2003], may be adopted
instead.

5 Future Work
Our work opens up a number of questions and interesting research
directions which we briefly mention next.

angle defect
(pointwise)

curvature of αLC

(pointwise)
curvature of αLC

(pointwise)

Curvature of 𝛼LC. In general, the
curvature of our discrete Levi-Civita
connection 𝛼LC is not exactly equal
to the curvature of the hinge map,
i.e., the angle defect 𝐾𝑖 . The curva-
ture of 𝛼LC at a vertex 𝑖 is given by
𝐾𝑖 plus some corrections terms in-
volving the angle defects 𝐾𝑗 of the neighboring vertices. On the
circumcentric dual, one can show that the curvature of 𝛼LC at 𝑖
is equal to 𝐾𝑖 + 1

2
∑
𝑖𝑗≻𝑖 𝐾𝑗

(
𝐴∗𝑗𝑖/𝐴 𝑗 − 𝜑∗𝑗𝑖/Φ𝑗

)
, meaning that the

curvature at vertex 𝑖 receives a small contribution from the angle de-
fects of its neighbors, where the exact contribution depends on the
local regularity of the triangulation. In practice, the two curvature
estimates are usually quite similar (see inset), although they can
differ significantly around sharp vertices and other mesh degenera-
cies. It would be interesting to investigate whether this curvature is
related to other common estimates of Gaussian curvature, and to
more precisely characterize the smoothing effects on other duals.

Alternative metrics. We focused on connections compatible with
the metric of the input mesh, but sometimes one may want con-
nections arising from other metrics. For instance, minimal-torsion
trivial connections can be seen as Levi-Civita connections for cone
metrics which concentrate all curvature at the singularities of the
trivial connection. This change in perspective essentially adapts the
metric to remove singularities in the connection, which could po-
tentially lead to better-conditioned problems in cases with extreme
singularities. While finding an explicit mesh with such a metric
is nontrivial, the local geodesic polar maps which we use in our
derivations in the appendix can be adapted to accommodate differ-
ent metrics on the input surface using only curvature information
(precisely the information provided in a trivial connections prob-
lem). The curvature in a vertex one-ring is simply used to rescale the
polar coordinate basis vectors at the beginning of our calculations
(see e.g. Equation 18), which can be done for any desired curvatures

Torsion of connections in higher dimension. Measuring the twist-
ing of fields in R3 is a fundamental problem in mathematics and
physics [Binysh and Alexander 2018] which arises in areas of graph-
ics like volumetric meshing [Corman and Crane 2019] and fluid
simulation [Ishida et al. 2022]. A discrete theory of torsion for
three-dimensional connections could be a key tool for studying
and optimizing such fields. But torsion on 3-manifolds is far more
complicated than on surfaces: on surfaces torsion can be encoded
by a vector field rather than a vector-valued 2-form (Equation 9),
but in higher dimensions such a straightforward characterization
is no longer possible. The closest analogue is the decomposition of
Cartan [1925, Chapter 8], which breaks down the torsion tensor into
a “vectorial” component, a 3-form component, and a third compo-
nent. Unfortunately, “the third torsion component has no geometric
interpretation” [Agricola and Kraus 2016], making it difficult to use
as the basis for a discrete theory of torsion on volumes.
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A Discrete Levi-Civita Connection
In this section, we derive the discrete connection given in Equa-
tion 10. Following Braune et al. [2024], we first define a parallel-
propagated frame on each vertex neighborhood. We can express any
point in the one-ring of vertex 𝑖 using geodesic polar coordinates
(𝑟, 𝜑), which measures radial lengths 𝑟 along the surface and scales
angles by a factor of 2𝜋

Φ𝑖
, where Φ𝑖 refers to the sum of the tip angles

at 𝑖 . In the polar plane, we define a frame 𝑒𝑟 = 𝜕
𝜕𝑟 , 𝑒𝜑 =

2𝜋
Φ𝑖

𝜕
𝜕𝜑 which

is orthonormal with respect to the polyhedral metric of the mesh.
Then our parallel-propagated frame is given explicitly by(

𝑒0 𝑒1
)
=

(
𝑒𝑟 𝑒𝜑

) (
cos𝜑 sin𝜑

− sin𝜑 cos𝜑

)
. (12)

Consider now the frames at two neighboring dual vertices ∗𝑖𝑚𝑗
and ∗𝑖𝑗𝑘 . The hinge map would unfold triangles 𝑖𝑚𝑗 and 𝑖𝑗𝑘 in the
plane, and simply translate the frame from ∗𝑖𝑚𝑗 to ∗𝑖𝑗𝑘 . Due to
the angle scaling of the polar map, our parallel-propagated frame
introduces an extra rotation of

