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Abstract

Electrically conducting fluids appear throughout nature, from the center of the Earth to
the surface of the Sun. Simulations of magnetohydrodynamics (MHD) in the earth’s core
have provided key insight into the earth’s changing magnetic field. And understanding the
interplay between magnetic fields and fluid flow in the Sun is essential to understanding solar
phenomena such as sun spots and coronal mass ejection. We present an integrator for ideal
MHD in a two-dimensional domain with boundary and prove that the integrator preserves
total energy and cross helicity.
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Introduction

Magnetohydrodynamics(MHD) is the study of plasma and other conducting fluids. In ev-
eryday life, we do not often encounter plasma. But the physics of plasma governs countless
important natural phenomena in our universe. The interstellar medium, the dispersed matter
between different solar systems in a galaxy, is one such example. The interstellar medium
forms enormous structures, hundreds of light years across, whose dynamics are governed
by the laws of MHD. The behavior of the interstellar medium is an essential part of the
formation of new stars [1]

Figure 1: View of the central 50 pc ( 150 light years) of the Galactic center showing
ionized gas (traced by Paschen alpha emission observed by Hubble Space Telescope),
hot plasma (traced in the X-ray by the Chandra X-ray Observatory) and warm dust
(traced by mid-infrared radiation by the Spitzer Space Telescope).[2]

MHD also plays a key role in the behavior of the sun. The surface of the sun is a giant
sea of plasma which has its own fascinating dynamics. Strong magnetic fields can build up
in this plasma, which fling enormous amounts of energy and matter out of the sun in solar
flares and coronal mass ejections. A solar flare can release 1032 ergs of energy in a matter
of hours. These solar flares and mass ejections are hugely complicated phenomena whose
behavior depends on the interactions between twisted magnetic fields and the fluids flowing
around on the sun’s surface[3].

Closer to home, MHD also describes the behavior of the earth’s core. At the center of
the earth lies a solid iron inner core, surrounded by a liquid iron outer core. The earth’s

vii
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Figure 2: Coronal mass ejection photographed by NASA [4]

rotation causes various currents and whirlpools in the outer core, which in turn generate
the Earth’s magnetic field. MHD is essential to understanding how this liquid core behaves,
which allows us to study how the Earth’s magnetic field changes over time. In particular,
MHD simulations allow scientists to study reversals of the magnetic field, the long periods
of time over which the Earth’s magnetic north and south poles switch.

Figure 3: Simulation of the Earth’s magnetic field [5]

In addition to being useful for pure scientific applications, MHD simulation is an essential
tool in the design of nuclear fusion reactors. Fusion reactors make use of plasma contained in
strong magnetic fields, so understanding and simulating the behavior of plasma in magnetic
fields is an important part of research into fusion reactors [6].

Because of the numerous interesting applications of MHD, there is significant interest in
numerical simulations of MHD. In particular, many researchers are interested in structure-
preserving integrators for MHD [7], [8], [9], [10], [11]. Structure-preserving integrators are a



ix

class of simulation methods which use deep principles and theorems from physics to derive
simulations which preserve important properties of the relevant physical systems, and thus
promise to generate physically-plausible long-term behavior of the simulation.

In this thesis, we will develop the mathematical machinery necessary required to un-
derstand the integrator presented by Kraus and Maj in [10]. Then, we will prove some
conservation laws for the integrator, and extend the integrator to 2D systems with bound-
aries.
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Chapter 1

Mathematical Preliminaries

In this chapter, we present the mathematical tools of differential geometry. All the material
(and much more) can be found in [12] or [13].

1.1 Manifolds

Differential calculus gives us powerful tools for understanding functions Rn → Rm. However,
we frequently want to study functions on more general spaces. For one example, consider
a pendulum swinging in two dimensions. Such a pendulum can be described by its angle,
which we can identify with a point on the unit circle S1. So to study the physics of such a
pendulum, we need to understand the behavior of functions to and from the circle.

Luckily for us, differential calculus only depends on the local behavior of functions. When
taking the derivative of a function at a point, only needs to know the function’s values
infinitesimally close to that point. So we can actually apply differential calculus to study
functions on all sorts of spaces, as long as they locally “look like” Rn. The concept of a
manifold formalizes this notion of a space which “looks like” Rn.

A chart of a manifold M is a homeomorphism ϕ ∶ U → V ⊆ Rn from a neighborhood in
M to a subset V of Rn. A chart tells us precisely how the neighborhood U looks like part
of Rn. An atlas is a collection of charts whose domains cover M where the charts all satisfy
a technical compatibility condition. We call an atlas maximal if it is not properly contained
in any other atlas (i.e. we could not add any more charts without violating the compatibility
condition).

Definition 1.1.1. A (smooth) manifold is a Hausdorff, second-countable topological space
equipped with a maximal atlas.

2



1.2. Tangent Spaces 3

1.2 Tangent Spaces

Manifolds have a lot of nice structure, but they are nowhere near as structured as Rn itself.
Notably, Rn has an exceedingly useful linear structure which general manifolds lack. Because
linearity is so useful, it is often helpful to consider linear approximations to manifolds. For
manifolds immersed in Euclidean space, we can obtain a linear approximation to a point p in
the manifold by considering the hyperplane tangent to the manifold at p. This definition of
linear approximations provides useful intuition about how linear approximations to manifolds
behave. In fact, we usually call linear approximations to manifolds tangent spaces because
they behave like the tangent planes to manifolds immersed in Euclidean space.

Now that we have some idea of how tangent spaces should behave, we need to actually
define tangent spaces for abstract manifolds. This is a fairly tricky task. Indeed, there are
several different constructions that are commonly used. I’ll sketch two of them here. The
constructions are a little bit abstract, so it is helpful to think about simple examples when
following them. In particular, Rn itself is a smooth manifolds, and its linear approximation
should be Rn itself. When thinking about the construction of abstract tangent spaces, it is
helpful to think about why these constructions yield Rn as its own tangent space.

Now, let Mn be an n-dimensional manifold. So far, we just know that manifolds are
particularly nice topological spaces. So there are really only two tools we have to understand
M are functions intoM or functions out ofM . As it turns out, we can use either to construct
tangent spaces to M . First, we’ll construct tangent spaces using functions into M .

Tangent vectors as equivalence classes of curves

To get a sense of how this construction should work, consider the case of the two-dimensional
sphere S2 embedded in R3 as the unit sphere. If we take some curve f ∶ R → S2 ⊆ R3, then
that curve’s velocity vector at a point p is tangent to the curve, and thus lies in the tangent
plane to S2 at p. It seems reasonable that every tangent vector to the sphere is the velocity
vector for some curve. Now, we just need to determine when two curves determine the same
velocity vector. Suppose two curves have different velocity vectors at p. Then their velocity
vectors must differ in some coordinate. Now, consider the projection of the two curves onto
that axis. Their velocity vectors must differ at the point corresponding to p. Conversely, if
we get the same tangent vector no matter which axis we project onto, then the two curves
must have the same tangent vector. We can sumarize this idea by saying that two curves
γ1, γ2 ∶ I → S2 agree to first order at time t if γ1(t) = γ2(t) and (f ○ γ1)′(t) = (f ○ γ2)′(t) for
any differentiable real-valued function f defined on a neighborhood of γ1(t).

With this example in mind, we can now define the tangent space to an abstract manifold.
We can simply define a tangent vector to a point p ∈M to be an equivalence class of curves
passing through p subject to the equivalence relation defined above.

This definition of tangent spaces gives a geometrically-intuitive interpretation of tangent
vectors. But the fact that one can equip this set of tangent vectors with a linear structure
is somewhat surprising. The definition of addition on these vectors is somewhat involved.
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Tangent vectors as differential operators

The second construction of tangent spaces is more abstract and its geometric nature is less
obvious. However, it has the advantage of giving our tangent vectors a straightforward linear
structure. And it leads to some useful, but non-obvious, interpretations of tangent vectors
which we will make use of later.

For this construction, we’ll consider smooth real-valued functions on our manifold. Let’s
again consider the example of S2 ⊆ R3. Given a real-valued function f ∶ S2 → R and a
tangent vector v to S2 at p ∈ S2, we can take a directional derivative Dvf(p) of f at p in
the direction of v. Furthermore, if we are given the directional derivative operator, we can
uniquely determine the corresponding vector v by testing out the differential operator on
various functions f ∶ S2 → R (this is not obvious to me, but it turns out to be true).

This definition is fairly straightforward to extend to abstract manifolds. We begin with
formalizing the idea of a first order differential operator. In particular, we define derivations
on the algebra of real-valued functions C∞(M).

Definition 1.2.1. Given a point p ∈M , a derivation at p is an R-linear map d ∶ C∞(M)→ R
which satisfies the Leibniz rule

d(fg) = f(p) ⋅ dg + df ⋅ g(p) (1.1)

Now, we simply define the tangent space at p of M to be the space of derivations at
p. We denote this tangent space TpM . From the definition of a derivation, we see that
derivations have the structure of a real vector space. This allows us to use the tangent space
as a linearization of our manifold near p. One can check that for a manifold of dimension n,
the tangent space to any point will be an n-dimensional vector space.

Pushforwards

Now, we have a nice way of taking linear approximations to manifolds near a point. In fact,
we can go further. We can use these linear approximations to linearly approximate smooth
functions between smooth manifolds! Given a smooth map ϕ ∶M → N which sends m ∈M
to n ∈ N , we will construct a map called the pushforward or differential of ϕ at m which
goes from TmM to TnN . This map is denoted ϕ∗,m ∶ TmM → TnN , or dϕm ∶ TmM → TnN .

Aside: We will construct this map using the definition of the tangent space as a the
space of derivations. One can also define the pushforward using the other definition
of tangent vectors. Both are fairly simple.

Let v ∈ TmM be a differential operator in TmM . We want to use ϕ to turn it into a
differential operator in TnN . Let f ∶ N → R. We want to apply v to f , but f is defined
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on N , not M . We can fix this by precomposing f with ϕ. Then we obtain a function
f ○ ϕ ∶M → R, and we can apply v. So we get a functional ϕ∗,mv ∶ C∞(N)→ R given by

ϕ∗,mv(f) ∶= v(f ○ ϕ) (1.2)

One can check that this is a derivation on N at n = ϕ(m). It is clear that ϕ∗,m is a linear
map. Thus, ϕ∗,m defines a linear map from TmM to TnN .

If we work in coordinates, the pushforward is the Jacobian of f .

Local Coordinates on the Tangent Space

Let M be an n-dimensional manifold. Let p ∈ M be a point whose neighborhood U has
a coordinate chart. We’ll denote this chart by ϕ ∶ V → U where V ⊆ Rn. For simplicity,
assume that ϕ(0) = p. It turns out that not only does ϕ give us coordinates on U , it also
give us a convenient basis for TpM ! Recall that Rn is its own tangent space at every point.
In particular, T0Rn ≅ Rn, and has a standard basis {e1, . . . , en}. We can use the pushforward
ϕ∗,0 to send these basis vectors into TpM . Since ϕ is injective, {ϕ∗,0(e1), . . . , ϕ∗,0(en)} must
be linearly independent in TpM . Since TpM is n-dimensional, they form a basis for TpM .

Because we identify tangent vectors with differential operators, the standard basis of
T0Rn is often denoted { ∂

∂x1
, . . . , ∂

∂xn
} or simply {∂1, . . . , ∂n}. The induced basis for TpM is

also frequently denoted by { ∂
∂xi

} or {∂i}.

Tangent Bundles

So far, we’ve focused on constructing tangent spaces to individual points on an abstract
manifold. But viewing the tangent spaces at different points as entirely separate objects
misses some of the structure that we see in the tangent planes to S2 ⊆ R3. The tangent
planes to an immersed manifold “vary smoothly” in some sense as you move around the
manifold. We would like to capture this idea, and relate the separate tangent spaces of an
abstract manifold to each other.

We can relate the separate tangent spaces together using a construction called the tangent
bundle, denoted TM for a manifoldM . As a set, TM is just the disjoint union of the tangent
spaces to every point in M .

TM ∶= ⊔
p∈M

TpM (1.3)

But TM has far more structure than just a set. We can actually turn it into a manifold!
The charts on M induce charts on TM in a very natural way. Suppose ϕ ∶ V → U ⊆ M is
a chart mapping a neighborhood V ⊆ Rn to a neighborhood U in M . Recall that for any
point x ∈ V , ϕ∗,x is an isomorphism TxRn ∼Ð→ Tϕ(x)M . Since all of the tangent spaces to Rn

are canonically isomorphic to Rn itself, we see that for each point x ∈ V , we have a map
ϕ∗,x ∶ Rn ∼Ð→ Rϕ(x)M . So we can define local coordinates on the neighborhood TU ⊆ TM
defined as TU ∶= ⊔u∈U TuM using the chart

(ϕ,ϕ∗,⋅) : V ×Rn → TU
(x, v) ↦ (ϕ(x), ϕ∗,x(v))

(1.4)
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One can check that these charts satisfy all of the conditions required to make TM into a
smooth manifold.

A useful feature of tangent bundles is that we have a projection π ∶ TM → M given by
sending any tangent vector to its basepoint.

Given a smooth map ϕ ∶ M → N , we can define the pushforward of ϕ as a map
ϕ∗ ∶ TM → TN . As one might expect, ϕ∗ restricted to a particular tangent space TpM
is simply our old pushforward ϕ∗,p. One can check that the pushforward of a smooth map
is itself a smooth map between the manifolds TM and TN .

Aside: There is a nice category-theoretic interpretation of this pushforward. We have
a category of smooth manifolds Man whose objects are finite-dimensional smooth
manifolds and whose morphisms are smooth maps. The existence of the pushforward
tells us that operation of taking tangent bundles is functorial. That is to say, we
have a functor T ∶ Man → Man which takes the manifold M to TM , and takes the
morphism ϕ ∶M → N to ϕ∗ ∶ TM → TN . People sometimes write ϕ∗ as Tϕ, in which
case our functor takes M to TM and ϕ to Tϕ.

Not only is T a functor, but it is actually a monad! As the oft-cited definition
goes, a monad is a monoid in the category of endofunctors. This means that a monad
is a functor F ∶ C → C from a category C to itself along with a natural transformation
from the identity functor to F , and a natural transformation from F ○F to F , subject
to some compatibility conditions.

Every tangent bundle has a zero section, which gives us a canonical map M →
TM for any manifold M . One can check that this gives a natural transformation
from the idendity functor to T . And for any tangent bundle TM , one obtains a
canonical map T (TM) → TM by taking the pushforward π∗ ∶ T (TM) → TM of the
canonical projection π ∶ TM → M . Again, one can check that this defines a natural
transformation from T ○ T to T .

Smooth Vector Fields

Often, we care not only about individual vectors on a manifold, but about vector fields,
which assign a vector to each point on the manifold. Using the machinery we have built up
so far, it is easy to define a smooth vector field.

Definition 1.2.2. A smooth vector field on a manifold M is a section of the tangent bundle
TM . Explicitly, this means that a vector field is a map v ∶M → TM such that π ○ v = idM
where π ∶ TM →M is the projection described above.

We denote the space of sections of TM by Γ(TM). This is precisely the space of smooth
vector fields on M .
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Riemannian Metrics

A Riemannian metric is a smooth assignment of an inner product to each tangent space TxM
of a manifold M . The precise meaning of smooth in this context will be clarified in the next
section using the notion of a vector bundle.

