
Discrete Torsion of Connection Forms on Simplicial Meshes
Supplemental Material

Theo Braune, Mark Gillespie, Yiying Tong, and Mathieu Desbrun

This supplemental material contains pseudocode for our algo-
rithm in Section 1, and provides additional details on the derivation
of our analytical reference solution for the convergence test of the
discrete Levi-Civita connection in Section 2.

1 Pseudocode
Our pseudocode is expressed via a halfedge mesh data structure en-
coding a triangle mesh𝑀 = (V, E, F). We use⇀𝑖 𝑗 ∈ H to denote the
halfedge from 𝑖 to 𝑗 , and use H̊ to denote the set of halfedges which
run along interior edges (i.e., the set of edges on which our trivial
connection stores meaningful values). We make use of standard
halfedge operations such as Halfedge(𝑓) which returns the first
halfedge in face 𝑓 according to the mesh data structure’s ordering.

We write vectors (𝑎, 𝑏) ∈ R2 as complex numbers 𝑧 = 𝑎 + 𝑏i ∈ C,
and use the argument Arg(𝑎 + 𝑏i) := atan2(𝑏, 𝑎), the scalar cross
product (𝑎 + 𝑏i) × (𝑐 + 𝑑i) := 𝑎𝑑 − 𝑏𝑐 , and the complex inverse
(𝑎+𝑏i)−1 := (𝑎−𝑏i)/(𝑎2 +𝑏2). We write our face frames using com-
plex numbers as well: on each face 𝑓 , we let 𝐹re be the unit vector
pointing along Halfedge(𝑓), and let 𝐹im be the unit vector rotated
90◦ counter-clockwise in the plane of 𝑓 . Then 𝐸𝑓 = 𝑎 +𝑏i denotes a
frame with 𝑥-axis 𝑒𝑥 = 𝑎𝐹re + 𝑏𝐹im and 𝑦-axis 𝑒𝑦 = −𝑏𝐹re + 𝑎𝐹im.
We also use the following standard quantities and subroutines:

• 𝜃 𝑗𝑘
𝑖

is the corner angle of triangle 𝑖𝑗𝑘 at vertex 𝑖 .
• 𝑑1 ∈ ZF×E is the 1-form discrete exterior derivative, i.e. the face-
edge signed incidence matrix (see e.g. Crane et al. [2013, §3.6]).
• AngleSums(𝑀, ℓ) returns a vector Φ ∈ RV containing the sum
of corner angles around each vertex 𝑖 .
• AngleDefects(𝑀, ℓ) returns a vector 𝐾 ∈ RV containing the
angle defect around each vertex 𝑖 (Explicitly, 𝐾𝑖 is 2𝜋 − Φ𝑖 for
interior vertices, and 𝜋 − Φ𝑖 for boundary vertices).
• LayOutDiamond(𝑀, ℓ,⇀𝑖𝑗) returns positions 𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 , 𝑝𝑙 ∈ C for
the vertices of the two adjacent triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 (see e.g. Sharp
et al. [2021, Appendix A]).

Algorithm 1 HalfedgeDirectionInFaceFrame(𝑀, ℓ, 𝐸,⇀𝑖𝑗)
Input: A moving frame 𝐸 ∈CF and halfedge ⇀𝑖𝑗 on a mesh𝑀 with

edge lengths ℓ .
Output: The vector 𝑧 ∈C indicating the direction in which ⇀

𝑖𝑗 points
when written in frame 𝐸.

1: 𝑎𝑏𝑐 ← Face(⇀𝑖𝑗)
2: if ⇀𝑖𝑗 ==

⇀
𝑎𝑏 then

3: return 𝐸−1
𝑓

4: else if ⇀𝑖𝑗 ==
⇀
𝑏𝑐 then

5: return − exp
(
−i𝜃𝑐𝑎

𝑏

)
𝐸−1
𝑓

6: else #⇀𝑖𝑗 ==
⇀
𝑐𝑎

7: return − exp
(
i𝜃𝑏𝑐𝑎

)
𝐸−1
𝑓

Algorithm 2 ComputeHingeConnection(𝑀, ℓ, 𝐸)
Input: A moving frame 𝐸 ∈CF on a mesh𝑀 with edge lengths ℓ .
Output: The hinge connection 𝜂 ∈RH , written in frame 𝐸.
1: for each ⇀