(
2𝜋
Φ𝑖

− 1
)
𝜑∗𝑖𝑗 . Hence, in our frame

field, the value of the hinge connection along ∗𝑖𝑗 is precisely (if 𝐾𝑖
denotes the discrete (integrated) Gaussian curvature))

𝜂∗𝑖𝑗 =
(
1 − 2𝜋

Φ𝑖

)
𝜑∗𝑖𝑗 = −𝐾𝑖

Φ𝑖
𝜑∗𝑖𝑗 . (13)

Nowwe use the expression for the constant-curvature Levi-Civita
connection 𝛼 =− 1

2𝜅𝑟
2𝑑𝜑 from Appendix B.2 (where 𝜅 denotes the

pointwise Gaussian curvature). Since the geodesic polar map scales
angles by 2𝜋

Φ𝑖
, the 1-form𝑑𝜑 is equal to Φ𝑖

2𝜋 times the ordinary angular
1-form 𝑑𝜑 in the plane. Moreover, the integral of 1

2𝑟
2𝑑𝜑 along a

plane curve 𝛾 is simply equal to the area of the region formed by
connecting the endpoints of 𝛾 to the origin. Therefore, the integral
of the constant-curvature Levi-Civita connection along a dual edge
∗𝑖𝑗 is equal to 𝜅 Φ𝑖

2𝜋 times the area of the region in the geodesic
polar plane formed by connecting the endpoints of ∗𝑖𝑗 to the origin.
Since the polar map has constant Jacobian determinant 2𝜋

Φ𝑖
, we can

compute this area as 𝜅 times the area formed on the original mesh
by connecting the endpoint of ∗𝑖𝑗 to vertex 𝑖—which is precisely the
half-diamond area 𝐴∗𝑖𝑗 appearing in Equation 10. Thus, the integral
of the constant-curvature Levi-Civita connection along a dual edge
∗𝑖𝑗 in our parallel-propagated frame is simply −𝐾𝑖

𝐴𝑖
𝐴∗𝑖𝑗 .

Unfortunately, these values do not define a valid connection on
our mesh, since they generally define incompatible rotations along
the two sides of dual edge ∗𝑖𝑗 . Writing down the compatibility
conditions explicitly may seem nontrivial, but they can easily be
expressed by observing that because the set of valid connections
is an affine space, every connection can be written as the hinge
map plus a discrete dual 1-form. Explicitly, if 𝛼∗𝑖𝑗 =𝜂∗𝑖𝑗 + 𝛼∗𝑖𝑗 , then
𝛼∗𝑗𝑖 must be equal to 𝜂∗𝑗𝑖−𝛼∗𝑖𝑗 . A natural way of reconciling the
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desired Levi-Civita integrals along the two sides of dual edge ∗𝑖𝑗 is
to minimize the area-weighted error

E(𝛼) =
∑︁
𝑖𝑗

[
1
2𝐴∗𝑖𝑗

(
𝜂∗𝑖𝑗 + 𝛼∗𝑖𝑗 + 𝐾𝑖

𝐴𝑖
𝐴∗𝑖𝑗

)2

+ 1
2𝐴∗𝑗𝑖

(
𝜂∗𝑗𝑖 − 𝛼∗𝑖𝑗 +

𝐾𝑗

𝐴 𝑗
𝐴∗𝑗𝑖

)2
]
.

(14)

The energy is minimized by setting

𝛼∗𝑖𝑗 = 1
𝐴∗𝑖𝑗+𝐴∗𝑗𝑖

(
𝐴∗𝑗𝑖

(
𝜂∗𝑗𝑖+

𝐾𝑗

𝐴 𝑗
𝐴∗𝑗𝑖

)
−𝐴∗𝑖𝑗

(
𝜂∗𝑖𝑗 + 𝐾𝑖

𝐴𝑖
𝐴∗𝑖𝑗

))
. (15)

Substituting the values of 𝜂∗𝑖𝑗 from Equation 13 completes the proof.

B Analytical Behavior of One-Ring Metrics

B.1 Piecewise-flat metric.
The geodesic polar map is easy to visualize: imagine the one-ring
made of paper, and bend that into a cone with its discrete Gaussian
curvature 𝜅𝑖 . Projecting the cone along the direction of the axis of
the cone, we have the geodesic polar map (𝑟, 𝜑) with the origin at
the center vertex. Based on the isometry. The dual frame is precisely

𝜃 =

(
𝑑𝑢 + sin𝜑 𝜅𝑖2𝜋 𝑟𝑑𝜑
𝑑𝑣 − cos𝜑 𝜅𝑖2𝜋 𝑟𝑑𝜑

)
(16)

where (𝑢, 𝑣)=𝑟 (cos𝜑, sin𝜑). One may verify that 𝛼LC=−𝜅𝑖/(2𝜋)𝑑𝜑
precisely satisfies 𝑑𝜃 + 𝛼J ∧ 𝜃 .