A metric is useful because it allows us to talk about lengths of tangent vectors and angles
between tangent vectors. This in turn allows us to talk about lengths of curves on the
manifold, and angles between curves.

Flows

One useful concept associated with vector fields is the idea of a flow. Given a vector field
V ∈ Γ(TM), we can think of V as a velocity field onM . A natural question to ask is where a
particle would end up if it moved along this velocity field. This gives us a family of functions
ϕt ∶M →M , where ϕt(x) is where the particle starting at x ends up after flowing along the
velocity field for time t. Given any smooth vector field, we can define a flow (at least on
small neighborhoods of M), for some time interval (−ε, ε).

Lie Bracket

The definition of vector fields as first-order differential operators gives us an interesting
operation on vector fields: we can compose them. This results in a second-order differential
operator, which is not in general a vector field. However, it turns out that because mixed
partial derivatives commute, the commutator of two vector fields must be another first-order
differential operator (because the second-order parts cancel out). Thus, the commutator
gives us an R-bilinear operation which takes in two vector fields and returns another vector
field. This operation is called the Lie bracket, and is denote [X,Y ].

1.3 Vector Bundles

Earlier, we defined the tangent bundle TM to a manifold M , which attached to each point
p ∈ M its tangent space TpM . Often, it is convenient to consider attaching other vector
spaces to each point on a manifold. This construction is called a vector bundle.

As with every other object we have considered so far, vector bundles are characterized
by how they appear locally. Recall that we constructed charts for our tangent bundle of the
form

(ϕ,ϕ∗) ∶ V ×Rn → TM (1.5)

These charts show that TM “locally looks like” the cartesian product of M with the vector
space Rn. Vector bundles capture this idea of “local cartesian products” between a manifold
and a vector space.
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In general, a vector bundle consists of a manifold E called the total space equipped with
a projection onto another manifold B called the base space. We require that for every b ∈ B,
the preimage of b under π is a copy of some fixed vector space V . π−1(b) is called the fiber
of E over b. Since all of the fibers must be isomorphic vector spaces, we frequently refer to
“the fiber” V .

To enforce the constraint the vector bundles must locally look like cartesian products,
we require that for every b ∈ B, there is a neighborhood b ∋ U ⊆ B such that π−1(U) is
homeomorphic to U × V in a way that respects the linear structure on V . These maps are
called local trivializations of the fiber bundle. If E is globally equal to B ×V , we say that E
is a trivial bundle.

The vector bundle π ∶ E → B with fiber V is frequently denoted

V E

B

π

Many operations on vector spaces can also be performed on vector bundles over a fixed
manifold M by performing the operations on each fiber. Let E,F be two vector bundles
over M .

Direct sum We define E ⊕ F to be the vector bundle whose fiber over x ∈M is Ex ⊕ Fx.

Tensor product Similarly, we define E⊗F to be the vector bundle whose fiber over x ∈M
is Ex ⊗ Fx.

Dual We define E∗ to be the vector bundle whose fiber over x ∈M is (Ex)∗, the dual space
to Ex.

Using these operations, we can build some interesting vector bundles out of the tangent
bundle. Taking the dual of the tangent bundle, we get a vector bundle over M whose fiber
over x is the space of all linear functionals on TxM . We call this vector bundle the cotangent
bundle and denote it by T ∗M . Now, by taking tensor products of TM and T ∗M , we can
obtain tensor bundles, whose fibers are spaces of tensors.

Tensor bundles give us a convenient language to use when talking about smooth functions
which take in vector fields or output vector fields. For example, we can view a metric g as
a fiberwise nondegenerate and positive definite section of the tensor bundle T ∗M ⊗ T ∗M .

1.4 Differential Forms

So far, we have focused on the application of differential calculus to manifolds. But it turns
out that we can use the mathematical machinery we have defined so far to extend integral
calculus to manifolds as well! We can perform integration on manifolds using differential
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forms. At a high level, differential forms are just “mathematical objects that you can inte-
grate”. The dx in the usual integral ∫

b

a f(x) dx can be interpreted as a differential form, and
indeed differential forms often take the form dx.

Intuitively, a differential form measures an “infinitesimal area” or “infinitesimal volume”.
The idea is that to integrate over a curve, we cut the curve into infinitesimal pieces, then
use our differential form to measure the length of each piece, and then sum all of the lengths
together. To integrate over a surface, we first cut the surface into infinitesimal pieces, then
use a differential form to measure the area of each infinitesimal piece, and sum them all
together. We could imagine performing a similar procedure for higher-dimensional domains
of integration.

Now, we need to formalize this idea of “infinitesimal volume”. Measuring volumes of
curves objects is complicated. But we know that if we look closely at a manifold M , it
looks like Rn. In fact, the tangent space TpM is a linear approximation to M , and tells us
precisely how M looks like Rn when we are very close to p. So instead of thinking about
infinitesimal volumes in M , we can instead think about infinitesimal volumes in Rn. We
can specify a k-dimensional region by looking at the parallelepiped determined by k vectors.
The parallelepiped’s volume is given by the determinant of these k vectors. So if we want
to measure generalized infinitesimal volumes, we can take inspiration from the determinant.
One notable feature of the determinant is that it is multilinear - if you double the length
of one side of a parallelepiped, the volume doubles. Also, the determinant does not simply
measure volume. Instead, it measures signed volume. If you swap the order of two vectors,
you swap the sign of the determinant.

Using these two properties, we can create functions to measure infinitesimal k-dimensional
volumes. First, we will work in some vector space V , and once we understand volume-
measurement in V , we can apply the idea to manifolds. Like the determinant, we want our
volume function to be multilinear function that takes in k vectors and returns a real scalar.
That is to say, we need a multilinear function V k → R. But not every such multilinear map
is an acceptable volume measurement. We also want our map to be alternating. We denote
the set of all alternating, multilinear maps from V k → R by Λk(V ). Note that we can add
together alternating, multilinear maps to obtain other alternating, multilinear maps. So
Λk(V ) is a vector space.

We can use this idea to measure infinitesimal k-dimensional volumes on manifolds. Given
a manifold M , we can measure infinitesimal k-dimensional volumes at a point p using an
element of Λk(TpM). As we did earlier with tangent spaces, we can construct a vector bundle
over M by attaching to each point p ∈M the vector space Λk(TpM). We denote this vector
bundle Λk(TM). Finally, we come to the definition of a differential k-form.

Definition 1.4.1. A differential k-form is a smooth section of the vector bundle Λk(TM).
We denote the set of all differential k-forms on M by Ωk(M).

Intuitively, a differential k-form gives you a way of measuring infinitesimal volumes at
each point p ∈M , and it gives you these volume-measuring functions in a smooth way.



10 Chapter 1. Mathematical Preliminaries

Pullbacks

Just like we can push forward vector fields along a smooth map f ∶ M → N , we can pull
back a differential form from N to M . We construct a pullback map f∗ ∶ Ωk(N) → Ωk(M)
as follows: suppose ω ∈ Ωk(N). We can use ω to define a k-form on M by defining

(f∗ω)(v1, . . . , vk) ∶= ω(f∗(v1), . . . , f∗(vk)) (1.6)

Aside: This construction feels similar to our definition of the pushforward. Recall
that to define the pushforward of a vector field, we view the vector field as a differential
operator on functions, and define

(f∗v)(g) ∶= v(g ○ f) (1.7)

We can think of function composition as a pullback of functions. Given a real-valued
function g ∶ N → R, we can pull g back along f to obtain the function g○f ∶M → R. So
we could write g○f as f∗g. If we do so, then our defining equation for the pushforward
becomes

(f∗v)(g) ∶= v(f∗g) (1.8)

And this is exactly the same as our definition for the pullback of differential forms,
except we have swapped upper and lower stars!

0-Forms

Given a vector space V , Λ0(V ) is the space of multilinear real-valued functions which take in
0 arguments. Such a function must just be constant, so Λ0(V ) is simply R. Thus, a 0-form
on M is simply a smooth assignment of a real number to each point p ∈ M , which is just
a smooth map M → R. So we can identify Ω0(M) with C∞(M), the space of real-valued
functions on M .

1-Forms

A function of 1 argument is trivially alternating, and it is multilinear as long as it is linear.
So Λ1(V ) is the space of linear maps V → R. This is simply the dual space V ∗. Thus, Ω1(M)
is a vector bundle whose fiber above each point p is the dual space (TpM)∗. So Ω1(M) is
just the cotangent bundle T ∗M .

The space of 1-forms is more complicated than the space of 0-forms, but it is still easy to
find examples of 1-forms. Many important examples are constructed from scalar functions.
Let f ∈ C∞(M). Then df ∶ TM → TR. But since the tangent space to R at any point is
canonically isomorphic to R, we can instead view df and a function df ∶ TM → R. This
makes df into a 1-form.
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Let M be an n-dimensional manifold. Given a chart for a neighborhood U ⊆ M , we
have n coordinate functions x1, . . . , xn ∶ U → R. Taking the differentials of these coordinate
functions gives us a basis {dx1, . . . , dxn} for Ω1(U), the space of 1-forms of M restricted
to U . This basis interacts nicely with our induced basis on the space of local vector fields.
Recall that a chart also gives us a basis { ∂

∂x1 , . . . ,
∂
∂xn} for local vector fields on U . These

two induced bases are dual to each other, in the sense that

dxi ( ∂

∂xj
) = δij (1.9)

Another important source of 1-forms is smooth vector fields. Suppose we have a Rieman-
nian metric g. g allows us to identify each tangent space with its dual

gp ∶ TpM
∼Ð→ T ∗

pM (1.10)

Thus, our metric gives us a map Γ(TM) → Ω1(M) from the space of smooth vector fields
to the space of 1-forms. Traditionally, this map is denoted by the symbol ♭ (“flat”). This
is because in the usual coordinate notation, components of vectors are denoted with upper
indices, and components of 1-forms are written with lower indices, so the ♭ map lowers the
indices. Writing this map explicitly, we have

X♭(Y ) ∶= ⟨X,Y ⟩ (1.11)

Our metric also induces an inverse map Ω1(M) → Γ(TM), called ♯ (“sharp”) because it
raises indices. This map is given by

⟨ω♯, Y ⟩ ∶= ω(Y ) (1.12)

Together, ♭ and ♯ are referred to as the musical isomorphisms.

The Wedge Product

One nice feature of integrals is that we can compute integrals over multidimensional regions
as iterated integrals each over a lower-dimensional regions. For example,

∫
[0,1]×[0,1]

x2 + y2 dA = ∫
1

0
∫

1

0
x2 + y2 dxdy (1.13)

This fact hints that we should be able to “multiply together” lower-dimensional differential
forms to obtain higher-dimensional differential forms. It turns out that we can!

The product of differential forms is called the wedge product. There are several normal-
ization conventions for the wedge product, but the basic idea is the same in any case. We
will define the wedge product of forms ω ∈ Ωm(V ), η ∈ Ωn(V ) to be the form ω∧η ∈ Ωm+n(M)
such that

(ω ∧ η)(v1, . . . , vm+n) ∶=
1

m!n!
∑

σ∈Sm+n

sgn(σ) ω(vσ(1), . . . , vσ(m)) η(vσ(m+1), . . . , vσ(m+n)) (1.14)
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where Sm+n is the symmetric group of permutations on m + n elements.

The expression for the wedge product is messy, but there is a nice idea behind it. The
wedge product needs to product an alternating function of m + n arguments given an alter-
nating function of m arguments and an alternating function of n arguments. The simplest
way in which one might attempt to define ω ∧ η is to plug in the first m arguments to ω and
the last n arguments to η. But this might not be alternating. To fix this problem, we just
sum over all possible permutations of the arguments, using the appropriate signs.

The Exterior Derivative

Earlier, we saw that one can take the derivative of a 0-form f to obtain a 1-form df . It turns
out that we can generalize this procedure to obtain the exterior derivative. For any k, the
exterior derivative gives us a map d ∶ Ωk(M)→ Ωk+1(M) defined as

d(f(x) dxi1 ∧⋯ ∧ dxik) = df ∧ dxi1 ∧⋯ ∧ dxik (1.15)

The exterior derivative satisfies several useful properties. Like all good derivatives, it
satisfies a Leibniz rule. For all ω ∈ Ωm(M), η ∈ Ωn(M), we have

d(ω ∧ η) = dω ∧ η + (−1)mω ∧ dη (1.16)

Definition 1.4.2. A differential form ω is called closed if dω = 0.

Definition 1.4.3. A differential form ω is called exact if there exists some other differential
form η such that ω = dη.

It turns out that exterior derivative squares to 0 (i.e. d(dω) = 0 for all differential forms
ω). We can restate this fact by saying that all exact forms are closed.

Stokes’ Theorem

The exterior derivative of a differential form satisfies a useful identity, called Stokes’ Theorem.
Stokes’ theorem says that for any differential k-form ω ∈ Ωk(M), and any (k+1)-dimensional
submanifold (possibly with boundary) S ⊆M , we have

∫
∂S
ω = ∫

S
dω (1.17)

where ∂S denotes the boundary of S. Integrating a differential form along a region’s bound-
ary is the same as integrating the differential form’s derivative over the entire region. Stokes’
theorem generalizes several theorems from multivariable calculus. For example, consider
Green’s theorem

∮
∂S
F ⋅ dr =∬

S
∇× F ⋅ n̂ dS (1.18)

We’ll explore exactly how to derive Green’s theorem from Stokes’ theorem later. For now,
we will just observe that they look very similar: both relate the integral of a quantity over
a region’s boundary to the integral of the quantity’s derivative over the region.
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The Interior Product

A differential form is a function that takes in vector fields. One natural operation to consider
on functions is partial function application. Given a differential form ω ∈ Ωk(M) and a vector
field X ∈ Γ(TM), we can construct a function that takes in k−1 vector fields by just plugging
X into ω as the first input. We denote the new function ιXω and define it to be

ιXω ∶ Γ(TM)k−1 → R
ιXω ∶ (v1, . . . , vk−1) ↦ ω(X,v1, . . . , vk−1)

(1.19)

Since ω is multilinear and alternating, ιXω must be multilinear and alternating as well. So
ιX defines a map Ωk(M)→ Ωk−1(M). We call ιXω the interior product of ω with X.

The Hodge Inner Product

A metric on a vector space V induces a metric on the dual space V ∗, since the metric defines
an isomorphism V

∼Ð→ V ∗. Thus, a metric onM gives us a symmetric, nondegenerate, bilinear
map

Ω1(M)⊗Ω1(M)→ Ω0(M) (1.20)

defined by applying the metric to the 1-forms on each fiber. We can use this product to
define a product on k-forms, noting that (at least locally) the space of k-forms has a basis
given by wedge products of a basis of 1-forms.

Then, we can define the product of two k-forms as

Ωk(M)⊗Ωk(M) → Ω0(M) = C∞(M)
a1 ∧⋯ ∧ ak, b1 ∧⋯ ∧ bk ↦ ⟨a, b⟩ ∶= det(⟨ai, bj⟩)ij

(1.21)

If M is compact, we can integrate this function to obtain a scalar. This defines an inner
product on Ωk(M), called the Hodge inner product, which we denote with double angle
brackets

⟪a, b⟫ ∶= ∫
M

⟨a, b⟩µ (1.22)

where µ is the volume form induced by the metric.

Note the distinction between single and double brackets on the inner product. ⟨a, b⟩ is
the scalar function on M given by the pointwise inner product of the forms a and b, whereas
⟪a, b⟫ is a single scalar.

