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Examples

Spherical
Trivial Connections

Metric Connections. Even in the plane equipped with the standard metric and 
standard basis, parallel transport of vectors by a metric connection may look 
very different from a simple translation. Here we consider four connection 
1-forms α, and plot parallel vector fields for each connection (top row), as well as 
the curvature (bottom row, scalar density) and torsion (bottom row, vector field)
of each connection. All four connections are compatible with the standard met-
ric—as their parallel vector fields are unit—but the rotations and singularities in 
the parallel-transported vector fields can become quite complicated.

    While the directional derivative         of a scalar function    simply measures 
the rate of change of    as one moves along a tangential direction   , directional 
derivatives of vector fields on surfaces are more involved: vectors at different 
points on the surface belong to different tangent spaces, and a priori cannot 
be compared directly. A connection is a choice of operator          acting as a 
directional derivative of a tangent vector field    in direction    ; unlike the case 
of scalar functions, there are infinitely many meaningful connections.

    If we express our vector field          using its coefficient functions          
and         , then any connection can be written in the form

where    is the componentwise exterior derivative, and    is understood as a 
matrix-valued 1-form, known as the connection 1-form.

where the     terms are 1-forms. Different choices of 1-forms     yield different 
connections. This equation is often written more concisely as

A connection is said to be metric if parallel transport preserves the lengths of 
vectors, which happens if and only if the connection 1-form is skew-symmetric, 
i.e., of the form

for some scalar-valued 1-form    .

Curvature and torsion. One can picture parallel transport as a description of 
the motion of a surface as it locally rolls around on the tangent plane of some 
point. Curvature and torsion capture two key features of this rolling behavior: 
curvature measures how much the surface rotates when rolled along an infini-
tesimal loop, while torsion measures how far it translates.
Both curvature and torsion have simple expressions in the language of differ-
ential forms. The curvature is the matrix-valued 2-form                           . For 
metric connections on surfaces,                     , so the curvature is just

The torsion of our connection is the vector-valued 2-form     , with

Here    is the dual frame associated to our basis vector fields.

However, we found that an alternative formulation of torsion on surfaces is more 
amenable to discretization. One can show that the torsion of a connection    is

Background:
Smooth Connections

A discrete metric connection provides a rotation 
angle      on each halfedge describing how the 
coordinates of a vector       written in the frame of 
the right- hand face should be transformed to 
obtain a parallel-transported vector        in the 
frame of the left-hand face.

A canonical connection on triangle meshes, 
that was leveraged by Crane et al. [2010] and
which we call the hinge connection   , is found 
by unfolding the hinge between two faces and 
measuring the angle       between the chosen 
bases       and       on these two faces. The 
hinge connection is the Levi-Civita connection 
of the mesh, viewed as a polyhedral surface, 
but we introduce a new discrete Levi-Civita 
connection which offers lower torsion (seen as 
the deviation from the Levi-Civita connection 
of an underlying smooth surface)

Background:
Discrete Connections

using the local geometric quantities illustrated to the side.
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A New Discrete
Levi-Civita Connection

The hinge map is the exact Levi-Civita connection of a 
triangle mesh, viewed as a polyhedral surface. Howev-
er, this singular geometry differs in many ways from 
the geometry of the smooth surface which the mesh 
is supposed to approximate.

We instead introduce a new discrete connectionderived by spreading the curvature to be con-
stant on each 1-ring instead. We find that this constant-curvature local approximation of the 
surface yields a connection with consistently lower error than the hinge map compared to the 
continuous Levi- Civita connection without much added complexity. Our new connection can 
be expressed in closed form as an offset from the hinge map:

Discrete Torsion
In the continuous case, the torsion of a connection measures its deviation from the 
Levi-Civita connection. We thus define the discrete torsion of a discrete connection as 
the dual 1-form

This definition exactly parallels the continuous definition and provides a simple and 
straightforward way not only to define torsion, but also to offer torsion processing on 
connections through Hodge decomposition [Crane et al. 2013] of this dual 1-form by 
controlling its curl, divergence, and harmonic components

Torsion-controlled trivial connections. Here we explore the impact of torsion on vector field design: a parallel vector field for a 
minimal-torsion trivial connection with prescribed singularities is shown on the left, while parallel fields for trivial connections with 
additional gradient components in their torsion are shown in the center, along with the prescribed scalar potentials. A compact 
potential changes the field locally (center left), while a globally-supported potential causes larger-scale changes (center right).
Torsion can also be incorporated into the design of n-vector fields such as cross fields (right).

Optimal vector fields for different connections. Just as the 
ordinary Laplacian measures the smoothness of scalar functions, 
the connection Laplacian defines a notion of smoothness for 
vector fields. Computing an optimal vector field in the sense of 
Knöppel et al. [2013] using the discrete Levi-Civita connection to 
build the connection Laplacian yields a field whose streamlines 
are as straight as possible in 3D space (top), whereas using a 
connection with a nontrivial torsion (here, the gradient of a po-
tential) introduces twists into the streamlines (bottom).

Torsion-controlled vector heat method. The connection Laplacian 
used in the vector heat method of Sharp et al. [2019] can be formed 
for any connection. In this example, we compute a logarithmic 
map—a sort of global polar parameterization—using the connection 
Laplacian of an ordinary torsion-free connection (left), and using a 
connection with prescribed non-zero torsion equal to the gradient of 
a torsion potential (right), which introduces a distinct twist into the 
radial lines of the parameterization.
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Convergence Tests

Here we plot the L2 errors of the hinge map vs. our discrete Levi-Civita 
connection compared to the smooth Levi-Civita connection on several 
hundred randomly generated quadratic surfaces. The plotted lines show 
the average error across all experiments, while shaded en- velopes show 
the maximum and minimum errors. Both discrete connections converge 
at the same linear rate, but our discrete Levi-Civita connection offers 
lower error in every case. Two sample surfaces are shown on the right

Here we plot the L∞ error of a discrete trivial connections compared to an 
analytic reference solution with minimal torsion (left) and with prescribed 
torsion (right). Since the solutions blow up around singularities, we mea-
sure the error on a patch of the sphere away from the singularities.

Trivial Connections
 The smooth formulation of torsion which we use allows us to 
derive closed form expressions for trivial connections with 
prescribed singularities on smooth surfaces. In the appendix 
we derive an analytic expression for minimal-torsion trivial 
connections on the sphere. Our closed-form expressions can 
even be used to render these vector fields directly in a shader. 

https://www.shadertoy.com/view/M3VBRz

Connections on manifolds play a key role in the modern theory of differential geometry. It is thus hardly surprising that discrete connections 
are used throughout geometry processing from the design of vector fields and stripe patterns on surfaces [Crane et al. 2010; Knöppel et al. 
2015; Liu et al. 2016], to vectorization of 2D sketches [Gutan et al. 2023], and design tools for several forms of fabrication [Montes Maestre et 
al. 2023; Mitra et al. 2023, 2024]. In the smooth setting, connections on surfaces can be studied using Cartan’s method of moving frames, 
where they are characterized by two quantities: their scalar-valued curvature, and their vector-valued torsion. However, existing work on 
connections focuses almost exclusively on curvature, neglecting torsion entirely.

This work enriches the geometry processing toolbox by introducing a discretization of torsion on triangle meshes and demonstrating its relevance to vector 
and frame field design applications.
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