The discrete connection values are given as integrals along dual
edges:

∫
∗𝑖 𝑑𝜃 =

∫
𝜕∗𝑖

𝜅𝑖
2𝜋 (𝑣,−𝑢)

𝑇𝑑𝜑, which is the angle weighted
average of the boundary coordinates rotated by 90◦, rescaled by 𝜅𝑖

2𝜋 .
If calculated in the true geodesic polar map PPF, the hinge con-

nection actually provides the correct integral of 𝜏∗⇀
𝑖 𝑗 =

∫
⇀
𝑖 𝑗
𝛼LC . One

can see this by assuming the difference in the angles formed at the
vertex in the mesh Δ𝜑 will be the rotation angle for parallel trans-
port in the hinge map, the corresponding rotation in the two frames
of the PPF would be Δ𝜑, the difference provides 𝜏∗⇀

𝑖 𝑗 = −𝜅𝑖/(2𝜋)Δ𝜑.

B.2 Constant-curvature metric.
For a metric of constant Gaussian curvature 𝐾 , the normalized 1-
form in the 𝑑𝜑 direction is:

𝑒𝜑 = 𝑟 sin(
√
𝐾𝑟 )/

√
𝐾𝑑𝜑, (17)

which also works in the case𝐾 < 0, since sin can be turned into sinh
when applied to imaginary numbers. To simplify the derivation, we
still use the expansion sin(𝑥) = 𝑥 − 𝑥3/6. Then

𝑑𝜃 =
1
2
𝐾

(
𝑣

−𝑢

)
𝑑𝑢 ∧ 𝑑𝑣, (18)

i.e., the integral will be the barycenter coordinates rescaled by half
of the pointwise Gaussian curvature. The analytic expression of the
Levi-Civita connection is thus 𝛼LC = − 1

2𝐾𝑟
2𝑑𝜑 .

C Analytic Minimal-Torsion Trivial Connections
We obtain closed-form expressions for minimal-torsion trivial con-
nections on the sphere by first deriving closed-form expressions on
the plane, and then showing that minimal-torsion connections map
to minimal-torsion connections by conformal maps. We can thus
apply stereographic projection to obtain minimal-torsion trivial
connections on the sphere, at which point we can easily achieve
any other torsion by adding a given 1-form to our connection.

The planar case. Suppose we have singularities located at posi-
tions

{
s𝑖 =

(
𝑠𝑥
𝑖
, 𝑠

𝑦

𝑖

)}
𝑖
with target indices𝑛𝑖 ∈ Z. In the standard frame

𝑒1, 𝑒2 of R2, the connection 1-form for the Levi-Civita connection
is zero. So we can write any metric connection using a real 1-form
𝛼 ∈Ω1 (R2), and it will capture these singularities if its curvature is

𝑑𝛼 | (𝑥,𝑦) = −
∑︁
𝑖

2𝜋 𝑛𝑖𝛿
(
𝑥 − 𝑠𝑥𝑖 , 𝑦 − 𝑠

𝑦

𝑖

)
, (19)

where 𝛿 is the Dirac 𝛿 function. This equation is solved by

𝛼opt = −
∑︁
𝑖

𝑛𝑖 𝑑𝜑 | (𝑥−𝑠𝑥𝑖 ,𝑦−𝑠𝑦𝑖 ) , (20)

where 𝑑𝜑 is the angle 1-form

𝑑𝜑 | (𝑥,𝑦) = 1
𝑥2+𝑦2 (−𝑦 𝑑𝑥 + 𝑥 𝑑𝑦). (21)

We can always add a gradient to 𝛼opt to get another solution,
but 𝛼opt is the minimum-norm solution, and hence describes the
minimal-torsion connection with this curvature.
Finally, we can easily integrate 𝛼opt along any line segment by

observing that the integral of 𝑑𝜑 along a line segment measures
the angle between the endpoints when viewed from the origin.
Using the integral of 𝛼opt, we obtain parallel vector fields from our
minimal-torsion trivial connection.