We denote the norm induced by this inner product ∥η∥. Again, we have a single vs double
bar distinction. ∣η∣ is a scalar function on M , whereas ∥η∥ is a single scalar.

The Hodge Star

Let V be an n-dimensional vector space. Then

dim ΛkV = (n
k
) = ( n

n − k
) = dim Λn−kV (1.23)
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Thus, ΛkV ≅ Λn−kV . But we do not necessarily have a canonical isomorphism between them.

A metric onM gives us an isomorphism between Ωk(M) and Ωn−k(M). This isomorphism
is called the Hodge star.

Definition 1.4.4. The Hodge star is the unique linear map

⋆ ∶ Ωk(M)→ Ωn−k(M) (1.24)

that obeys the identity
α ∧ ⋆β = ⟨α,β⟩µ (1.25)

where µ is the volume form induced by the metric

Note that with this definition, we can write the Hodge inner product defined in the last
section as

⟪α,β⟫ = ∫
M
α ∧ ⋆β (1.26)

Multivariable Calculus

If our manifold has a metric, we can relate this machinery of differential forms back to vector
calculus in a nice way. The musical isomorphisms allow us to translate between vector fields
and 1-forms.

Let f ∈ C∞(M), v ∈ Γ(TM). It turns out that we have the following identities

∇f = (df)♯ (1.27)
∇× v = (⋆−1dv♭)♯ (1.28)
∇ ⋅ v = ⋆−1 d ⋆ v♭ (1.29)

It is instructive to prove these identities by working in coordinates.

We can use these identities to translate facts about differential forms into the language
of multivariable calculus and vice versa. For example, specializing to the case of 1-forms,
the fact that d2ω = 0 translates to the vector identity

∇ ⋅ ∇ × v = 0 (1.30)

One important example is the Laplacian. Recall that the Laplacian of a real-valued
function f is defined to be

∆f ∶= ∇ ⋅ ∇f (1.31)

Translating to differential forms, this becomes

∆f = ⋆−1 d ⋆ df (1.32)

codifferential We call
δ ∶= ⋆−1d⋆ (1.33)
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the codifferential. In terms of the codifferential, we can write the Laplacian of a scalar
function as ∆f = δdf . Whereas our original Laplacian was only defined on scalar functions,
δd is an operator that can be applied to any differential form. We could define ∆ = δd to be
a Laplacian on differential forms.

% todo[inline]why is the Laplacian not just δd? It turns out that it is better to opt for
the more symmetric operator

∆ ∶= δd + dδ (1.34)

We call δd + dδ the Laplace-de Rham operator

1.5 Lie Derivative

So far, we have defined several types of fields on manifolds. The simplest type of field is a
scalar field, which is just a real-valued function onM . There are also vector fields, differential
k-forms, and general sections of vector bundles. Often, we want to understand how these
fields vary across the manifold. For scalar fields, we know that we can take a directional
derivative at a point using a tangent vector, or we can use a vector field to differentiate the
whole scalar field. We also have the exterior derivative of a differential form is also a type
of derivative, but it is fairly different - it captures some general sense of how much the form
is changing at a point, but does not tell us about how the form changes in a given direction.
We do not yet know how to take directional derivatives of non-scalar fields. It turns out
that there are several notions of derivative for these more complicated fields. One notion of
differentiation is given by the Lie derivative.

First, we will consider the case of vector fields. The key difficulty in differentiating
vector fields is that tangent vectors to different points live in separate tangent spaces, and
we do not have a canonical way of moving vectors between different tangent spaces. For
an n-dimensional manifold, every tangent space TpM is n-dimensional, so all of the tangent
spaces are isomorphic. However, there is no canonical isomorphism between any two tangent
spaces, so there is no canonical way of comparing vectors in different tangent spaces.

The Lie derivative solves this problem in an interesting way. Suppose we have two vector
fields X,Y ∈ Γ(TM) and a point p ∈M at which we want to differentiate Y along X. We saw
earlier that we can (at least locally) integrate the vector field X to obtain a flow ϕt ∶ U →M
on a neighborhood of p such that this flow is a difeomorphism onto its image. This flow
gives us maps which take nearby points of M to p, and we can use these maps to identify
tangent spaces nearby p to TpM itself. Explicitly, we define the Lie derivative of Y along X
at a point p to be

(LYX)p ∶= lim
h→0

(ϕ−1h )∗(Yϕh(p)) − Yp
h

(1.35)

Aside: It turns out that the Lie derivative of vector fields is closely related to the
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Lie bracket which we defined earlier. In fact

LXY = [X,Y ] (1.36)

We can define the Lie derivative of a differential form ω along a vector field X at a point
p in a very similar way. The only difference is that Lie derivatives pull back along maps
instead of pushing forwards. So we define

LXω ∶= lim
h→0

(ϕh)∗(ωϕh(p)) − ωp
h

(1.37)

Cartan’s Magic Formula

There is a convenient expression for the Lie derivative of a differential form in terms of the
interior product and exterior derivative. Because it is so useful, it is called Cartan’s magic
formula

LXω = ιXdω + dιXω (1.38)

1.6 Jet Bundles

In this section, we follow the treatment of jet bundles found in [14] and [15]. Later on, it
will be convenient to define a sort of tangent space for arbitrary vector bundles. Let Y be a
vector bundle over X with fiber V .

F Y

X

π

The fiber over a point x ∈ X is denoted Fx. Let ϕ1, ϕ2 be sections of Y . We say that ϕ1

and ϕ2 agree to first order at x if ϕ1(x) = ϕ2(x) and (ϕ1)∗, (ϕ2)∗ are equal (as linear maps
TxX → Tϕ1(x)Y ). We define the first jet bundle of Y , denoted J1Y , to be the space of all
(local) sections modulo this equivalence relation.

There is another characterization of J1Y which is often helpful. We can identify J1Y
with the vector bundle over Y whose fiber over y ∈ Fx is the space L(TxX,VyY ) where

VyY ∶= kerπ∗ = {v ∈ TyY ∣ π∗(v) = 0} (1.39)

is the fiber above y in the vertical subbundle V Y ⊆ TY of vectors parallel to the fibers of Y .
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Aside: J1Y is not quite a vector bundle; instead it is an affine bundle. An affine
bundle is like a vector bundle, except our fibers are now affine spaces instead of vector
spaces.

Recall that an affine space is “a vector space where we have forgotten the iden-
tity”. Jet bundles are affine spaces rather than vector spaces, because different charts
disagree about what it means for the pushforward of a section to be zero.

Given a section ϕ ∶ X → Y , its differential Txϕ ∶ TxX → Tϕ(x)Y is an element of the fiber
J1Yϕ(x). So the map x ↦ Txϕ defines a section of J1Y . We call this section j1ϕ and call it
the first jet prolongation of ϕ. In coordinates,

jiϕ ∶ xµ ↦ (xµ, ϕA(xµ), ∂νϕA(xµ)) (1.40)



Chapter 2

Physical Preliminaries

2.1 Variational Mechanics

2.1.1 Motivation

Newton’s laws give us a picture of the world that is often intuitive, but it can be hard to see
underlying structures of a physical system when viewing it from a Newtonian perspective.
It often appears mysterious that physical systems conserve quantities such as energy or
momentum. Lagrangian mechanics offers a dramatically different perspective on physics, and
one of the benefits of this new perspective is that it makes the reasons for many conservation
laws much easier to understand. This is useful to understand when building simulations,
because if we understand where conservation laws come from, then we have a better chance
of designing algorithms which preserve the conservation laws in the discrete setting.

2.1.2 Lagrangian Mechanics

In Lagrangian Mechanics, we describe a physical system by defining a Lagrangian, a real-
valued function that takes in a system’s position and velocity. The Lagrangian lets us
compute how a system evolves over time. Frequently, we take our Lagrangian to be kinetic
energy minus potential energy.

L(q, q̇) = 1

2
mq̇2 − V (q) (2.1)

We define the system’s action by integrating the Lagrangian over time

S[q] ∶= ∫
t1

t0
L(q(t), q̇(t)) dt (2.2)

The action is a function which takes in trajectories of the system and returns real num-
bers. Hamilton’s Principle of Least Action tells us that the trajectory the system takes is

18
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a stationary point of the action. To find the stationary points, we imagine an infinitesimal
variation δq of the path q, which leaves the endpoints fixed. The resulting variation of the
action is

δS = ∫
t1

t0

∂L
∂q
δq + ∂L

∂q̇
δq̇ dt (2.3)

It’s a little bit unclear what δq̇ is supposed to mean, but we can resolve this problem by
integrating by parts to move the time derivative off of the variation. Doing so, we find that

δS = ∫
t1

t0

∂L
∂q
δq − d

dt

∂L
∂q̇
δq dt (2.4)

= ∫
t1

t0
(∂L
∂q

− d

dt

∂L
∂q̇

) δq dt (2.5)

At a stationary point of the action, δS needs to be zero for any δq. If we want the integral
to be 0, we must have

∂L
∂q

− d

dt

∂L
∂q̇

= 0 (2.6)

at every time t ∈ [t0, t1]. Equation 2.6 is known as the Euler-Lagrange equation. This
equation lets us determine how our physical system evolves over time.

Example: Point Particle in a Gravitational Field

Consider a particle of mass m moving around in space near a stationary planet of mass
M . Denote the position of the particle at time t by q(t) ∈ R3. For convenience, let’s
use a coordinate system centered at the planet’s center. Then we can write the particle’s
gravitational potential energy as −GMm

∣q∣ . The particle’s kinetic energy is, as usual, given by
1
2m∣q̇∣2. Our Lagrangian is thus

L(q, q̇) = 1

2
m∣q̇∣2 + GMm

∣q∣
(2.7)

The Euler-Lagrange equations tell us that

∂L
∂q

= d

dt

∂L

∂q̇
(2.8)

In this case,
∂L
∂q

= −GMmq

∣q∣3
(2.9)

(where we have used equation F.2) to differentiate 1
∣q∣) Furthermore,

d

dt

∂L
∂q̇

= d

dt
mq̇ =mq̈ (2.10)

Thus, in this case the Euler-Lagrange equations tell us that

mq̈ = −GMmq

∣q∣3
(2.11)

which is just the standard equation for gravitational attraction.
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Example: Point Particle in a Potential

It’s no coincidence that the Euler-Lagrange equations recover the equations of motion that
you would get from Newton’s laws in the previous problem. (Indeed, it would be bad if we got
a different answer, as Newton’s Laws do a good job at predicting the movement of planets).
Here, we will show that for a particle moving in any potential, Lagrangian mechanics reduces
to Newton’s law. Again, consider a particle whose trajectory is given by q(t). Suppose that
the particle moves subject so some potential V (q). Then, we can again write our Lagrangian

L(q, q̇) = 1

2
m∣q̇∣2 − V (q) (2.12)

In this case, the Euler-Lagrange equations tell us that

mq̈ = −∂V
∂q

(2.13)

The derivative of potential energy with respect to position is just force. So in this case, the
Euler-Lagrange equations are the familiar equation F =ma.

Aside: You might recall the Lagrange multipliers method for solving differentiable
constrained optimization problems. The idea is that unconstrained optimization of
a differentiable function is generally easy. The extrema of a differentiable function
must be stationary points (points where the derivative is zero), so you can just find
all of the stationary points, and pick the one that extremizes your function.

At first, it seems like constrained optimization should be much harder, since we
can’t apply the derivative trick anymore. However, Lagrange multipliers give us a
simple, formulaic way of converting certain constrained optimization problems into
higher-dimensional unconstrained problems. Suppose we have an objective function
f ∶ Rn → R and the constraint that some function g ∶ Rn → Rm must be 0. This is
commonly written

min
x

f(x)
s.t. g(x) = 0

(2.14)

Luckily for us, instead of solving this optimization problem, we can define a La-
grangian

Λ(x,λ) ∶= f(x) − λ ⋅ g(x) (2.15)

and look for its stationary points. It turns out that if x is a minimizer of f subject to
our equality constraint, then there exists a vector λ such that (x,λ) is a stationary
point of Λ[16]. In this way, we can turn our constrained optimiztion problem into the
problem of finding critical points of a function, which was our original strategy for
optimization anyway.

The idea of Lagrangian mechanics is that we can frame classical mechanics as
an optimiation problem on the space of possible trajectiories of our system. The
action gives us an objective function on the space of trajectories, and the principle of
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least action tells us that stationary points are the trajectories that physical systems
actually take. Viewing Lagrangian mechanics in the context of optimization, it seems
natural to hope that one could apply the method of Lagrange multipliers to constrain
physical systems. And in fact, this works! Consult Appendix A to see the case of a
2D pendulum worked out using Lagrange multipliers.

2.1.3 Lagrangian Mechanics and Differential Geometry

In the last section, we introduced Lagrangian mechanics and worked through some basic
examples. But there was a lot of symbol-pushing, and the definitions of what exactly a
Lagrangian or variation is were not entirely clear. In this section, we’ll give more rigorous
definitions of the concepts involved, and explore the geometric structure behind Lagrangian
mechanics. We follow the geometric presentation of mechanics given in [16].

We have seen before that a Lagrangian is a function that takes in both positions and
velocities of particles. This hints that we should think about tangent bundles, because an
element of a tangent bundle specifies a point on some base manifold as well as a tangent
vector at that point.

Let Q be a manifold whose points represent possible configurations of a physical system.
We call Q a configuration manifold. For example, the configuration manifold for a 2D
pendulum is the circle S1, since the configuration of a pendulum is described by its angle.
The configuration manifold for a particle moving in space is R3, since the particle’s position
is described by a point in R3.

We associate a state space to our configuration manifold, which is simply the tangent
bundle TQ. We denote by πQ the canonical projection TQ → Q. The state space describes
possible configurations and velocities of the physical system. For example, the state space
of a 2D pendulum is the cylinder S1 ×R, which makes sense because the pendulum’s angle
is described by a poin t on the circle, but its angular velocity can be any real number. The
state space of a particle moving in space is R6 with three dimensions corresponding to its
position and three dimensions corresponding to its velocity.

Definition 2.1.1. A Lagrangian is a function L ∶ TQ → R from the tangent bundle of our
configuration manifold to the reals.

Definition 2.1.2. The action is a map S ∶ C(Q)→ R induced by the Lagrangian. It is given
by

S[q] ∶= ∫
t1

t0
L(q(t), q̇(t)) dt (2.16)

Since the Euler-Lagrange equations take a time derivative of (a derivative of) our La-
grangian, we should expect the general theory to depend on second derivatives of our curves.
Thus, we define the second-order submanifold of T (TQ) to be
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Definition 2.1.3.
Q̈ ∶= {w ∈ T (TQ) ∣ (πQ)∗(w) = πTQ(w)} (2.17)

where (πQ)∗ ∶ T (TQ) → TQ is the pushforward of the canonical projection TQ → Q, and
πTQ is the canonical projection πTQ ∶ T (TQ)→ TQ.

Using the definition of tangent vectors as equivalence classes of curves which agree to
first order, we can think of TQ as the space of first derivatives of curves. Similarly, we can
think of Q̈ as the space of second derivatives of curves in Q, since elements of Q̈ have the
form ((q, q̇), (q̇, q̈)).

2.1.4 Euler Lagrange Equations

As before, we will use the Lagrangian to predict how our physical system will change over
time. So we need to understand the space of trajectories our system can take. We define
C(Q) to be the space of all smooth paths q ∶ [t0, t1] → Q on our configuration space. The
path space is infinite-dimensional, so it is not a manifold according to our definitions. But
we can use the calculus of variations to treat C(Q) like an infinite-dimensional manifold.

