Connections on manifolds play a key role in the modern theory of differential geometry. It (s thus hardly surprising that discrete connections E i

Background: are used throughout geometry processing from the design of vector fields and stripe patterns on surfaces [Crane et al. 2010, Knéppel et al. L
smOOth co““ectio“s 2015; Liu ett al. 2016], to vectorization of 2D sketche..s [Gutan et ql. 2023], and design tools fo.r seve(al forms of fabrication [Montes Maestre et
al. 2023; Mitra et al. 2023, 2024]. In the smooth setting, connections on surfaces can be studied using Cartan’s method of moving frames, l_'.'"'=
where they are characterized by two quantities: their scalar-valued curvature, and their vector-valued torsion. However, existing work on

While the directional derivative Dy f of a scalar function f simply measures
the rate of change of f as one moves along a tangential direction X, directional
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derivatives of vector fields on surfaces are more involved: vectors at different connections focuses almost exc[ug[ve[y on curvature, neg[ect[ng torsion ent[re[y

points on the surface belong to different tangent spaces, and a priori cannot
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directional derivative of a tangent vector field V in direction X; unlike the case

of scalar functions, there are infinitely many meaningful connections. and frame fteld design applications.

If we express our vector field V(x) using its coefficient functions c¢'(x)
and c*(x), then any connection can be written in the form

= (cl(x)) 3 (Dxcl(x)) N (a)iL (X) w, (X)) (cl(x))
X\e2(x)] ~ \Dxc?(x) wi(X) wi(X))\c*(x))’

connections. This equation is often written more concisely as
V=d+o

where d is the componentwise exterior derivative, and wis understood as a
matrix-valued 1-form, known as the connection 1-form.

constant

smooth ‘curvature

conical
surface

A connection is said to be metric if parallel transport preserves the lengths of approximation

vectors, which happens if and only if the connection 1-form is skew-symmetric,

@
A New Discrete
@ @ @ @
where the a){terms are 1-forms. Different choices of 1-forms a){ yield different LeVI - c IVI ta c o “ “ eCtI o “

Discrete Torsion

In the continuous case, the torsion of a connection measures its deviation from the

Levi-Civita connection. We thus define the discrete torsion of a discrete connection as

The hinge map is the exact Levi-Civita connection of a  the dual 1-form
triangle mesh, viewed as a polyhedral surface. Howev-
er, this singular geometry differs in many ways from
approximation the geometry of the smooth surface which the mesh

Torsion(a) = a — «

This definition exactly parallels the continuous definition and provides a simple and
straightforward way not only to define torsion, but also to offer torsion processing on

connections through Hodge decomposition [Crane et al. 2013] of this dual 1-form by

Convergence Tests

CONVERGENCE TO THE SMOOTH LEVI-Ci1viTA CONNECTION

- = hinge map

i.e., of the form o ( 0 _a(X)) IS supposed to approximate.
aX) 0 ) We instead introduce a new discrete connectionderived by spreading the curvature to be con-  controlling its curl, divergence, and harmonic components
ol ete Sealar vRlllEe) LU @ stant on each 1-ring instead. We find that this constant-curvature local approximation of the
Curvature and torsion. One can picture parallel transport as a description of surface yields a connection with consistently lower error than the hinge map compared to the
the m%t'on of a SU”;ace as it locally rolls aLOUf]‘cd on the ;afr‘lge”tul?'ang OJ some continuous Levi- Civita connection without much added complexity. Our new connection can
point. Curvature and torsion capture two key features of this rolling behavior: : : . .
curvature measures how much the surface rotates when rolled along an infini- be expressed in closed form as an offset from the hmge map.
tesimal loop, while torsion measures how far it translates. IC . Asij  Qxij Asji Qi
Both curvature and torsion have simple expressions in the language of differ- ;i =Nij + i KiA*ij A — ry _KjA*ji A — r ’
ential forms. The curvature is the matrix-valued 2-form QY = dw + w A w. For L L J J