𝑖𝑗 ∈ H̊ do
2: 𝑧⇀

𝑖𝑗 ← HalfedgeDirectionInFaceFrame(𝑀, ℓ, 𝐸,⇀𝑖𝑗)
3: 𝑧⇀

𝑗𝑖 ← HalfedgeDirectionInFaceFrame(𝑀, ℓ, 𝐸,⇀𝑗𝑖)
4: 𝜂⇀

𝑖𝑗 ← Arg(−𝑧⇀
𝑖𝑗 /𝑧⇀

𝑗𝑖)
5: return 𝜂

Algorithm 3 ComputeDiscreteLeviCivitaOffset(𝑀, ℓ, 𝑏)
Input: Amesh𝑀 with edge lengths ℓ , and a matrix 𝑏 ∈R3×F giving

the location of the dual vertex of each face 𝑖𝑗𝑘 written in
barycentric coordinates on 𝑖𝑗𝑘 . We use 𝑏 𝑗𝑘

𝑖
to denote the

barycentric coordinate associated to vertex 𝑖 within face 𝑖𝑗𝑘 .
Output: A discrete 1-form 𝜆 ∈RE giving the difference between the

discrete Levi-Civita connection and the hinge connection.
1: Φ, 𝐾 ← AngleSums(𝑀, ℓ),AngleDefects(𝑀, ℓ)
2: 𝐴← 0 ∈ RV # zero-initialize dual areas
3: for each ⇀

𝑖𝑗 ∈ H̊ do
4: 𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 , 𝑝𝑙 ← LayOutDiamond(𝑀, ℓ,⇀𝑖𝑗)
5: 𝑝𝑖𝑗𝑘 ← 𝑏

𝑗𝑘
𝑖
𝑝𝑖 + 𝑏𝑘𝑖𝑗 𝑝 𝑗 + 𝑏

𝑖𝑗

𝑘
𝑝𝑘 # location in planar layout

6: 𝑝 𝑗𝑖𝑙 ← 𝑏𝑖𝑙
𝑗
𝑝 𝑗 + 𝑏𝑙 𝑗𝑖 𝑝𝑖 + 𝑏

𝑗𝑖

𝑙
𝑝𝑙

7: 𝜑∗𝑖𝑗 ← Arg
[
(𝑝𝑖𝑗𝑘 − 𝑝𝑖)/(𝑝 𝑗𝑖𝑙 − 𝑝𝑖)

]
dual corner angle

8: 𝐴∗𝑖𝑗 ← 1
2 (𝑝 𝑗𝑖𝑙 − 𝑝𝑖) × (𝑝𝑖𝑗𝑘 − 𝑝𝑖) # dual triangle area

9: 𝐴𝑖 ← 𝐴𝑖 +𝐴∗𝑖𝑗 # add triangle area to vertex dual area
10: for each 𝑖𝑗 ∈ E do # Equation 8 of the main paper

11: 𝜆𝑖𝑗 ← 1
𝐴∗𝑖𝑗+𝐴∗𝑗𝑖

(
𝐾𝑖𝐴∗𝑖𝑗

(
𝐴∗𝑖𝑗
𝐴𝑖
− 𝜑∗𝑖𝑗

Φ𝑖

)
−𝐾𝑗𝐴∗𝑗𝑖

(
𝐴∗𝑗𝑖
𝐴 𝑗
− 𝜑∗𝑗𝑖

Φ𝑗

))
12: return 𝜆

Algorithm 4 ComputeTorsionConnectionOffset(𝑀, ℓ, 𝑏, 𝑝)
Input: A mesh𝑀 = (V, E, F) with given edge lengths ℓ , a matrix

𝑏 ∈ R3×F giving the locations of the dual vertices, and a
scalar torsion potential 𝑝 ∈RF .

Output: A discrete 1-form 𝜇 ∈RE giving the difference between the
discrete Levi-Civita connection and the connection with the
desired torsion 𝑑𝑝 .

1: return ComputeDiscreteLeviCivitaOffset(𝑀, ℓ, 𝑏) + 𝑑𝑇1 𝑝

Note. When using the simple construction of the hinge map 𝜂
in Algorithm 2, the differential (𝑑𝜂)𝑖 at a vertex 𝑖 may differ from
the angle defect 𝐾𝑖 by a multiple of 2𝜋 . When running trivial con-
nections, one should use 𝐾𝑖 as the initial connection curvature to
ensure that Gauss-Bonnet is satisfied. Similarly, when starting from
another connection 𝛼 = 𝜂 + 𝜆, using 𝐾 +𝑑𝜆 as the initial connection
curvature ensures that Gauss-Bonnet is satisfied.