A variation is the analogue of a tangent vector on C(Q). Just like a tangent vector at
q ∈ Q can be specified by a curve γ ∶ (−ε, ε) → Q mapping 0 to q, we will specify variations
using maps η ∶ (−ε, ε) × [t0, t1]→ Q. Often, we will denote η(λ, t) by ηλ(t).

Let η̇(λ, t) ∶= ∂
∂tη(λ, t). We define the variation of S with respect to η to be

d

dλ
∣
λ=0

S(ηλ) = d

dλ
∣
λ=0
∫

t1

t0
L(η(λ, t), η̇(λ, t)) dt (2.18)

= ∫
t1

t0

∂

∂λ
∣
λ=0
L(η(λ, t), ∂tη(λ, t)) dt (2.19)

= ∫
t1

t0

∂L
∂q

⋅ ∂η
∂λ

∣
λ=0

+ ∂L
∂q̇

⋅ ∂
∂λ

∂η

∂t
∣
λ=0

dt (2.20)

= ∫
t1

t0

∂L
∂q

⋅ ∂η
∂λ

∣
λ=0

+ ∂L
∂q̇

⋅ ∂
∂t

∂η

∂λ
∣
λ=0

dt (2.21)

= ∫
t1

t0
[∂L
∂q

− ∂

∂t

∂L
∂q̇

] ⋅ ∂η
∂λ

∣
λ=0

dt − [∂L
∂q̇

⋅ ∂η
∂λ

∣
λ=0

]
t1

t0

(2.22)

(2.23)

Interestingly, we see that this only depends on ∂η
∂λ

∣
λ=0. Note that this defines a vector field

along q. We denote this vector field δq. It turns out that given such a vector field δq, we can
always construct a variation map η such that δq = ∂η

∂λ
∣
λ=0. So from now on, we will think of

variations as being vector fields along curves. We write the variation as dSq[δq]. In our new
notation,

dSq[δq] = ∫
t1

t0
[∂L
∂qi

− d

dt

∂L
∂q̇i

] δqi dt + [∂L
∂q̇i

δqi]
t1

t0

(2.24)
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Now, we need to understand what these expressions mean in our geometric picture. δq
is a variation, so at each t, δq(t) ∈ Tq(t)Q is a tangent vector. Inside the integral, we apply
a linear function to δq(t) (since we multiply each component by a scalar and sum them
together), so we can think of ( ∂L

∂qi
− d

dt
∂L
∂q̇i

)i as a cotangent vector in T ∗Q. Since L is a
function on TQ, and we take one more time derivative, this is a function on Q̈. So we can
think of this expression as a map

DELL ∶ Q̈→ T ∗Q (2.25)

with coordinate expression

(DELL)i ∶=
∂L

∂qi
− d

dt

∂L

∂q̇i
(2.26)

We call DELL the Euler-Lagrange map

Similarly, we can think of the last term ∂L
∂q̇i
δqi as a 1-form on TQ1. We denote this 1-form

ΘL and call it the Lagrangian 1-form. In coordinates, we have

ΘL =
∂L
∂q̇i

dqi (2.27)

In terms of our new maps, we see that the variation is given by

dSq[δq] = ∫
t1

t0
DELL(q, q̇, q̈)(δq) dt + (ΘL)q̇(δ̂q)∣t1t0 (2.28)

where δ̂q ∈ TTQ is given by

δ̂q(t) = ((q(t), q̇(t)) ,(δq(t), ∂δt
∂t

)) (2.29)

Recall that Hamilton’s principle of least action states that the trajectory of our physical
system will be a stationary point of the action. So we call a curve q ∶ [t0, t1] → Q a solution
if the variation dSq[δq] is 0 for all variations δq which vanish at t0 and t1. In order for this
to be true, we must have

DELL(q, q̇, q̈) = 0 (2.30)

for all t ∈ [t0, t1]. In coordinates, this is just the familiar Euler-Lagrange equations

∂L
∂qi

− d

dt

∂L
∂q̇i

= 0 (2.31)

1At first, you might expect ΘL to be a 1-form on Q. But because ΘL depends on ∂L
∂q̇i

, which itself depends
on both q and q̇, we need ΘL to be a 1-form on TQ. This means that ΘL takes in vectors in TTQ and
returns scalars.



24 Chapter 2. Physical Preliminaries

2.1.5 Lagrangian Flow

The Euler-Lagrange equations only depend on q and its first and second derivatives. This
means that the Euler-Lagrange equations depend only on the section of Q̈ induced by q (i.e.
the map q(t) ↦ (q(t), q̇(t), q̈(t))). Since Q̈ is a subbundle of TTQ, we can instead say that
the Euler-Lagrange equations depend on the induced section of TTQ.2 We can interpret this
condition by saying that solutions of the Euler-Lagrange equations are integral curves of a
certain vector field on TQ.

We define the Lagrangian vector field XL on TQ to be the section TQ → T (TQ) such
that3

DELL ○XL = 0 (2.32)

Associated to this vector field, we have a flow F t
L ∶ TQ → TQ which we call the Lagrangian

flow. The Lagrangian flow describes how our physical system evolves over time, since a flow
produces integral curves of its underlying vector field.

2.1.6 Conservation of the Symplectic Form

In physical systems governed by nice Lagrangians, the initial conditions uniquely determine
the trajectory of the system. This gives us a map f ∶ TQ → C(Q) which takes a tangent
vector(i.e. initial condition) to the path the system takes starting at that initial condition.
Explicitly, f(v)(t) = π(F t

L(v)). We can pull back the action functional along this map to
obtain a restricted action map Ŝ ∶ TQ → R. Taking the exterior derivative of this function
corresponds to taking the first variation of the action functional.4 Because our curve f(q)
satisfies the Euler-Lagrange equations, the first term of equation 2.28 is zero for all variations.
So we only need to look at the second term. We can also pull back the Lagrangian 1-form
ΘL ∈ Ω1(TQ) to a restricted Lagrangian 1-form Θ̂L ∈ Ω1(Q). (Note: for this computation,
we assume that our trajectory maps [0, T ]→ Q)

dŜq(vq) ∶= dSq[δq] (2.33)

= (ΘL)f(q)(T )(δ̂q) − (ΘL)f(q)(0)(δ̂q) (2.34)

= (Θ̂L)FT
L (q)((F T

L )∗vq) − (Θ̂L)q(vq) (2.35)

= (F T
L )∗(Θ̂L)q(vq) − (Θ̂L)q(vq) (2.36)

Since exterior derivatives commute with pullbacks, we can take the exterior derivative of this
expression and use the fact that d2Ŝ = 0 to obtain

(F T
L )∗dΘl = dΘL (2.37)

2This is like viewing the second-order Euler-Lagrange equations as a set of first-order differential equations
in q and q̇.

3For some Lagrangians, equation 2.32 might not define a unique vector field. But in nice cases, this is
not a problem.

4Given a tangent vector vq ∈ TqQ, we can use our flow map to extend vq to a vector field on the curve f(q).
This is just a variation of f(q)! We simply define δq(t) ∶= (F t

L)∗vq. One can check that dŜq(vq) = dSq[δq].
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We call ΩL ∶= dΘL the Lagrangian symplectic form. Equation 2.37 tells us that time-evolution
preserves ΩL.

2.1.7 Noether’s Theorem

Noether’s theorem gives us a simple algorithm for taking in symmetries of a physical system
and finding associated conserved quantities. In order to understand symmetries of a physical
system, we must first discuss actions of Lie groups on our configuration space. Let G be a
Lie group with Lie algebra g, and let Φ ∶ G ×Q → Q be a group action of G on Q. Often,
we will denote Φ(g, q) by Φg(q). We can lift this action to an action ΦTQ of G on TQ by
defining

ΦTQ
g (v) ∶= (Φg)∗(v) (2.38)

We can consider ‘infinitesimal’ versions of this action. Thinking of the Lie algebra as
infinitesimal elements of the Lie group, we might expect to be able to use our group action
to obtain infinitesimal transformations (vector fields) of Q from vectors in our Lie algebra.
Explicitly, given ξ ∈ g, we define infinitesimal generators ξQ ∈ Γ(TQ) and ξTQ ∈ Γ(T (TQ))
by

ξQ(q) ∶=
d

dg
∣
g=e

Φ(g, q) (2.39)

ξTQ(vq) ∶=
d

dg
∣
g=e

ΦTQ(g, vq) (2.40)

where g denotes an element of a 1-parameter subgroup corresponding to ξ (i.e. d
dg ∣g=e g = ξ).

Now, we define the Lagrangian momentum map to be a map JL ∶ TQ→ g∗ defined by

JL(vq)(ξ) ∶= ΘL(ξTQ(vq)) (2.41)

It turns out that Lagrangian momentum maps which come from symmetry transforma-
tions are conserved. For a proof, see [16].

2.2 Variational Field Theories

2.2.1 Introduction

In the previous section, we assumed that the configuration of our physical system could
be described by a point in a finite-dimensional manifold. However, there are many physical
systems for which this is not the case. For example, when we use a continuum approximation,
the state of a fluid is characterized by a diffeomorphism from the fluid’s container to itself.
Alternatively, we could characterize a fluid by its velocity field (this is the approach we will
take later on). In either case, our characterization of the fluid has infinitely many degrees off
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freedom. So we cannot represent our physical system with a finite-dimensional configuration
space.

It would be very difficult to handle an arbitrary infinite-dimensional configuration space.
But luckily, many physical systems with infinite-dimensional configuration spaces have highly-
structured configurations spaces. We can take advantage of this structure to understand
these physical systems.

Both possible configuration spaces we considered for fluids are spaces of maps between
finite-dimensional manifolds. In particular, both configuration spaces are spaces of sections
of fiber bundles. We can view a diffeomorphism from a manifold M to itself as a section of
the trivial vector bundle M ×M . And a fluid’s velocity field is simply a vector field, which
is a section of the tangent bundle TM . It turns out that there are many physical systems
whose configurations can be understood as sections of vector bundles. We call these section
fields and we call the study of such systems field theory. In the following sections, we will
present the beginning a geometric viewpoint on classical field theory, following [15], [14], and
[17].

2.2.2 Geometric Setup

Studying field theory variationally is tricky. In order to formalize all of the variations required
to understand the systems, we need to parameterize the sections of our fiber bundle. This
leads to a complicated geometric setup with many similar-seeming maps.

The basic object of a field theory is a vector bundle

S Y

X

πY X

Where the base space X = R×Rn is called spacetime, the fiber (vector space attached to each
point) is S = Rm is called ambient space, and the total space Y is called the configuration
bundle.

We pick a subset of space M ⊆ Rn. We also define a parameter space U = [t0, t1] ×M .
Now, we define our configuration space to be

C ∶= {ϕ ∶ U → Y ∣ πY X ○ ϕ ∶ U →X is an embedding} (2.42)

Aside: If you want to be very formal, you can define the configuration space to be
an infinite-dimensional manifold by taking the completion of C with respect to some
norm. But this won’t be necessary for us.
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Let us denote πY X ○ ϕ ∶ U → X by ϕX and ϕX(U) by UX . Now ϕX ∶ U → UX is a
diffeomorphism. Note that a function ϕ ∈ C gives us a section ϕ ○ ϕ−1X ∶ UX → Y .

Our field-theoretic analogue of the state space is the first jet bundle of Y , J1Y . We will
define a Lagrangian as a function on J1Y . Because we want to integrate our Lagrangian, it
will be convenient for the output of the Lagrangian to be a differential form which we can
integrate5.

Definition 2.2.1. A Lagrangian is a functional L ∶ J1Y → Λn+1(X).

Recall that X is (n + 1)-dimensional since time is the zeroth dimension.

As before, we integrate our Lagrangian to obtain an action functional S ∶ C → R.

Definition 2.2.2. The action functional is the map S ∶ C → R given by

S(ϕ) ∶= ∫
UX

L(j1(ϕ ○ ϕ−1X )) (2.43)

Using this definition of the field-theoretic Lagrangian and action, one can find analogues
of all of the theorems and identities we saw before. But the computations get much more
complicated. For more details, see [15], [14], or [17].

2.3 Maxwell’s Equations

2.3.1 Maxwell’s Equations in Vector Calculus

In CGS units, Maxwell’s equations are given by

1. ∇ ⋅E = 4πρ

2. ∇ ⋅B = 0

3. ∇×E = −1
c
∂B
∂t

4. ∇×B = 4π
c J +

1
c
∂E
∂t

E is the electric field, B is the magnetic field, J is the electric current density, and ρ is
the electric charge density. E,B and J are vector fields and ρ is a scalar field.

If we want to write Maxwell’s equations with differential forms, we need to decide what
type of forms will represent E,B,J and ρ. Following [18] we will decide this based on how
these fields are used in various equations.

First, we consider Faraday’s law

∮
C
E ⋅ d` = − d

dt ∫S
B ⋅ dA (2.44)

5This is basically just taking the Hodge star of our previous notion of Lagrangian
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E is integrated over a curve, so E naturally corresponds to a 1-form (Since one-forms are
objects that you can integrate along curves). We will write the 1-form associated to E as
η = E♭. Meanwhile B is integrated over a surface, so B naturally corresponds to a 2-form.
We will write this 2-form as β = ⋆B♭ as the 2-form associated to B. β can be thought of as a
function that measures the flux of B through oriented parallelograms. J , the current density,
is integrated over surfaces to find the current passing through the surface, so J is naturally
a 2-form. We will write this forms as J = ⋆J ♭. Finally, ρ is integrated over volumes to find
the enclosed charge, so ρ is naturally a 3-form, and we will call the 3-form ρ.

We recall the following rules for translating from vector calculus to differential forms:

(∇ ⋅ v)♭ = ⋆d ⋆ v♭ (2.45)
(∇× v)♭ = ⋆dv♭ (2.46)

We can use these rules to write Maxwell’s equations in terms of η, β,J , and ρ.

We will start with the first equation. On the left hand side, ∇ ⋅E becomes ⋆d ⋆ η, which
is a 0-form. We want to set it equal to the 3-form 4πρ. So we use the Hodge star to turn
⋆d ⋆ η into a 3 form and find that ⋆ ⋆ d ⋆ η = 4πρ. In 3D, ⋆⋆ = 1, so our equation is just

d ⋆ η = 4πρ (2.47)

Now, we move on to the second equation. ∇ ⋅B becomes ⋆d ⋆ (⋆β). Since ⋆⋆ = 1, this just
becomes ⋆dβ. So our equation is ⋆dβ = 0. Applying ⋆ to both sides gives dβ = 0.

dβ = 0 (2.48)

For the third equation, our substitutions gives us ⋆dη = −1
c
∂⋆β
∂t . Applying ⋆ to both sides

yields dη = −1
c ⋆

∂⋆β
∂t . But we can pull the ⋆ inside the derivative to get

dη = −1

c

∂β

∂t
(2.49)

Finally, we translate the last equation. Our substitution rules give us

⋆ d ⋆ β = 4π

c
⋆J + 1

c

∂η

∂t
(2.50)

Putting all of the equations together, we have

d ⋆ η = 4πρ (2.51)
dβ = 0 (2.52)

dη = −1

c

∂β

∂t
(2.53)

⋆d ⋆ β = 4π

c
⋆J + 1

c

∂η

∂t
(2.54)

Now, we have written the equations using differential forms. But the equations still
don’t look very relativistic yet - we still have a big distinction between space and time
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derivatives. For our next step, we will stop thinking about forms on space that change over
time, and instead think about forms on 3 + 1-dimensional spacetime (i.e. spacetime with 3
spatial dimensions and 1 time dimension). In spacetime, we have both the spatial exterior
derivative, the spatial Hodge star, the spacetime exterior derivative, and the spacetime
Hodge star. We will denote the spatial operators ds,⋆s respectively, and we will denote the
spacetime operators d and ⋆.