metric connections on surfaces, ® A w =0, so the curvature is just

using the local geometric quantities illustrated to the side.
QY =dw

The torsion of our connection is the vector-valued 2-form @Y with

Examples
Here 6 is the dual frame associated to our basis vector fields. p

However, we found that an alternative formulation of torsion on surfaces is more minimal torsion prescribed torsion minimal torsion prescribed torsion
amenable to discretization. One can show that the torsion of a connection « is vector field | vector fields cross field
N Wi EEE
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«cZ| | |[--==t--=- X A .: AN RO Torsion-controlled trivial connections. Here we explore the impact of torsion on vector field design: a parallel vector field for a
>o=2 e ——— e 1 AN N A .o . oo . : . . Ce . . . . . .
ol [t ———= AR IBRARN AR minimal-torsion trivial connection with prescribed singularities is shown on the left, while parallel fields for trivial connections with
s NN UNELIN IR I VAN NN o o . . . . . . . .
gf—D Btuhtut Shstutuet D Qerows |6 concentrated additional gradient components in their torsion are shown in the center, along with the prescribed scalar potentials. A compact
O QTO ;;;fﬁ;;;;« ! horizontally v || - at the origin . potential changes the field locally (center left), while a globally-supported potential causes larger-scale changes (center right).

Metric Connections. Even in the plane equipped with the standard metric and
standard basis, parallel transport of vectors by a metric connection may look
very different from a simple translation. Here we consider four connection
1-forms «, and plot parallel vector fields for each connection (top row), as well as
the curvature (bottom row, scalar density) and torsion (bottom row, vector field)
of each connection. All four connections are compatible with the standard met-
ric—as their parallel vector fields are unit—but the rotations and singularities in
the parallel-transported vector fields can become quite complicated.

Background:
Discrete Connections

optimized via Levi-Civita connection Laplacian

A discrete metric connection provides a rotation Viik_mJ)

angle ajj on each halfedge describing how the 0ilj

coordinates of a vector vjjwritten in the frame of

the right- hand face should be transformed to k - i

obtain a parallel-transported vector v;jx in the l

frame of the left-hand face. i
A canonical connection on triangle meshes, '
that was leveraged by Crane et al. [2010] and | torsion
which we call the hinge connection 7, is found . 4 potential

by unfolding the hinge between two faces and optimized via connection Laplacian with torsion

measuring the angle 7ij between the chosen

bases E;jx and Ejj; on these two faces. The Optimal vector fields for different connections. Just as the
AE]S EICELE [ NS LEHCMIE) CeIISEel ordinary Laplacian measures the smoothness of scalar functions,
of the mesh, viewed as a polyhedral surface, . . : .

but we introduce a new discrete Levi-Civita the connection Laplaglan deflne.s a notion of smoothness for
connection which offers lower torsion (seen as vector fields. Computing an optimal vector field in the sense of
the deviation from the Levi-Civita connection Knoppel et al. [2013] using the discrete Levi-Civita connection to

of an underlying smooth surface) build the connection Laplacian yields a field whose streamlines

are as straight as possible in 3D space (top), whereas using a
connection with a nontrivial torsion (here, the gradient of a po-
tential) introduces twists into the streamlines (bottom).

Torsion can also be incorporated into the design of n-vector fields such as cross fields (right).

~ torsion
potential

torsion-free connection Laplacian connection Laplacian with torsion

Torsion-controlled vector heat method. The connection Laplacian
used in the vector heat method of Sharp et al. [2019] can be formed
for any connection. In this example, we compute a logarithmic
map—a sort of global polar parameterization—using the connection
Laplacian of an ordinary torsion-free connection (left), and using a
connection with prescribed non-zero torsion equal to the gradient of
a torsion potential (right), which introduces a distinct twist into the
radial lines of the parameterization.
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Here we plot the L2 errors of the hinge map vs. our discrete Levi-Civita
connection compared to the smooth Levi-Civita connection on several
hundred randomly generated quadratic surfaces. The plotted lines show
the average error across all experiments, while shaded en- velopes show
the maximum and minimum errors. Both discrete connections converge
at the same linear rate, but our discrete Levi-Civita connection offers
lower error in every case. Two sample surfaces are shown on the right
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Here we plot the L error of a discrete trivial connections compared to an
analytic reference solution with minimal torsion (left) and with prescribed
torsion (right). Since the solutions blow up around singularities, we mea-

sure the error on a patch of the sphere away from the singularities.

Spherical
ivial Connections

Tr

SO The smooth formulation of torsion which we use allows us to

derive closed form expressions for trivial connections with
prescribed singularities on smooth surfaces. In the appendix

we derive an analytic expression for minimal-torsion trivial @j ,-EI,._
connections on the sphere. Our closed-form expressions can e,
=

even be used to render these vector fields directly in a shader. [w]=i¥i=
https://www.shadertoy.com/view/M3VBRz
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