1

2 • Braune, Gillespie, Tong, and Desbrun

2 Connections onQuadratic Surfaces
Let 𝐴 ∈ R2×2 be a symmetric matrix.
Then 𝐴 gives rise to a quadratic form
𝜑 : R2 → R, where 𝜑 : 𝑝 ↦→ 1

2𝑝
𝑇𝐴𝑝 ,

which defines a surface

S =
{(
𝑥,𝑦, 𝜑 (𝑥,𝑦)

)}
⊂ R3 . (1)

The surface S has a natural parameterization 𝑓 (𝑝) = (𝑝, 𝜑 (𝑝)).

Metric. The metric of S at a point 𝑝 ∈ R2 in our parameterization
is 𝑔𝑝 = 𝑑 𝑓 𝑇𝑝 𝑑 𝑓𝑝 . The differential of 𝑓 is

𝑑 𝑓𝑝 =

(
I

(𝐴𝑝)𝑇
)
, (2)

so the metric is given explicitly by

𝑔𝑝 = 𝑑 𝑓 𝑇𝑝 𝑑 𝑓𝑝 = I + (𝐴𝑝) (𝐴𝑝)𝑇 . (3)

Normals. We can write S as a level set of𝜓 (𝑥,𝑦, 𝑧) = 𝜑 (𝑥,𝑦) − 𝑧,
so the normal of S points along ∇𝜓 . The unit normal is thus

𝑛̂𝑝 =
1√︁

1 + 𝑝𝑇𝐴2𝑝

(
𝐴𝑝

−1

)
. (4)

Covariant Derivative. To compute the covariant derivative opera-
tor, we start with a vector field 𝑉 (𝑝) in the plane and define a lifted
field tangent to the surface S:

𝑓∗𝑉 =

(
𝑉 (𝑝)
𝜑∗𝑉 (𝑝)

)
=

(
𝑉 (𝑝)

𝑝𝑇𝐴𝑉 (𝑝)

)
(5)

In order to evaluate the covariant derivative ∇S
𝑊
𝑉 in direction

𝑊 ∈ R2, we start by evaluating the R3 directional derivative

∇R
2

𝑊 (𝑓∗𝑉) =
(

∇R2

𝑊
𝑉

𝑝𝑇𝐴∇R2

𝑊
𝑉 +𝑊𝑇𝐴𝑉

)
. (6)

The covariant derivative projects out the normal component of this
directional derivative:

∇R
2

𝑊 𝑓∗𝑉 − 𝑛𝑝𝑛𝑇𝑝∇R
2

𝑊 𝑓∗𝑉 = ∇R
2

𝑊 𝑓∗𝑉 +
(
𝐴𝑝

−1

)
𝑊𝑇𝐴𝑉

1 + 𝑝𝑇𝐴2𝑝
. (7)

Pulling this R3-valued expression back to the 𝑥𝑦-plane by taking
the first two components yields the intrinsic expression:

∇S
𝑊
𝑉 = ∇R

2

𝑊 𝑉 + 𝑊𝑇𝐴𝑉

1 + 𝑝𝑇𝐴2𝑝
𝐴𝑝. (8)

(The third component of Equation 7 is the lift 𝜑∗∇S𝑊𝑉 =𝑝𝑇𝐴∇S
𝑊
𝑉 .)

Parallel Transport. Now, consider the radial curve 𝛾 (𝑡)=𝑡𝑞 to a
vector 𝑞 ∈R2. In general 𝛾 is not geodesic, but we can still parallel
transport vectors 𝑉 along 𝛾 using the parallel transport equation

∇S¤𝛾 𝑉 = 0. (9)

If we consider 𝑉 (𝑡) as a function of time along 𝛾 and expand out
the covariant derivative expression from Equation 8, we obtain

¤𝑉 = − ¤𝛾𝑇𝐴𝑉
1 + 𝛾𝑇𝐴2𝛾

𝐴𝛾 = − 𝑡

1 + 𝑡2𝑞𝑇𝐴2𝑞

[
(𝐴𝑞) (𝐴𝑞)𝑇

]
𝑉 . (10)