2.3.2 Working in Spacetime6

Before we can write Maxwell’s equations in spacetime, we have to learn about how our
spatial operators are related to our spacetime operators. We will use the convention that
coordinates in spacetime are written like

(x0, x1, x2, x3) = (ct, x, y, z)

The Exterior Derivative

Now, we will look at the relationship between d and ds. Let ω = ∑I ωIdxI be a spatial
differential form (i.e. no component of ω involves a dx0). We can compute dω as follows

dω =∑
I

dωi ∧ dxI (2.55)

=∑
I

[(
3

∑
i=0
∂iωIdx

i) ∧ dxI] (2.56)

=∑
I

(∂0ωIdx0 ∧ dxI +
3

∑
i=1
∂iωIdx

i ∧ dxI) (2.57)

= dx0 ∧ ∂0ω + dsω (2.58)
= (dx0 ∧ ∂0 + ds)ω (2.59)

So we see that d = dx0 ∧ ∂0 + ds. The spacetime exterior derivative is just the spatial
exterior derivative with an extra term related to the time derivative.

The Hodge Star of Spatial Forms

Now, we will relate ⋆ and ⋆s. Let ω be a spatial k-form. The spacetime Hodge star is defined
by the property that

ω ∧ ⋆ω = ⟨ω,ω⟩µ (2.60)

Here µ = dx0 ∧ dx1 ∧ dx2 ∧ dx3 is the spacetime volume form. Let µs = dx1 ∧ dx2 ∧ dx3 be the
spatial volume form. Clearly µ = dx0 ∧ µs. Furthermore, we know that ω ∧ ⋆sω = ⟨ω,ω⟩µs.

6We won’t need to worry about Maxwell’s equations in spacetime for our later discussion of MHD. But
it provides an interesting and natural example of how differential forms can simplify our representation of
physical systems.



30 Chapter 2. Physical Preliminaries

Therefore,

ω ∧ ⋆ω = ⟨ω,ω⟩µ (2.61)
= dx0 ∧ ⟨ω,ω⟩µs (2.62)
= dx0 ∧ ω ∧ ⋆sω (2.63)
= ω ∧ (−1)k(dx0 ∧ ⋆sω) (2.64)

So ⋆ω = (−1)k dx0 ∧ ⋆sω when ω is purely a spatial k-form.

The Hodge Star of Forms with a Time Component

Now, suppose that ω = dx0 ∧ ωs where ωs is a spatial form. Then ⟨ω,ω⟩ = − ⟨ωs, ωs⟩, so we
need ω ∧ ⋆ω = − ⟨ωs, ωs⟩µ. We know that ωs ∧ ⋆sωs = ⟨ωs, ωs⟩µs. Thus,

ω ∧ ⋆sωs = dx0 ∧ ωs ∧ ⋆sωs = dx0 ∧ µs = µ (2.65)

So, ⋆ω = − ⋆s ω when ω is the wedge product of dx0 and a spatial form.

Finally, we note for completeness that ⋆dx0 = −µs.

2.3.3 Covariant formulation of Maxwell’s equations

Finally, we’ve developed all of the tools we need to write Maxwell’s equations in spacetime.
We will begin with the homogeneous equations (equations two and three). Maxwell’s second
equation tells us that dβ = 0 and Maxwell’s third equation tells us that dsη+ 1

c
∂β
∂t = 0. Because,

we write coordinates in spacetime as

(x0, x1, x2, x3) = (ct, x, y, z) (2.66)

it turns out that 1
c
∂β
∂t =

∂β
∂x0 =∶ ∂0β. So we can write Maxwell’s third equation as dsη +∂0β = 0

The second equation is an equation of 3-forms, and the third equation is an equation of
2-forms. We can make them both equations of 3-forms by wedging the third equation with
dx0. Then we have dsβ = 0 and dx0 ∧ (dsη + ∂0β) = 0. We can add these together to get
dsβ+dx0∧∂0β+dx0∧dsη = 0. We note that because we are adding together forms of different
types, their sum is 0 if and only if the individual terms in the sum are 0. So this equation
expresses both Maxwell’s second law and his third law. Inspecting the sum, we see that the
first two terms are our expression for dβ! Furthermore, the last term is d(η ∧ dx0).

d(η ∧ dx0) = dη ∧ dx0 (2.67)
= (dsη + dx0 ∧ ∂0cη) ∧ dx0 (2.68)
= dsη ∧ dx0 (2.69)
= dx0 ∧ dsη (2.70)
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Therefore, we can write Maxwell’s second and third equations as dβ + d(η ∧ dx0) = 0, or
d(β + η ∧ dx0) = 0. To simplify even more, we call F ∶= β + η ∧ dx0 the Faraday tensor, and
simply write dF = 0.

Now, we consider d ⋆ F . We’ll start by computing ⋆F .

⋆ F = ⋆(β + η ∧ dx0) = ⋆β + ⋆(η ∧ dx0) (2.71)

Since β is a spatial 2-form, ⋆β = dx0 ∧ ⋆sβ. Since η is a spatial 1-form,

⋆ (η ∧ dx0) = − ⋆ (dx0 ∧ η) = −(− ⋆s η) = ⋆sη (2.72)

Putting this together shows us that ⋆F = dx0 ∧ ⋆sβ + ⋆sη. Now, we can take the exterior
derivative.

d ⋆ F = d(dx0 ∧ ⋆sβ + ⋆sη) (2.73)
= (ds + dx0 ∧ ∂0)(dx0 ∧ ⋆sβ + ⋆sη) (2.74)
= −dx0 ∧ ds ⋆s β + ds ⋆s η + dx0 ∧ ∂0 ⋆s η (2.75)
= ds ⋆s η + dx0 ∧ (∂0 ⋆s η − ds ⋆s dsβ) (2.76)

Maxwell’s first equation tells us that ds ⋆s η = 4πρ. Maxwell’s fourth equation tells us
that ∂0η − ⋆sds ⋆s β = −4π

c ⋆s J . Therefore,

d ⋆ F = 4π ⋆ ρ dx0 − 4π

c
dx0 ∧J (2.77)

(2.78)

We define cρ − dx0 ∧J = J to be the four-current. Now, our equation reads d ⋆ F = 4π
c J.

This lets us finally express Maxwell’s equations (in cgs units) as

dF = 0 and d ⋆ F = 4π

c
J (2.79)

2.3.4 Ideal Fluids

A simple approximation of a fluid is to imagine many particles traveling around, each with
their own velocity. If we assume smoothness, we could represent the state of a fluid in a
container M as a vector field v ∈ Γ(TM) representing the fluid’s velocity at each point.
However, it turns out to be quite helpful to work with the associated 1-form η ∶= v♭ instead,
and we will primarily work with η. Since the particles move along the velocity field, and
the particle’s velocities add together to form the velocity field, these velocity vectors advect
themselves along their own velocity field. Mathematically, we can write this claim as

η̇ = −Lη♯η (2.80)
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But this is not quite the equations of motion for an ideal fluid. This allows the fluid to
bunch up or spread out however it would like. In reality, fluids cannot compress infinitely or
spread infinitely thin. They are, in fact, quite difficult to compress. A common assumption
when modeling fluids is to assume that the fluids are incompressible. This means that the
divergence of our velocity field must be 0. So we require that δη = 0. Of course, the equation
of motion we proposed earlier might not preserve the property that δη = 0. To fix this, we
note that if δη, initially, and if δη̇ = 0 for all time, then δη will be zero for all time. So it is
sufficient to ensure that η̇ = 0. Furthermore, given any 1-form, we can add an exact 1-form
to shift its codifferential by any constant. So we can take the following pair of equations as
our equations of motion

η̇ +Lη♯η + dp = 0 (2.81)
δη = 0 (2.82)

p is called the pressure, and allows us to enforce the incompressibility constraint on η. These
equations are called the Euler equations for an ideal fluid.

This model of fluids is very idealized. In particular, we assume that the fluid is incom-
pressible, and also that it has no viscosity.

2.4 Magnetohydrodynamics

Magnetohydrodynamics(MHD) is the physics of current-carrying fluids. To study such fluids,
we combine Maxwell’s equations with the Euler equations for an ideal fluid, and make some
additional simplifying assumptions. The material we present in this section can be found in
[10], [9], or [19].

2.4.1 Equations of Motion

We will consider the case of a fluid which is not in the presence of external electric fields.

We assume that our fluid behaves like a current-carrying wire in a magnetic field β ∈
Ω2(M). The force felt by a wire with current J in a magnetic field β is given by7

J × (⋆β)♯ = (−ιJβ)♯ (2.83)

If we assume that the electric field is roughly constant, then Maxwell’s fourth equation
(equation 2.548) tells us that our current 1-form is given by δβ (up to some scaling factors)
So the electromagnetic force felt by the fluid is ι(δβ)♯β. This gives us the velocity equation

η̇ +Lη♯η + ι(δβ)♯β + dp = 0 (2.84)

7See proposition 1 in Appendix B
8Beware: in the section on Maxwell’s equations, we used η for the electric field, while now it represents

the veocity 1-form.
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There is a convenient trick we can apply to this equation. Using Cartan’s magic formula,
we see that

η̇ + dιη♯η + ιη♯dη + ι(δβ)♯β + dp = 0 (2.85)

Now,
dιη♯η = d∣η∣2 (2.86)

Since this is the differential of a scalar function, we can just redefine our pressure to be the
old pressure plus ∣η∣2 to obtain a simpler equation

η̇ + ιη♯dη + ι(δβ)♯β + dp = 0 (2.87)

The magnetic field is generated by the moving particles, so it is simply advected by the fluid.
In terms of the Lie derivative, we write

β̇ +Lη♯β = 0 (2.88)

As one final simplification, we note that the magnetic field is divergence-free. Thus,

0 = δ(⋆β) = ⋆−1dβ (2.89)

We conclude that dβ = 0. This fact, along with Cartan’s magic formula, shows us that

Lη♯β = ιη♯dβ + dιη♯β = dιη♯β (2.90)

This gives us the ideal MHD equations

η̇ + ιη♯dη + ι(δβ)♯β + dp = 0 (2.91)

β̇ + dιη♯β = 0 (2.92)
δη = 0 (2.93)

2.4.2 Conservation Laws

For more about conservation laws in fluids, see [19] or [20]

Energy

The energy of a magnetic fluid in a domain M has two components: there is kinetic energy,
and there is potential energy stored in the magnetic field. The kinetic energy has the form

K(η, β) = 1

2
∥η∥2 = 1

2 ∫M
η ∧ ⋆η (2.94)

The potential energy has the form

U(η, β) = 1

2
∥β∥2 = 1

2 ∫M
β ∧ ⋆β (2.95)
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Thus, our energy is given by

E(η, β) ∶= 1

2
∥η∥2 + 1

2
∥β∥2 = 1

2 ∫M
η ∧ ⋆η + β ∧ ⋆β (2.96)

We can prove conservation of energy with a simple computation.

d

dt
E = 1

2

d

dt
∥η∥2 + 1

2

d

dt
∥β∥2 (2.97)

= ⟪η, η̇⟫ + ⟪β, β̇⟫ (2.98)

= ⟪η,−ιη♯dη − ι(δβ)♯β − dp⟫ + ⟪β,−dιη♯β⟫ (2.99)
= ⟪η ∧ η, dη⟫ − ⟪δβ ∧ η, β⟫ − ⟪δη, p⟫ (2.100)

− ⟪η ∧ δβ, β⟫ (2.101)
= ⟪δβ ∧ η + η ∧ δβ, β⟫ (2.102)
= 0 (2.103)

Cross Helicity

The cross helicity is defined to be
Hχ ∶= ∫

M
η ∧ β (2.104)

Again, we can compute its time derivative to show that it is conserved. Note that since β is
a 2-form, we have η ∧ β = β ∧ η.

d

dt
Hχ =

d

dt ∫M
η ∧ β (2.105)

= ⟪η̇,⋆β⟫ + ⟪β̇,⋆η⟫ (2.106)

= ⟪−ιη♯dη − ι(δβ)♯β − dp,⋆β⟫ + ⟪−dιη♯β,⋆η⟫ (2.107)
= −⟪dη, η ∧ ⋆β⟫ − ⟪β, δβ ∧ ⋆β⟫ − ⟪p,⋆dβ⟫ − ⟪β, η ∧ ⋆dη⟫ (2.108)

= −∫
M
η ∧ ⋆β ∧ ⋆dη − ∫

M
δβ ∧ ⋆β ∧ ⋆β − 0 − ∫

M
η ∧ ⋆dη ∧ ⋆β (2.109)

= −∫
M
η ∧ ⋆β ∧ ⋆dη + ∫

M
η ∧ ⋆β ∧ ⋆dη (2.110)

= 0 (2.111)

2.4.3 Magnetic Helicity

Suppose that our domain M satisfies H1(M) = 0. Then, we get another conserved quantity
called the magnetic helicity.

Since H1(M) = 0, every closed form is exact. So we can write the magnetic field as the
exterior derivative of a vector potential β = dα. Now, we define the magnetic helicity to be

HM ∶= ∫
M
α ∧ β (2.112)
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Like with cross helicity and energy, we can show that this is conserved via direct computation.
This takes a little more work, as we first have to write the evolution equation for α. Using
the evolution equation for β, we see that

dα̇ = −dιη♯dα (2.113)

Therefore, the form α̇ + ιη♯dα is closed. Since H1(M) = 0, it must also be exact. So we have

α̇ = −ιη♯dα + dq (2.114)

for some 0-form q.

Now, we can show that magnetic helicity is conserved.

d

dt
HM = d

dt ∫M
α ∧ β (2.115)

= ⟪α̇,⋆β⟫ + ⟪β̇,⋆α⟫ (2.116)

= ⟪−ιη♯dα + dq,⋆β⟫ + ⟪−dιη♯β,⋆α⟫ (2.117)
= −⟪dα, η ∧ ⋆β⟫ + ⟪q,⋆dβ⟫ − ⟪β, η ∧ ⋆dα⟫ (2.118)
= −⟪dα, η ∧ ⋆β⟫ − ⟪β, η ∧ ⋆dα⟫ (2.119)

= −∫
M
η ∧ ⋆β ∧ ⋆dα − ∫

M
η ∧ ⋆dα ∧ ⋆β (2.120)

= 0 (2.121)

2.4.4 2D MHD

We consider the case of a two-dimensional conducting fluid in the xy-plane. The equations
we derive here are also given in [10]. Since the component of the magnetic 2-form which
lives in the plane cannot affect the fluid’s velocity, we assume that the magnetic 2-form does
not lie in the plane.

We will denote the Hodge star in 3D space by ⋆3D, and we will denote the Hodge star in
the plane by ⋆2D. Note if η is a 1-form in the xy-plane, then9

⋆3D (⋆2Dη ∧ dz) = η (2.122)

Let b = ⋆3Dβ. Note that β = ⋆2Db ∧ dz.
To find the equation of motion for η, we need to understand the term ι(δβ)♯β. We start

with δβ.
δβ = ⋆3Dd3D ⋆3D β = ⋆3Dd3Db (2.123)

Note that because b has no z-dependence, d3Db = d2Db. So we have

δβ = ⋆3Dd3Db = ⋆3Dd2Db = (⋆2Dd2Db) ∧ dz = (⋆2Dd2Db)dz (2.124)

9See proposition 2 in Appendix B for proof
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where the second-to-last equality used proposition 3 from Appendix B.