Transformation under conformal maps. Let𝑀 be a surface with
metric 𝑔, and fix an orthonormal frame 𝐸 and with solder form 𝜃 . If
𝑔 := 𝑒2𝑢𝑔 is a conformally rescaled metric, then the frame 𝐸 := 𝑒−𝑢𝐸
is orthonormal with respect to 𝑔, and the dual frame is 𝜃 := 𝑒𝑢𝜃 .
Now, suppose we have a connection 1-form 𝜔 compatible with

metric 𝑔 written with respect to frame 𝐸. So 𝜔 has the form 𝜔 = J𝛼 .
We can apply a change of frame to 𝜔 to express our connection

in frame 𝐸. We obtain

𝜔 (𝐸 ) =
(
𝑒−𝑢

)
𝜔

(
𝑒−𝑢

)−1 +
(
𝑒−𝑢

)
𝑑

(
I𝑒−𝑢

)−1 (22)
= 𝜔 + I𝑑𝑢 (23)

=

(
𝑑𝑢 −𝛼
𝛼 𝑑𝑢

)
(24)

Intuitively, when seen from 𝐸, parallel transport by 𝜔 rotates
vectors by −𝛼 the same way it did in frame 𝐸 but now scales them
by −𝑑𝑢 as well. If we ignore the scaling and “project” 𝜔𝐸 to be
compatible with our original metric 𝑔, we get a new 𝑔-compatible
connection

Proj
(
𝜔 (𝐸 )

)
= J𝛼, (25)

which is just our original expression for 𝜔 . Note that 𝜔 (𝐸 ) and
Proj(𝜔 (𝐸 ) ) have the same curvature, since they differ by a 𝑑𝑢 term
whose exterior derivative is zero.

Now, we can look at how torsion changes under our change of
frame. The torsion of 𝜔 in frame 𝐸 is given by

Θ̃ := 𝑑𝜃 + 𝜔 ∧ 𝜃 . (26)

If we expand out the definitions, we find that

Θ̃ = 𝑒𝑢 (𝑑𝑢 ∧ 𝜃 + 𝑑𝜃 + 𝜔 ∧ 𝜃 ) , (27)

and therefore,

𝑑𝜃 + 𝜔 ∧ 𝜃 = 𝑒−𝑢 Θ̃ − 𝑑𝑢 ∧ 𝜃 . (28)
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Applying Equation 25 reveals that

𝑑𝜃 + Proj
(
𝜔 (𝐸 )

)
∧ 𝜃 = 𝑒−𝑢 Θ̃ − 𝑑𝑢 ∧ 𝜃, (29)

or equivalently, the torsion of Proj(𝜔 (𝐸 ) ) is equal to 𝑒−𝑢 Θ̃−𝑑𝑢 ∧ 𝜃 .
Finally, one can check that𝑑𝑢∧𝜃 is exactly equal to (★𝑑𝑢)♯𝑑𝐴, where
the sharp operator and area form come from the original metric 𝑔.
In summary, if we start with a connection 𝜔 with torsion Θ̃, then
applying a conformal transformation and projecting the resulting
1-form to be compatible with the new metric yields a connection
with the desired curvature and torsion equal to 𝑒−𝑢 Θ̃ − (★𝑑𝑢)♯𝑑𝐴.

Since we are interested in the case of the sphere, and we know
that Proj(𝜔 (𝐸 ) ) has the correct curvature, it suffices to check that
the divergence of its torsion is zero whenever the divergence of Θ̃ is
zero. More formally, let𝑇 be the vector field such that Θ̃ = 𝑇𝑑𝐴, and
similarly let𝑇 be the vector field such that 𝑒−𝑢 Θ̃− (★𝑑𝑢)♯𝑑𝐴 = 𝑇𝑑𝐴.

We wish to show that div𝑔𝑇 = 0 if and only if div𝑔𝑇 = 0. Since 𝑑𝐴 =

𝑒2𝑢𝑑𝐴, we have Θ̃ = 𝑒−𝑢𝑒2𝑢𝑇𝑑𝐴, and therefore 𝑇 = 𝑒𝑢𝑇 − (★𝑑𝑢)♯ .

div𝑔𝑇 = div𝑔
(
𝑒𝑢𝑇 − (★𝑑𝑢)♯

)
(30)

= div𝑔
(
𝑒𝑢𝑇

)
(31)

= 𝑒𝑢 div𝑔
(
𝑇

)
, (32)

the first step uses the fact that (★𝑑𝑢)♯ is divergence-free (since it
is a rotated gradient), and the second fact uses the transformation
rule for the divergence of a vector field under a conformal change
of metric. Since 𝑒𝑢 is nonzero, we conclude that div𝑔𝑇 = 0 if and
only if div𝑔𝑇 = 0. So our projected connection has minimal torsion
if and only if our original did, as desired.
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