When 𝑉 (0) is orthogonal to 𝐴𝑞 (with respect to the standard
inner product on R2), then the parallel field𝑉 (𝑡) = 𝑉 (0) is constant.
When 𝑉 (0) points along 𝐴𝑞, then 𝑉 (𝑡) always points in the same
direction—making the ansatz 𝑉 (𝑡) = 𝜆(𝑡)𝐴𝑞, yields the equation

¤𝜆(𝑡)𝐴𝑞 = − 𝑡𝑞𝑇𝐴2𝑞
1+𝑡2𝑞𝑇𝐴2𝑞

𝜆(𝑡)𝐴𝑞, (11)

One can check that the solution 𝜆(𝑡) with 𝜆(0) = 1 is given by

𝜆(𝑡) = 1√
1+𝑡2𝑞𝑇𝐴2𝑞

. (12)

Finally, we convert back to the standard basis, using the fact that(
𝐴𝑞 J𝐴𝑞

)
is orthogonal so its inverse is its transpose over ∥𝐴𝑞∥2

R2 :

𝑉 (𝑡) =
(
𝐴𝑞 J𝐴𝑞

) (1√
1+𝑡2𝑞𝑇𝐴2𝑞

0

0 1

) (
𝐴𝑞 J𝐴𝑞

)𝑇
𝑞𝑇𝐴2𝑞

𝑉0 (13)

=

(
1√

1+𝑡2𝑞𝑇𝐴2𝑞

(𝐴𝑞) (𝐴𝑞)𝑇
𝑞𝑇𝐴2𝑞

+ (J𝐴𝑞) (J𝐴𝑞)
𝑇

𝑞𝑇𝐴2𝑞

)
𝑉0 . (14)

Parallel-Propagated Frame. We find a parallel-propagated frame
and dual coframe by transporting the standard basis from the origin:

𝐸𝑝 = 𝑉 (1) = 1√
1+𝑝𝑇𝐴2𝑝

(𝐴𝑝) (𝐴𝑝)𝑇
𝑝𝑇𝐴2𝑝

+ (J𝐴𝑝) (J𝐴𝑝)
𝑇

𝑝𝑇𝐴2𝑝
, (15)

𝜃𝑝 = 𝐸𝑇𝑝𝑔𝑝 =

√︃
1 + 𝑝𝑇𝐴2𝑝

(𝐴𝑝) (𝐴𝑝)𝑇
𝑝𝑇𝐴2𝑝

+ (J𝐴𝑝) (J𝐴𝑝)
𝑇

𝑝𝑇𝐴2𝑝
. (16)

Levi-Civita-Connection. To find the Levi-Civita connection, we
write 𝜃𝑝 in Cartesian coordinates with components 𝜆0, 𝜆1, 𝜇0, 𝜇1:

𝜃𝑝 =

(
𝜆0𝑑𝑥 + 𝜇0𝑑𝑦
𝜆1𝑑𝑥 + 𝜇1𝑑𝑦

)
, (17)

In the parallel-propagated frame, the Levi-Civita connection is
𝜔 =J𝛼 =J (𝛼0𝑑𝑥 + 𝛼1𝑑𝑦). The Cartan structure equations are thus

0 = 𝑑𝜃𝑝 + 𝜔𝑝 ∧ 𝜃𝑝 (18)

=

(
𝜕𝜇0
𝜕𝑥 −

𝜕𝜆0
𝜕𝑦

𝜕𝜇1
𝜕𝑥 −

𝜕𝜆1
𝜕𝑦

)
𝑑𝑥 ∧ 𝑑𝑦 +

(
0 −𝛼
𝛼 0

)
∧

(
𝜆0𝑑𝑥 + 𝜇0𝑑𝑦
𝜆1𝑑𝑥 + 𝜇1𝑑𝑦

)
(19)

=

((
𝜕𝜇0
𝜕𝑥 −

𝜕𝜆0
𝜕𝑦

𝜕𝜇1
𝜕𝑥 −

𝜕𝜆1
𝜕𝑦

)
+

(
−𝜇1 𝜆1
𝜇0 −𝜆1

) (
𝛼0
𝛼1

))
𝑑𝑥 ∧ 𝑑𝑦 (20)