Therefore,

ι(δ3Dβ)♯β = ι(⋆2Dd2Db)dz(⋆2Db ∧ dz) (2.125)
= (⋆2Dd2Db)ιdz(⋆2Db ∧ dz) (2.126)
= −(⋆2Dd2Db)(⋆2Db) (2.127)

It is convenient to write this expression in a different form. It turns out that we have10

− (⋆2Dd2Db)(⋆2Db) = −ιb♯d2Db (2.128)

This gives us our equation of motion for η:

η̇ + ιη♯dη − ιb♯db + dp = 0 (2.129)

(where the exterior derivatives are taken to be d2D)

We can follow the same procedure to find the equation of motion for b. We know that
β = ⋆2Db ∧ dz. Substituting this into the equation of motion for β, we find that

⋆2D ḃ ∧ dz + d3Dιη♯(⋆2Db ∧ dz) = 0 (2.130)

Note that since η lies in the plane, dz(η♯) = 0. Thus,

d3Dιη♯(⋆2Db ∧ dz) = d3D[(ιη♯ ⋆2D b) ∧ dz] (2.131)

Next, we note that

ιη♯ ⋆2D b = ⟨η,⋆2Db⟩ (2.132)
= ⋆2D(η ∧ ⋆22Db) (2.133)
= − ⋆2D (η ∧ b) (2.134)
= ⋆2D(b ∧ η) (2.135)

This clearly has no z dependence. So

d3D[ ⋆2D (b ∧ η) ∧ dz] = [d2D ⋆2D (b ∧ η)] ∧ dz (2.136)

Thus, our equation of motion has the form

[ ⋆2D ḃ + d2D ⋆2D (b ∧ η)] ∧ dz = 0 (2.137)

Therefore, we see that
⋆2D ḃ + d2D ⋆2D (b ∧ η) = 0 (2.138)

Now, we can multiply through by ⋆−12D and use the fact that δ2D ∶= ⋆−12Dd2D⋆2D to obtain the
equation of motion

ḃ + δ2D(b ∧ η) = 0 (2.139)
10See Appendix B proposition 4
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Finally, we will determine the initial condition on b. Recall that we require d3Dβ = 0 at t = 0.
This implies that

0 = d3D(⋆2Db ∧ dz) (2.140)
= (d2D ⋆2D b) ∧ dz (2.141)

So our initial condition on b is that δ2Db = 0.

Thus, we can express the 2D MHD equations entirely in terms of the exterior calculus
operators in the plane, and have the form

η̇ + ιη♯dη − ιb♯db + dp = 0 (2.142)

ḃ + δ(b ∧ η) = 0 (2.143)
δη = 0 (2.144)

with initial condition δb = 0.

2.5 Formal Lagrangians

In this section, we will mostly follow the treatment in [21]. For more information about
formal Lagrangians, see [21], [22], or [23] (the first has a fairly geometric viewpoint while the
latter two approach the subject from a differential equations perspective).

Lagrangian mechanics gives us some powerful tools for understanding physical systems,
but there is a significant drawback. In order to apply this framework, we need to have a
Lagrangian which yields our system’s equations of motion. Although many simple systems
have Lagrangians which are easy to guess, this is not always the case. In fact, not all systems
of differential equations admit a variational formulation [21].

However, there is a way of working around this limitation. Earlier11, we saw that one
can add Lagrange multipliers to a Lagrangian to enforce constraints. So we can just enforce
arbitrary equations of motion using Lagrange multipliers! Suppose we have a system of
first-order differential equations

F(u, u̇) = 0 (2.145)

We define a formal Lagrangian

L(u, u̇, λ, λ̇) ∶= λ ⋅F(u, u̇) (2.146)

The Euler-Lagrange equations for the λ variables tell us that

F(u, u̇) = ∂L
∂λ

= d

dt

∂L
∂λ̇

= 0 (2.147)

which means that our system follows the desired equations of motion!
11as an aside in section 2.1.2
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Of course, this formal Lagrangian does not only solve our differential equations. We have
doubled the number of variables, and the λ’s also evolve over time. The Euler-Lagrange
equations for the u variables give us the evolution equations for λ.

∂L
∂u

= λ∂F
∂u

(2.148)

d

dt

∂L
∂u̇

= d

dt
(λ∂F

∂u̇
) (2.149)

= λ̇∂F
∂u̇

+ λ∂F
∂u̇

(2.150)

So the Euler-Lagrange equations tell us that

λ̇
∂F
∂u̇

+ λ(∂F
∂u̇

− ∂F
∂u

) = 0 (2.151)

Now, suppose that given a solution u of F , we can apply some transformation Φ ∶ u↦ (u,λ)
to obtain a solution of our extended equations of motion.12 In this case, solutions of our
original system give us solutions of the larger system. So if we have a conserved quantity in
the larger system, it must also be conserved by the original, smaller system. Furthermore,
it turns out that symmetries of our original system yield symmetries of the larger system.
Thus, we can use formal Lagrangians to find conserved quantities of systems of differential
equations which do not naturally have a Lagrangian formulation.

12This seems like a strong assumption, but it is often the case. For an example, look at section C.1 in
Appendix C



Chapter 3

Computational Preliminaries

3.1 Introduction

So far, we have a built up a substantial amount of mathematical machinery and physical
theories, but all of it lives in the setting of continuous mathematics. In order to apply these
ideas to computational problems, we need to discretize everything. Discretization is a subtle
procedure - frequently, equivalent concepts in the smooth setting lead naturally to different
discretizations which each have their own positives and negatives.

3.2 Discrete Exterior Calculus

In this section, we will describe the theory of discrete exterior calculus (DEC), as presented
in [24]. DEC provides an elegant and efficient way of applying the theory of manifolds and
differential forms to computational problems. In the end, we will be able to write down
the exterior calculus operators which we defined earlier as sparse matrices, which we can
efficiently compute with. The fundamental idea of discrete exterior calculus is that we can
approximate a smooth manifold by a simplicial complex (or cell complex). In the case of
2-dimensional manifolds, this means using a triangle (or polygonal) mesh.1

3.2.1 Discrete Differential Forms

There is a very elegant discretization of differential forms. We cannot transfer the technical
construction of the exterior algebra of the tangent bundle into the discrete setting, but we can
bring the general intuition that a k-form is an object which is integrated over k-dimensional
submanifolds. The natural notion of “discrete k-dimensional submanifold” is just a collection
of k-simplices. So we could define a discrete differential k-form to be a real-valued function

1In the following sections, we restrict our attention to triangle meshes and simplicial complexes, but all
of the ideas extend readily to meshes whose faces are polygons other than triangles. Indeed, in our MHD
simulation, we will use a regular grid instead of a triangle mesh.

39
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on k-simplices. With this definition, our discrete k-forms can be “integrated” over discrete
submanifolds, and this integration satisfies the desirable property that

∫
A∪B

ω = ∫
A
ω + ∫

B
ω (3.1)

for disjoint discrete submanifolds A and B.

In the language of algebraic topology, a real-valued function on k-simplices is called a
k-cochain. So we define

Definition 3.2.1. A discrete differential k form on a simplicial complex X is a k-cochain
on X.

When thinking about our discrete differential forms as differential forms, we will often
write the evaluation of a form ω on a submanifold S as ∫S ω. When thinking of discrete
differential k-forms as real-valued functions on k-cells, we will sometimes write the evaluation
of a form ω on a submanifold S as ω(S).

Practically speaking, if our discrete mesh has n cells of dimension k, a discrete k-form is
just a vector in Rn, since we have to assign a real number to each k-cell.

3.2.2 Discrete Exterior Derivative

We can define a discrete version of the exterior derivative using Stokes’ Theorem. Recall
that in the continuous setting, Stokes’ theorem tells us that

∫
∂S
ω = ∫

S
dω (3.2)

We already understand how to interpret the differential form ω and the submanifold S in
the discrete world. And taking the boundary of S is straightforward. So we can use Stokes’
theorem to define dω as “the differential form whose integral on S is ∫∂S ω”.

Definition 3.2.2. Given a discrete k-form ω, the discrete exterior derivative of ω is the
discrete (k + 1)-form dω whose value on a (k + 1)-simplex S is given by ∫∂S ω.

When we define the exterior derivative in this way, we ensure that Stokes’ theorem is
exactly true even in our discrete equations. This is useful for reasoning about discrete
systems.

Observe that linearity of our discrete exterior derivative follows from linearity of integra-
tion. For any (k + 1)-cell S, we have

d(ω + η)(S) = ∫
∂S

(ω + η) = ∫
∂S
ω + ∫

∂S
η = dω(S) + dη(S) (3.3)

Since this is true for every S, we conclude that d(ω+η) = dω+dη. A similar argument shows
that for any scalar r ∈ R, we have d(rω) = rdω.
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Since the discrete exterior derivative is a linear operator, we can write it down as a matrix.
Let ω be a discrete k form. Suppose our discrete manifold has n k-cells and m (k + 1)-cells.
Let

ω =
⎛
⎜⎜⎜
⎝

ω1

ω2

⋮
ωn

⎞
⎟⎟⎟
⎠

(3.4)

where ωi is the value of ω on the ith k-cell. Since the discrete exterior derivative takes
k-forms to (k + 1)-forms, it will be an m × n matrix.

The ith entry in dω, which we will denote (dω)i, is the value of dω on the ith (k + 1)-
simplex. Let us denote this cell by Si. By definition,

∫
Si

dω = ∫
∂Si

ω = ∑
Tj∈∂Si

∫
Tj
ω = ∑

Tj∈∂Si

±ωj (3.5)

where the sign of ωj in the final sum depends on the orientation of Tj as an element of
Si’s boundary. So the ith row of d is mostly zeros, with ±1 in the entries corresponding to
elements of ∂Si. This matrix has a nice interpretation. It is just the transpose of the matrix
that takes a cell S to its boundary ∂S. If we write this map as ∂, then we obtain the simple
identity

d = ∂T (3.6)

For this reason, d is sometimes called the codifferential.

Note that this matrix is very sparse. In general, the boundary of a (k + 1)-simplex will
contain only k + 1 boundary cells, so each column of ∂k contains only k + 1 entries. Thus, dk
contains only k + 1 nonzero entries n each row.

3.2.3 Discrete Hodge Star

The Hodge star is a trickier operation to discretize than the exterior derivative. The exterior
derivative (in the continuous setting) is a purely topological operation, wheres the Hodge
star depends on the metric with which we endow our manifold. The topological-metric
distinction is less clear in the continuous setting, but we can understand the difference as
follows: the discrete exterior derivative depends only on the combinatorial structure of our
discrete mesh (i.e. which simplices form the boundary of which )

Initially, it is not obvious that it even makes sense to talk about a discrete Hodge star.
The continuous Hodge star on an n-dimensional smooth manifoldM defines an isomorphism
Ωk(M) ∼Ð→ Ωn−k(M). But the space of discrete k-forms does not have to be isomorphic to the
space of discrete (n−k)-forms! It’s easy to come up with simplicial complexes which violate
this condition. For example, consider a triangle. It has 3 vertices, so a discrete 0-form is a
vector in R3. But it only has one face, so a discrete 2-form is a scalar in R. Clearly R and
R3 are not linearly isomorphic!
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So we can’t define a discrete Hodge star that takes in discrete k-forms and returns discrete
(n − k)-forms. The basic problem is that we don’t have a natural correspondence between
k-cells and (n − k)-cells in a general simplicial complex.

Luckily for us, this problem has a neat solution. Although there is no natural correspon-
dence between k-cells and (n − k)-cells, there is a natural correspondence between k-cells
in our mesh and (n − k)-cells in the dual mesh. So we have a natural map between primal
k-forms and dual (n − k)-forms.All that we have to do now is fix a scaling factor. Let Ski
denote a primal k-cell, and Ŝn−ki denote its corresponding dual (n − k)-cell. Let ω be a
discrete k-form with

∫
Sk
i

ω = ωi (3.7)

We need to determine
∫
Ŝn−k
i

⋆ω (3.8)

We want ⋆ω and ω to have the same density, so we set

∫
Ŝn−k
i

⋆ω = ±
∣Ŝn−ki ∣
∣Ski ∣

∫
Sk
i

ω (3.9)

where ∣Ski ∣ is the volume of simplex ∣Ski ∣. The sign depends on the relative orientations of Ski
and its dual cell.

If we represent ω as a vector, then ⋆ω has the same number of components as ω (since
the primal and dual meshes have the same number of k-cells and (n − k)-cells respectively).
So we can represent ⋆ by a diagonal matrix.

3.2.4 Discrete Inner Product

Given two discrete k-forms α and β (thought of as vectors), we define the discrete (Hodge)
inner product to be

⟪α,β⟫ ∶= αT ⋆k β (3.10)

Note that this is symmetric because our discrete Hodge star is diagonal (and thus ⋆Tk = ⋆k).
This definition is analogous to the continuous identity

⟪α,β⟫ = ∫
M
α ∧ ⋆β (3.11)

One convenient property of this inner product is that the discrete exterior derivative and
the discrete codifferential are adjoint

⟪α, dβ⟫ = αT ⋆k dβ (3.12)
= αT ⋆k d ⋆−1k ⋆kβ (3.13)
= (⋆−1k dT ⋆k α)T ⋆k β (3.14)
= ⟪δα, β⟫ (3.15)

Where we have used the fact that ⋆Tk = ⋆k.
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3.2.5 Discrete Codifferential

In the continuous setting, we defined the codifferential to be δ ∶= ⋆−1d⋆. We need to modify
this, slightly, because our discrete Hodge star does not simply map discrete differential forms
to discrete differential forms. Instead, it maps discrete primal forms to discrete dual forms
(and vice versa). So when we define δ on our primal mesh, we actually need to write it in
terms of d on the dual mesh.

Luckily for us, the expression for d on the dual mesh is simple - it is simply the transpose
of our primal d. So we define δ ∶= ⋆−1dT⋆.

3.2.6 Discrete Wedge Product

It turns out that it is impossible to define a discrete wedge product which is compatible with
our discrete exterior derivative and respects the (anti)-symmetry of the continuous wedge
product. This is known as the commutative cohain problem [25], [26]. However, we can
define a discrete wedge product of 1-forms provided we work on a regular grid.

3.2.7 Explicit Expressions on a Regular Grid

vi,j vi+1,j

vi+1,j+1vi,j+1

ei,jh

ei,j
v ei+1,j

v

ei,j+1
h

fi,j

Figure 3.1: Reference for grid element naming convention

Now, we will give explicit expressions for these operators on a regular grid. Figure 3.1
shows our naming convention for the vertices, edges, and faces of the grid.
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Discrete Exterior Derivative

The discrete exterior derivative on 0-forms, d0, takes a function f defined on vertices and
returns a function df defined on edges. The value of df on an edge (v,w) from vertex v to
vertex w is f(w) − f(v). So we can express d0 as a matrix which takes

d0 ∶ vij ↦ −ehi,j − evi,j + ehi−1,j + evi,j−1 (3.16)

Similarly, the discrete exterior derivative on 1-forms, d1, takes a function f defined on
edges and returns a function df defined on faces. The value of df on a face is the sum of the
values of f around its boundary edges. So we can express d1 as a matrix which takes

d1 ∶ ehi,j ↦ fi,j − fi,j−1 (3.17)
d1 ∶ evi,j ↦ −fi,j + fi−1,j (3.18)

Discrete Hodge Star

The discrete Hodge star is a diagonal matrix whose entries represent the ratio of the areas
between primal and dual cells. Since the dual of a regular grid is just a translated copy of
the grid, our Hodge star is simply the identity matrix.