One can check that the following 𝛼𝑝 solves Equation 20, yielding
the desired connection 1-form in the parallel-propagated frame:

𝛼𝑝 =
det(𝐴)

1+𝑝𝑇𝐴2𝑝+
√

1+𝑝𝑇𝐴2𝑝
(𝑦 𝑑𝑥 − 𝑥 𝑑𝑦) . (21)

For convenience, we include a Mathematica notebook to compute
𝛼𝑝 directly. At the origin, det(𝐴) is the Gaussian curvature 𝜅, so:

𝛼origin = 1
2 det(𝐴) (𝑦 𝑑𝑥 − 𝑥 𝑑𝑦) = 1

2𝜅 (𝑦 𝑑𝑥 − 𝑥 𝑑𝑦) . (22)

Around any point 𝑝 , we can approximate S up to second order by
a paraboloid centered at 𝑝 with the same Gaussian curvature as S
at 𝑝 . Thus, in the parallel-propagated frame at 𝑝 we have a second
order accurate approximation 𝛼𝑝 ≈ 1

2𝜅𝑝 (𝑦 𝑑𝑥 − 𝑥 𝑑𝑦). We use this
expression for the convergence tests in Sec. 4.3 of the main paper.

References
Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital

Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013
Courses.

Nicholas Sharp, Mark Gillespie, and Keenan Crane. 2021. Geometry Processing with
Intrinsic Triangulations. In ACM SIGGRAPH 2021 Courses.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/2504435.2504442
https://doi.org/10.1145/2504435.2504442
https://doi.org/10.1145/3450508.3464592
https://doi.org/10.1145/3450508.3464592

This notebook demonstrates the calculation of the Levi-Civita connection of a quadratic surface
expressed in cartesian coordinates in the parallel propagated frame based at the origin.

Given a symmetric matrix A, we can define a height field

c : R2  R3 : p  (x, y) ↦ x, y,
1

2
pt A p

and a quadratic surface M  c R2 ⊂ R3
 as the image

In[573]:=

(*Define the matrix that will form the quadratic form*)
A = {{a, d}, {d, b}};
J = {{0, -1}, {1, 0}};

In[510]:=

(*Define the surface in cartesian coordinates*)
c[x_, y_] := {

x,
y,
({x, y}.A.{x, y}) / 2

};

In[511]:=

DcDx = D[c[x, y], x] // Simplify;
DcDy = D[c[x, y], y] // Simplify;

In[513]:=

In[519]:=

In[524]:=

Now, for this frame we calculate the first fundamental form.

g00 = FullSimplify[DcDx.DcDx];
g01 = FullSimplify[DcDx.DcDy];
g11 = FullSimplify[DcDy.DcDy];

FirstFundamentalForm = {{g00, g01}, {g01, g11}};

Based on the expression in the supplemental material to our paper “Discrete Torsion of Connection Forms
on Simplicial Meshes” we calculate the parallel propagated frame based in the origin. We parallel
propagate the standard frame along radial lines leaving the origin.

q = {x, y};
Aq = A.q;
JAq = J.Aq;
qA2q = q.A.A.q;

We showed that given a vector V0 in the tangent space at the origin, and a direction vector q ∈ R2 , the

parallel transported vector along the curve γ (t)  t q is given by

V (t)
1

1 + t2 qT A2 q

(A q) (A q)T

qT A2 q
+

(J A q) (J A q)T

qT A2 q
V0,

In[528]:=

PPFMatrix =

(1 / Sqrt[1 + qA2q]) * (Outer[Times, Aq, Aq] / qA2q) + (Outer[Times, JAq, JAq] / qA2q);

Therefore, evaluated at a point p  (x, y) , the parallel propagated standard frame is given by

In[529]:=

PPFX = PPFMatrix.{1, 0};
PPFY = PPFMatrix.{0, 1};

Now, we can do a sanity check to ensure the orthonormality of the PPF with respect to the first funda-
mental form.

In[588]:=

OrthoCheck00 = FullSimplify[PPFX.(FirstFundamentalForm.PPFX)];
OrthoCheck10 = FullSimplify[PPFY.(FirstFundamentalForm.PPFX)];
OrthoCheck11 = FullSimplify[PPFY.(FirstFundamentalForm.PPFY)];
{{OrthoCheck00, OrthoCheck10}, {OrthoCheck10, OrthoCheck11}} // MatrixForm

Out[591]//MatrixForm=

1 0
0 1

We can express the PPF in cartesian coordinates via

e1 PPF  α1 ∂x+β1 ∂y and e2 PPF  α2 ∂x+β2 ∂y

We are now aiming to find the dual Parallel-Propagated frame

ePPF
1

 and ePPF
2 . We will stick to cartesian coordinates, i.e we define scalar functions λ1, λ2, μ1, μ2,

such that ePPF
1  λ1 d x + μ1 d y and ePPF

2  λ2 d x + μ2 d y is the dual frame.

The coefficients for the dual frame are given by

θ 
1

pT A2 p
 1 + pT A2 p (A p) (A p)T + (J A p) (J A p)T :

In[535]:=

{{λ1, μ1}, {λ2, μ2}} =

Sqrt[1 + qA2q] (Outer[Times, Aq, Aq] / qA2q) + (Outer[Times, JAq, JAq] / qA2q);

Now, we can do a sanity check to see ensure that ePPF
i ej PPF  δi j

In[556]:=

check00 = FullSimplify[{λ1, μ1}.PPFX];
check10 = FullSimplify[{λ2, μ2}.PPFX];
check01 = FullSimplify[{λ1, μ1}.PPFY];
check11 = FullSimplify[{λ2, μ2}.PPFY];
{{check00, check10}, {check01, check11}} // MatrixForm

Out[560]//MatrixForm=

1 0
0 1

Now, we are aiming to solve the Cartan structure equations for the Levi-Civita connection. This means,

we are searching for a 1-form α  ω1 d x +ω2 d y such that

2 symbolic_calculation_levi_civita_cartesian.nb

d
ePPF
1

ePPF
2

+
0 -α

 α 0
⋀

ePPF
1

ePPF
2

 0

Here, d denotes the ordinary exterior derivative on 1-forms. It holds

d
ePPF
1

ePPF
2



∂μ1

∂x
-

∂λ1

∂y

∂μ2

∂x
-

∂λ2

∂y

d x⋀d y

In[561]:=

DLambda1Dy = FullSimplify[D[λ1, y]];
DLambda2Dy = FullSimplify[D[λ2, y]];
DMu1Dx = FullSimplify[D[μ1, x]];
DMu2Dx = FullSimplify[D[μ2, x]];

In[565]:=

dPPFX = FullSimplify[DMu1Dx - DLambda1Dy];
dPPFY = FullSimplify[DMu2Dx - DLambda2Dy];
dPPF = {dPPFX, dPPFY};

It holds for the wedge product

0 -α

α 0
⋀

ePPF
1

ePPF
2


-α⋀ ePPF

1

α⋀ ePPF
2



-ω1 μ2 + ω2 λ2

ω1 μ1 - ω2 λ1

d x ⋀ d y 
-μ2 λ2

μ1 -λ1

ω1

ω2

d x ⋀ d y

In[568]:=

BforCartanStructure = FullSimplify[{{-μ2, λ2}, {μ1, -λ1}}];

We can therefore now solve for the coefficients of the Levi-Civita connection

In[596]:=

{ω1, ω2} = FullSimplify[LinearSolve[BforCartanStructure, -dPPF]]
Out[596]=

a b - d2 y 1 + a2 + d2 x2 + 2 (a + b) d x y +

b2 + d2 y2 - 1 + a2 + d2 x2 + 2 (a + b) d x y + b2 + d2 y2  

a2 + d2 x2 + 2 (a + b) d x y + b2 + d2 y2 1 + a2 + d2 x2 + 2 (a + b) d x y + b2 + d2 y2,

-a b - d2 x 1 + a2 + d2 x2 + 2 (a + b) d x y + b2 + d2 y2 -

1 + a2 + d2 x2 + 2 (a + b) d x y + b2 + d2 y2   a2 + d2 x2 +

2 (a + b) d x y + b2 + d2 y2 1 + a2 + d2 x2 + 2 (a + b) d x y + b2 + d2 y2

Finally, we verify the simpler form of the solution given in the supplemental material:

In[576]:=

{ω1, ω2} - Det[A] / (1 + qA2q + Sqrt[1 + qA2q]) (-J.q) // FullSimplify
Out[576]=

{0, 0}

symbolic_calculation_levi_civita_cartesian.nb 3

	1 Pseudocode
	2 Connections on Quadratic Surfaces
	References