Discrete Hodge Inner Product

Since the discrete Hodge star is just the identity matrix, the discrete Hodge inner product
is simply the standard inner product.

Discrete Wedge Product

Let α,β be 1-forms whose values on edge ehi,j are denoted by αhi,j and βhi,j respectively (with
the same convention for vertical edges). Then, we define the value of the discrete wedge
product α ∧ β on face fij to be

(α ∧ β)i,j ∶= αhi,j+1/2βvi+1/2,j − αvi+1/2,jβhi,j+1/2 (3.19)

where αh
i,j+1/2 ∶=

1
2(αi,j +αi,j+1), etc are the averaged values of the 1-forms on opposite edges

of face fij.

3.3 Simulation

Now, we will consider the problem of representing and simulating physical systems on a
computer. The material from this section largely comes from [16].
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3.3.1 Euler Integration

One of the oldest and simplest methods of numerically solving differential equations is Euler
integration. The idea behind Euler integration is simple. If we have a first-order differential
equation F(u, u̇) = 0, then we can solve for u̇ to find u̇ for any given u. Taylor’s theorem
tells us that

u(t + h) ≈ u(t) + hu̇(t) (3.20)

This gives us a straightforward algorithm for numerically solving this differential equation.
We can just pick a fixed step size ∆t, and set

uk+1 ← uk +∆t u̇k (3.21)

This is a simple algorithm, and in the limit as ∆t → 0, it converges to a solution of the
equations of motion. However, for reasonable step sizes the algorithm can behave quite
poorly.

As an example, consider the case of a 2D pendulum. We describe the state of the
pendulum by its angle θ, and the equation of motion is

θ̈ + sin θ = 0 (3.22)

Since we defined Euler’s method for first-order differential equations, we must convert this to
a first order differential equation. So we add a velocity variable, and consider the equations
of motion

θ̇ − ω = 0 (3.23)
ω̇ + sin θ = 0 (3.24)

These equations give us the update rule

θk+1 ← θk +∆t ωk (3.25)
ωk+1 ← ωk −∆t sin θk (3.26)

However, if we use this update rule to simulate a pendulum, we do not obtain satisfactory
results

One problem with this simulation is that our system does not conserve energy. In fact, it
steadily gains energy over time. This is due to a systematic error in our Taylor expansions
which we used to derive the update rule. Even though each approximation has a fairly small
error, the errors accumulate over time.

3.3.2 Discrete Lagrangian Mechanics

In the previous section, we saw a simple example where Euler integration leads to a simu-
lations which has poor long-term behavior due to accumulation of error. One problem we
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observed with the simulation was that it did not conserve energy. So one might hope to pro-
duce more accurate simulations by designing simulations which explicitly conserve energy.
Of course, just because a simulation conserves energy does not guarantee that it is accurate
- a simulation which never moves will conserve energy perfectly, but will often give terrible
results. However, energy conservation does ensure that our simulation will not blow up, and
is often evidence that a simulation is accurate.

Lagrangian mechanics gives us a useful framework for understanding conserved quanti-
ties in continuous physics. Because we want to create simulations which respect conserved
quantities, it is natural to turn to Lagrangian mechanics for aid.

We can follow the same steps we took when developing Lagrangian mechanics in Section
2.1.3 to develop a discrete-time version of Lagrangian mechanics. Suppose our system has a
configuration manifold Q. We take Q×Q as our discrete version of the tangent bundle. The
idea is that on a computer, we represent velocities by finite differences, and finite differences
are naturally represented by pairs of points.

Definition 3.3.1. A discrete path is an ordered set of points q = {q1, . . . , qn} ∈ Qn. We
denote the space of paths of length n by CD

n (Q) ∶= Qn.

Definition 3.3.2. A discrete Lagrangian is a map LD ∶ Q ×Q→ R.

Definition 3.3.3. Given a discrete Lagrangian LD, we obtain a discrete action functional
SD ∶ CD

n (Q)→ R defined by

SD[q] ∶=
n−1
∑
i=1
LD(qi, qi+1) (3.27)

Now, we obtain the trajectory of our system by applying Hamilton’s principle of least
action. This time, the variations are fairly simple to compute. Up to a boundary term, we
have

δSD[q] ⋅ δq =
N−1
∑
k=1

(D2LD(qk−1, qk) +D1LD(qk, qk+1)) δqk (3.28)

where Di denotes differentiation with respect to the ith argument.

By requiring that this variation vanish for all variations δq, we find our discrete Euler-
Lagrange equations. They are simply

D2LD(qk−1, qk) +D1LD(qk, qk+1) = 0 (3.29)

And a careful consideration of the boundary term in δSD yields expression for discrete
momentum maps which are conserved by a discrete version of Noether’s theorem. See [16]
for more details.



Part II

Results

47



Chapter 4

Discretization

4.1 Discrete Interior Product

Recall that in the continuous setting, we have the identity

⟪ια♯β, γ⟫ = ⟪β,α ∧ γ⟫ (4.1)

This identity was a key part of our derivation of the MHD conservation laws in section 2.4.2.

In the discrete setting, we can use this identity to define a discrete interior product. Since
we have a discrete wedge product of 1-forms, and a discrete Hodge inner product of forms,
we can define ια♯β to be the unique form whose inner product with γ is ⟪β,α ∧ γ⟫ for any
γ. This uniquely defines the interior product of a discrete 1-form α with a discrete 2-form
β. Explicitly, this discrete interior product is given by the expressions1

(ια♯β)
h
i,j = −

1

2
(βijαvi+1/2,j + βi,j−1αvi+1/2,j−1) (4.2)

(ια♯β)
v
i,j =

1

2
(βi−1,jαhi−1,j+1/2 + βi,jαhi,j+1/2) (4.3)

This interior product was proposed in [27] (definition 8.2.2) as an ‘algebraic interior
product”. It was used in [28] to discretize the incompressible Navier-Stokes equations.In the
context of [27], this definition of the interior product is problematic, as the interior product of
a general vector with a differential form should not depend on the metric, but this definition
does. However, in our case, the definition is quite natural, as we already need the metric to
define α♯ anyway.

We can view the discretization of MHD presented by Kraus and Maj in [10] as a discretiza-
tion using the standard DEC operators on a grid along with this choice of discretization of
the interior product. Kraus and Maj take the inner product of the MHD equations with
Lagrange multipliers to obtain a formal Lagrangian, and use the Hodge-adjointness of ∧ and
ι to obtain a formal Lagrangian written purely in terms of the standard DEC operators.

1For an explanation and derivation, see Appendix D
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This simply defines the discrete interior product by the relation we used above. When Kraus
and Maj differentiate the formal Lagrangian to obtain the Euler-Lagrange equations for the
primal variables, they simply obtain a discretization of the MHD equations which uses our
discrete interior product.

We that our integrator satisfies discrete conservation laws in Chapter 5.

4.2 Solving the Discrete Equations

Now, we have discrete versions of all of the operators involved in the ideal MHD equations.
So our discrete MHD equations look exactly the same as our continuous 2D ideal MHD
equations.

η̇ + ιη♯dη − ιb♯db + dp = 0 (4.4)

ḃ + δ(b ∧ η) = 0 (4.5)
δη = 0 (4.6)

This simple representation of the discrete equations is one of the advantages of discretizing
with discrete exterior calculus.

Using the midpoint discretization at time step t+ 1
2 with step size h, we let η̇ = 1

h(ηt+1−ηt)
and let η = 1

2(ηt+1+ηt) (with analogous expressions for b and p). Substituting these expressions
into our MHD equations, we can solve for (ηt+1, bt+1, pt+1) in terms of (ηt, bt, pt).

This amounts to solving a system of nonlinear equations at each time step. To do so, we
used Newton’s method. Since all of the operators we use are either linear or bilinear, it is
straightforward to find the Jacobian of our system which Newton’s method requires.

⎡⎢⎢⎢⎢⎢⎣

η b p

η
1
hI + ι●♯dη + ιη♯d● ι●♯db + ιb♯d● d

b δ(b ∧ ●) 1
hI − δ(η ∧ ●) 0

p δ 0 0

⎤⎥⎥⎥⎥⎥⎦
(4.7)

A derivation of this expression is presented in Appendix E. We also provide an explicit
formula for the Jacobian there.

Using this Jacobian, we can apply Newton’s method to solve our nonlinear system. In
our experiments, it usually converged within 10 steps. Because all of our DEC operators
are sparse, this Jacobian is also sparse. However, it is not symmetric. So the linear solves
were still fairly slow, and this prevented us from running large simulations or extending the
method to 3D.

4.3 Grids with Boundary

We can define our DEC operators on a grid with boundary. d is still just ∂T , the coboundary
operator. The definition of the wedge product remains the same, because each of the squares
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in the grid still has all of its boundary edges. The Hodge star still makes sense in this case,
and this allows us to define the Hodge inner product for a grid with boundary. And using
this Hodge inner product and wedge product, we can define the discrete interior product on
grids with boundary. Now that we have defined all of the DEC operators on a grid with
boundary, we can simulate MHD on this grid in exactly the same way that we performed
simulations on our grid without boundary.

This implicitly enforces the constraint that the velocity field and magnetic field must be
parallel to the boundary. Physically, this corresponds to a conducting fluid flowing around
in a perfectly insulating container. Other boundary conditions would be more complicated
to implement, but should be possible within the DEC framework.
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Conservation Behavior

Our discrete 2D MHD equations are

η̇ + ιη♯dη − ιb♯db + dp = 0 (5.1)

ḃ + δ(b ∧ η) = 0 (5.2)
δη = 0 (5.3)

We will show that these equations conserve energy and cross-helicity when we use the time
discretization η̇ = 1

h(ηt+1 − ηt) and η = 1
2(ηt+1 + ηt).

5.1 Energy

Recall that the energy at time t is given by

Et ∶= ⟪ηt, ηt⟫ + ⟪bt, bt⟫ (5.4)

Let Ė = 1
h(Et+1 −Et). To show that energy is conserved, it suffices to show that Ė = 0.

Note that

⟪ηt+1, ηt+1⟫ − ⟪ηt, ηt⟫ = ⟪ηt+1, ηt+1⟫ − ⟪ηt+1, ηt⟫ + ⟪ηt+1, ηt⟫ − ⟪ηt, ηt⟫ (5.5)
= ⟪ηt+1, ηt+1 − ηt⟫ + ⟪ηt+1 − ηt, ηt⟫ (5.6)
= 2h⟪η̇, η⟫ (5.7)

Therefore, we see that

1

2
Ė = ⟪η̇, η⟫ + ⟪ḃ, b⟫ (5.8)

= ⟪−ιη♯dη + ιb♯db − dp, η⟫ + ⟪−δ(b ∧ η), b⟫ (5.9)
= −⟪dη, η ∧ η⟫ + ⟪db, b ∧ η⟫ − ⟪p, δη⟫ − ⟪b ∧ η, db⟫ (5.10)
= 0 (5.11)

So energy is conserved
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5.2 Cross-Helicity

We can perform a similar computation to show that cross-helicity is conserved. In 3D, our
cross-helicity was given by ∫ η ∧ β. Since β = ⋆2Db ∧ dz, the cross-helicity is ∫ η ∧ ⋆2Db ∧ dz.
So when we reduce to the 2D case, we get a cross-helicity function H = ∫ η ∧ ⋆b = ⟪η, b⟫.

Ht ∶= ⟪ηt, bt⟫ = ⟪bt, ηt⟫ (5.12)

So

Ḣ = ⟪η̇, b⟫ + ⟪η, ḃ⟫ (5.13)

= ⟪−ιη♯dη + ιb♯db − dp, b⟫ + ⟪η,−δ(b ∧ η)⟫ (5.14)
= −⟪dη, η ∧ b⟫ + ⟪db, b ∧ b⟫ + ⟪p, δb⟫ − ⟪dη, b ∧ η⟫ (5.15)

The first term cancels with the last term, the second term vanishes because b ∧ b = 0, and
the third term vanishes because δb = 0. Thus, cross-helicity is conserved.
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Computational Examples

The proposed algorithm was implemented in Houdini 16, using numpy and scipy for sparse
matrices and linear algebra. One step at 202 resolution takes approximately 3 seconds to
run.

6.1 Alfvén Wave

Following Kraus and Maj [10], we consider an Alfvén wave in the x direction with initial
conditions

η = (0, sin(πx)), b = (1, sin(πx)) (6.1)

We performed the simulation on a 20 × 20 grid representing the region [−1,1] × [−1,1]. We
used a time step of 0.1 and ran the simulation for 100 steps. Our results are shown in
Figure 6.2. Our implementation stored all data as floats, so a precision of 10−8 is essentially
machine precision.

6.2 MHD with boundary

We picked some arbitrary initial conditions η̃ = (η̃x, η̃y) and b̃ = (b̃x, b̃y), and used pressure
projection to obtain divergence-free initial conditions. We set

η̃x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 y > 1
3

−1 −1/3 < y < 1/3
1 y < −1/3

η̃y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x > 1
3

−1 −1/3 < x < 1/3
1 x < −1/3

(6.2)

b̃x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 y > 1
3

−1 −1/3 < y < 1/3
1 y < −1/3

b̃y = 0 (6.3)
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Figure 6.1: Energy and cross-helicity drift of the Alfvén wave simulation

We performed the simulation on a 20 × 20 grid representing the region [−1,1] × [−1,1]. We
used a time step of 0.1 and ran the simulation for 100 steps. Our results are shown in
Figure 6.3. Our energy drift is on the order of machine precision. The cross-helicity drift is
slightly higher, but still very small.

6.2.1 Plume

We picked another set of initial conditions which cause a rising plume of fluid inside of an
enclosed container. We used the following initial velocity vector field v and magnetic vector
fields b, and then used the discrete flat operator to turn them into differential forms, and
pressure-projected to remove the divergence.

vx and bx are both zero everywhere. vy and by are zero everywhere except in the rectangle
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Figure 6.2: Magnetic field visualized for the first 12 frames of an Alfvén wave simulation

[−0.1,0.1] × [−0.8,−0.2]. Inside this rectangle, by = 1, and vy = x(1 − x).
We then ran a simulation on a 20× 20 grid representing the region [−1,1]× [−1,1] for 50

steps. Our results are shown in Figure 6.4. Again, the energy and cross-helicity are almost
conserved at machine precision.
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Figure 6.3: Energy and cross-helicity drift of the simulation of MHD in a bounded box
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Figure 6.4: Energy and cross-helicity drift of the simulation of MHD in the plume in a
bounded box
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Figure 6.5: Plume visualized every frame for the first 12 frames. The visualizations are
made by advecting a block of particles in the velocity field. The glowing is proportional
to the square of the magnetic field strength.
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Appendix A

Lagrange Multiplier Example: Pendulum

As a simple example of the power of Lagrange multipliers, consider the case of 2D pendulum.
While it is simple to parameterize this system by the pendulum’s angle, it is instructive to
work through the system using Lagrange multipliers instead. For more complicated systems
(e.g. three pendula in 3D), the Langrange multiplier method is much simpler than finding
a suitable set of parameters for the system and using the Euler Lagrange equations to find
equations of motion for those parameters.

Consider an idealized pendulum of length ` swinging in a 2D space. The state of the
pendulum is characterized by the position and velocity of the mass at the end, which we will
denote x and ẋ respectively (note that x is a vector). If the mass were a free particle instead
of a pendulum, its Lagrangian would simply be its kinetic energy minus its gravitational
potential energy, 1

2m ⟨ẋ, ẋ⟩ −m ⟨g, x⟩ (where g is the vector of gravitational acceleration).
Since the mass is on the end of a pendulum, we add a constraint that its distance from
the origin must be `. Equivalently, we can require that ⟨x,x⟩ = `2. So our Lagrangian for
pendulum, including the Lagrange multiplier to enforce the constraint, is given by

L(x,λ, ẋ, λ̇) = 1

2
m ⟨ẋ, ẋ⟩ −m ⟨g, x⟩ − λ(⟨x,x⟩ − `2) (A.1)

The Euler-Lagrange equations tell us that

∂L
∂x

= d

dt

∂L
∂ẋ

(A.2)

∂L
∂λ

= d

dt

∂L
∂λ̇

(A.3)

Since our Lagrangian is independent of λ̇, equation A.3 tells us that ∂L
∂λ = 0. Looking at our

expression for L, this precisely enforces our constraint that ∥x∥ = `.
Now, we turn our attention to equation A.2. From the definition of our Lagrangian, we

see that ∂L
∂x = −mg − 2λx and

d

dt

∂L
∂ẋ

= d

dt
mẋ (A.4)

=mẍ (A.5)
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Therefore, equation A.2 tells us that

mẍ +mg + 2λx = 0 (A.6)

Now, we can solve for λ using our Euler-Lagrange equations. Dotting equation A.6 with x,
we find that

m ⟨ẍ, x⟩ +m ⟨g, x⟩ + 2λ ⟨x,x⟩ = 0 (A.7)

Using the fact that ⟨x,x⟩ = `2, we see that

λ = − m
2`2

[ ⟨ẍ, x⟩ + ⟨g, x⟩ ] (A.8)

Next, we note that because ⟨x,x⟩ is constant, its second derivative must be zero. Taking
this derivative, we find that

0 = d2

dt2
⟨x,x⟩ (A.9)

= 2
d

dt
⟨ẋ, x⟩ (A.10)

= 2[ ⟨ẍ, x⟩ + ⟨ẋ, ẋ⟩ ] (A.11)

Thus, we conclude that
⟨ẍ, x⟩ = − ⟨ẋ, ẋ⟩ (A.12)

Substituting this into equation A.8, we find that

λ = − m
2`2

[ − ⟨ẋ, ẋ⟩ + ⟨g, x⟩ ] (A.13)

Now, substituting this expression back into equation A.2, we obtain equations of motion

mẍ +mg + m
`2

(∣ẋ∣2 − ⟨g, x⟩ )x = 0 (A.14)

You can check that after switching to polar coordinates, you recover the standard equation
for a pendulum.

Aside: Note that none of our computations actually used the fact that our pendulum
was in 2D. So these equations of motion actually hold for a pendulum in arbitrary
dimensions!



Appendix B

Exterior Calculus Identities

Proposition 1. Let M be a 3-dimensional manifold. Let α ∈ Ω1(M) and β ∈ Ω2(M).
Furthermore, let a = α♯, b = (⋆β)♯. Then

(a × b)♭ = −ιαβ (B.1)

Proof. First, we note that

(a × b)♭ = ⋆(a♭ ∧ b♭) (B.2)
= ⋆(α ∧ ⋆β) (B.3)

(B.4)

So it is sufficient to show that −ιαβ = ⋆(α ∧ ⋆β). Furthermore, we recall that the fiberwise
inner product on differential forms is nondegenerate. So if suffices to show that

⟨c,−ιαβ⟩ = ⟨c,⋆(α ∧ ⋆β)⟩ (B.5)

for all c ∈ Ω1(M). This is equivalent to showing that

⟨c,−ιαβ⟩µ = ⟨c,⋆(α ∧ ⋆β)⟩µ (B.6)

where µ is the volume form. We can show equation B.6 using the defining equation of the
Hodge star operator.

⟨c,−ιαβ⟩µ = − ⟨α ∧ c, β⟩ (B.7)
= −α ∧ c ∧ ⋆β (B.8)
= c ∧ α ∧ ⋆β (B.9)
= c ∧ ⋆2(α ∧ ⋆β) (B.10)
= ⟨c,⋆(α ∧ ⋆β)⟩µ (B.11)
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B.1. Conversion between forms on the plane and in R3 69

B.1 Conversion between forms on the plane and in R3

Proposition 2. Let {dx, dy, dz} be the standard basis for Ω1(R3). Let ⋆3D denote the
Hodge star on R3, and let ⋆2D denote the Hodge star on the xy-plane. Then for any 1-form
η on the xy-plane, we have

⋆3D (⋆2Dη ∧ dz) = η (B.12)

Proof. By the definition of the Hodge star, we have

dx ∧ dy ∧ dz = ⋆2Dη ∧ dz ∧ ⋆3D(⋆2Dη ∧ dz) (B.13)

= ⋆2Dη ∧ [ − ⋆3D(⋆2Dη ∧ dz)] ∧ dz (B.14)

Since ⋆2Dη and ⋆3D(η ∧ dz) must both be forms on the xy-plane, we conclude that

dx ∧ dy = ⋆2Dη ∧ [ − ⋆3D(⋆2Dη ∧ dz)] (B.15)

This is the defining relation for ⋆22Dη. So we conclude that

⋆3D (⋆2Dη ∧ dz) = − ⋆22D η = η (B.16)

Proposition 3. Let {dx, dy, dz} be the standard basis for Ω1(R3). Let ⋆3D denote the
Hodge star on R3, and let ⋆2D denote the Hodge star on the xy-plane. Then for any 1-form
η on the xy-plane, we have

⋆3D η = ⋆2Dη ∧ dz (B.17)

Proof. Again, we just use the definition of the Hodge star. We know that

η ∧ ⋆2Dη = dx ∧ dy (B.18)

Therefore,

η ∧ ⋆2Dη ∧ dz = dx ∧ dy ∧ dz (B.19)

Thus, ⋆2Dη ∧ dz satisfies the defining equation for ⋆3Dη.

Proposition 4. Let ⋆ denote the Hodge star on the xy-plane and let d denote the exterior
derivative on the xy-plane. Then for any 1-forms η, b on the xy-plane, we have

ιb♯dη = (⋆dη) ⋆ b (B.20)

Proof. Let c be any 1-form. Since the inner product is nondegenerate, it is sufficient to show
that

⟨c, ιb♯dη⟩µ = ⟨c, (⋆dη) ⋆ b⟩µ (B.21)
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Now, we show that the two sides are equal. We use the fact that (⋆dη) is a 0-form, and
we can thus treat wedge products with (⋆dη) as scalar multiplication. Furthermore, we use
that fact that in 2D, on 1-forms, we have ⋆2 = −1.

⟨c, ιb♯dη⟩µ = ⟨b ∧ c, dη⟩µ (B.22)
= b ∧ c ∧ ⋆dη (B.23)
= (⋆dη)(c ∧ ⋆2b) (B.24)
= ⟨c, (⋆dη) ⋆ b⟩µ (B.25)



Appendix C

Formal Lagrangians

C.1 Example of a mechanical system

Here, we will work through the formal Lagrangian construction in the case of a simple
mechanical system. We will consider the harmonic oscillator ẍ = −x. The formal Lagrangian
construction we defined requires that our equations are first-order, so we will use the trick
of introducing a new variable v = ẋ. This gives us two equations in two variables

ẋ = v (C.1)
v̇ = −x (C.2)

Now, we write down a Lagrangian which enforces these equations of motion

L(x, ẋ, v, v̇, λ, λ̇, µ, µ̇) ∶= λ(ẋ − v) + µ(v̇ + x) (C.3)

Given this Lagrangian, we can use the Euler-Lagrange equations for x and v in order to find
the equations of motion for λ and µ.

∂L
∂x

= µ (C.4)

d

dt

∂L
∂ẋ

= d

dt
λ = λ̇ (C.5)

∂L
∂v

= −λ (C.6)

d

dt

∂L
∂v̇

= d

dt
µ = µ̇ (C.7)

The Euler-Lagrange equations tell us that

λ̇ = µ (C.8)
µ̇ = −λ (C.9)

These are just our original equations!
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In the language we used before, we can define a map

Φ(x, v)↦ (x, v, x, v) (C.10)

which takes solutions of our differential equations to solutions of our extended system.



Appendix D

Discrete Interior Product

We will compute an expression for the discrete interior product, using the identity

⟪ια♯β, γ⟫ = ⟪β,α ∧ γ⟫ (D.1)

Recall our standard grid, as shown in Figure D.1.

vi,j vi+1,j

vi+1,j+1vi,j+1

ei,jh

ei,j
v ei+1,j

v

ei,j+1
h

fi,j

Figure D.1: Reference for grid element naming convention

The component of ια♯β on edge ehi,j can be computed as

⟪ια♯β, ehi,j⟫ = ⟪β,α ∧ ehi,j⟫ (D.2)

From the definition of the discrete wedge product, we see that α∧ ehi,j is only nonzero on
faces fi,j and fi,j−1. So

⟪β,α ∧ ehi,j⟫ = bi,j(α ∧ ehi,j)i,j + bi,j−1(α ∧ ehi,j)i,j−1 (D.3)
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74 Appendix D. Discrete Interior Product

Using the formula for the discrete wedge product, we obtain

(α ∧ ehi,j)i,j = −
1

2
αvi+1/2,j (α ∧ ehi,j)i,j−1 = −

1

2
αvi+1/2,j−1 (D.4)

where αv
i+1/2,j denotes the averaged quantity 1

2(αvi,j + αvi+1,j), etc.
Therefore, we conclude that

(ια♯β)hi,j = −
1

2
(βijαvi+1/2,j + βi,j−1αvi+1/2,j−1) (D.5)

By a similar argument, we can compute the component of ια♯β on edge evi,j. It is simply

(ια♯β)
v
i,j = ⟪ια♯β, evi,j⟫ (D.6)

= ⟪β,α ∧ evi,j⟫ (D.7)
= βi−1,j(α ∧ evi,j)i−1,j + βi,j(α ∧ evi,j)i,j (D.8)

= βi−1,j ⋅
1

2
αhi−1,j+1/2 + βi,j ⋅

1

2
αhi,j+1/2 (D.9)

= 1

2
(βi−1,jαhi−1,j+1/2 + βi,jαhi,j+1/2) (D.10)



Appendix E

Derivation of the Jacobian

Our discrete MHD equations are given by

η̇ + ιη♯dη − ιb♯db + dp = 0 (E.1)

ḃ + δ(b ∧ η) = 0 (E.2)
δη = 0 (E.3)

Using the midpoint discretization at time step t + 1
2 , we let η̇ = 1

h(ηt+1 − ηt) and let η =
1
2(ηt+1 + ηt) (with analogous expressions for b and p).

To solve the system for time stepping, we need to compute the Jacobian of these equations
with respect to (ηt+1, bt+1, pt+1). We can do so by differentiating term-by-term with respect
to each of the variables. This gives us the Jacobian as a block matrix.

E.1 Velocity Equation

Differentiating the first term is simple.

∂

∂ηt+1
η̇ = ∂

∂ηt+1
[1

h
(ηt+1 − ηt)]

= 1

h
I

where I is the identity matrix. Clearly the derivatives with respect to b and p are 0.

The second term is more complicated. First, we note that the expression ια♯dβ♯ is bilinear
in α and β. So

ιη♯dη =
1

4
ι(ηt+1+ηt)♯d(ηt+1 + ηt)

= 1

4
[ιη♯t+1dηt+1 + ιη♯t+1dηt + ιη♯tdηt+1 + ιη♯tdηt]
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76 Appendix E. Derivation of the Jacobian

The derivative of the last term with respect to ηt+1 is clearly 0. The middle two terms
are linear functions of ηt+1, so they are their own derivatives. The first term is the result of
plugging ηt+1 into a bilinear function, so we can differentiate it with the product rule. So we
conclude that

∂

∂ηt+1
(ιη♯dη) =

1

4
[ιη♯t+1d ● +ι●♯dηt+1 + ι●♯dηt + ιη♯td●]

= 1

2
[ιη♯d ● +ι●♯dη]

This also shows us that
∂

∂bt+1
(ιb♯db) =

1

2
[ιb♯d ● +ι●♯db]

And the fourth term is a linear function of p, so its derivative with respect to p is just d.

Thus, we see that the first (block) row of our Jacobian is

[
η b p

1
hI + ι●♯dη + ιη♯d● ι●♯db + ιb♯d● d ] (E.4)

Note that we’ve ignored some factors of two. This is okay, since we’re looking for zeros,
so we can just multiply the whole equation by 2. This adds on a factor of 2 to the pressure
and the time step, but that is not a problem.

E.2 Magnetic 1-Form Equation

Each of the terms in this equation is a linear function of η, b (taken individually). So each
term is its own derivative. i.e.

∂

∂ηt+1
[δ(b ∧ η)] = ∂

∂ηt+1
[δ (b ∧ 1

2
(ηt+1 − ηt))] (E.5)

= 1

2
δ(b ∧ ●) (E.6)

∂

∂bt+1
[δ(b ∧ η)] = − ∂

∂bt+1
[δ(η ∧ b)] (E.7)

= −1

2
δ(η ∧ ●) (E.8)

∂

∂bt+1
ḃ = 1

h
I (E.9)

Thus, we see that the second row of our Jacobian is given by

[
η b p

δ(b ∧ ●) 1
hI − δ(η ∧ ●) 0 ] (E.10)

where again, we have multiplied through by 2 to remove the 1
2 factors.
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E.3 Divergence-Free Constraint

Since δ is linear, differentiating δη is simple. We just get that the third row of our Jacobian
is

[
η b p

δ 0 0 ] (E.11)



Appendix F

Assorted Vector and Matrix Derivatives

F.1 Vector Derivatives

Throughout the section, let x ∈ Rn.
∂∣x∣
∂x

= x

∣x∣
(F.1)

∂

∂x

1

∣x∣
= − x

∣x∣3
(F.2)

Proof of equation F.1

Proof. Write ∣x∣ as
√

⟨x,x⟩. Now, we apply the chain rule

∂
√

⟨x,x⟩
∂x

= 1

2
√

⟨x,x⟩
∂ ⟨x,x⟩
∂x

(F.3)

The desired result follows from the fact that ∂⟨x,x⟩
∂x = 2x.

Proof of equation F.2

Proof. Applying the quotient rule, we see that

∂

∂x

1

∣x∣
= − 1

∣x∣2
∂

∂x
∣x∣ (F.4)

The desired result follows from equation F.1

F.2 Matrix Derivatives

∂xTMx

∂x
= (M +MT )x (F.5)
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Proof of equation F.5

Proof. The product rule tells us that

∂xTMx

∂x
= ●TMx + xTM● (F.6)

(recall that the derivative of a function f ∶ Rn → R is another linear functional f ∶ Rn → R).
If we write this linear functional in the usual form (a column vector), we obtain

∂xTMx

∂x
=Mx +MTx (F.7)
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