Dynamic Intrinsic Geometry Processing

Mark Gillespie, Carnegie Mellon University

Committee:
Keenan Crane (Chair) James McCann Ioannis Gkioulekas Boris Springborn

My field: Geometry Processing

My field: Geometry Processing

Geometric data is all around us

Computation is essential

Computation is essential

Computation is essential

Galago senegalensis

Computation is essential

Galago senegalensis

Key tool: Math

[Babylonian table, c. 1800 BCE]

[Zhou, c. 200]

Sequentium faliceet terminorum incrementa adadem hac lege pro-
grediuntuke Addantur
jam fenorum priorum terminorum incre-

[Euler, 1744]

[Beltrami, 1868]

[Cayley, 1896]

Working with 3D shapes is hard

Goal: predict sound by finding vibrational modes

build bilaplacian matrix and find eigenvectors

Working with 3D shapes is hard

Goal: predict sound by finding vibrational modes

Result:

Problem: triangle quality

Problem: triangle quality

- Same number of vertices
- Not a resolution issue
- Same geometry
- Not an approximation issue

using bad triangles

Problem: triangle quality

Problem. Our triangles play two roles. They encode both:

1. the geometry of a surface
2. a space of functions on that surface.

Intrinsic triangles

broadening our idea of what a triangle is

Intrinsic triangles

What if there is no fixed background surface?

What if our geometry changes over time?

Dynamic intrinsic geometry processing

In my thesis,
I present data structures \& algorithms for using intrinsic triangulations on time-evolving surfaces

Outline

I. Background

[Liu, Gillespie, Chislett, Sharp, Jacobson \& Crane. 2023. Surface Simplification using Intrinsic
Error Metrics. ACM TOG]

II. SIMPLIFICATION

p,

Track intrinsic triangulation
while simplifying a surface
IV. Proposed Work

III. PARAMETERIZATION
[Gillespie, Springborn, \& Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM TOG]

Track intrinsic triangulation while flattening a surface
 while flattenig a surface

Track intrinsic triangulation on more general surfaces

l. Background

Status quo: remeshing

runtime: I. Background

- State-of-the-art is robust but slow
- Volumetric techniques

[Hu, Schneider, Wang, Zorin \& Panozzo 2020]

Trade offs of extrinsic remeshing

I. Background

3k faces

triangle quality	X		
	\times	\times	

Intrinsic triangulations sidestep the trade off

Triangulations

A triangulation is a collection of triangles glued together along their edges to form a surface

- Only combinatorial information
- May be irregular (e.g., two edges of a face may be glued together)
I. Background

Extrinsic and intrinsic triangulations

An extrinsic triangulation is a triangulation equipped with vertex positions $p: V \rightarrow \mathbb{R}^{3}$

An intrinsic triangulation is a triangulation equipped with positive edge lengths $\ell: E \rightarrow \mathbb{R}_{>0}$ satisfying the triangle inequality

I'll refer to both as "triangle meshes"

Correspondence

A correspondence between two triangulations is a function mapping one onto the other

- Traditional case: intrinsic triangulation sitting on top of an extrinsic triangulation
- Exact same geometry

The challenge of dynamic intrinsic triangulations

I. Background

- Tracking correspondence between meshes with different geometry

CORRESPONDENCE WITH
SAME GEOMETRY
CORRESPONDENCE WITH DIFFERENT GEOMETRY

[Sharp, Soliman \& Crane 2019]
[Fisher, Springborn, Bobenko \& Schröder 2006
[Gillespie, Sharp \& Crane 2021]

The space of intrinsic triangulations is large

I. Background

Delaunay triangulations

I. Background

- Countless useful properties:
- Essentially unique, maximize angles lexicographically, minimize spectrum lexicographically, smoothest interpolation, positive cotan weights...
- Characterized by empty circumcircle condition

Intrinsic Delaunay triangulations

I. Background

- [Indermitte, Liebling, Troyanov \& Clemençon 2001, Bobenko \& Springborn 2007]: empty intrinsic circumcircles
- Maintain many nice properties. [Sharp, Gillespie \& Crane 2021; §4.1.1]
- Compute by a simple algorithm:
- Flip any non-Delaunay edge until none remain

Intrinsic Delaunay triangulations provide good function spaces

I. Background

original mesh

[^0] triangulation

Intrinsic Delaunay Refinement

I. Background
[Sharp, Soliman \& Crane 2019]

Add vertices intrinsically to improve quality

A brief history of intrinsic triangulations

I. Background

Foundations: [Alexandrov 1948; Regge 1961]
Geometry Processing: [Fisher, Springborn, Bobenko \& Schröder 2006; Bobenko \& Springborn 2007, Bobenko \& Izmestiev 2008; Sun, Wu, Gu \& Luo 2015; Sharp, Soliman \& Crane 2019; Fumero, Möller \& Rodolà 2020; Gillespie, Springborn \& Crane 2021; Finnendahl, Schwartz \& Alexa 2023]

II. Intrinsic Simplification

Exact geometry preservation: a blessing and a curse

II. Intrinsic simplification - motivation

Compute geometric quantities directly on the original surface

Preserves unnecessary geometric details

Coarse meshes can be perfectly adequate

II. Intrinsic simplification

- motivation

Coarse meshes can be perfectly adequate

 runtime: 23.14 s
runtime:
0.9 s
II. Intrinsic simplification

- motivation

Traditional goal: extrinsic simplification

II. Intrinsic simplification

- motivation
- Find a coarse mesh close in space to the original
- Often designed to optimize for visual fidelity

Intrinsic problems benefit from intrinsic simplification

II. Intrinsic simplification

- motivation
- Extrinsic methods preserve irrelevant extrinsic details
- Intrinsic approach opens up a larger space of triangulations
- Extreme example: neardevelopable surfaces

intrinsic simplification

Inspiration: quadric error simplification

[Garland \& Heckbert 1997]

II. Intrinsic simplification - motivation

1. Local simplification operation

2. Accumulated distortion measurements

- Algorithm: repeatedly collapse cheapest edge
- Efficient: all local operations
- Accurate: accumulates error estimates

Intrinsic simplification

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex

Intrinsic simplification

II. Intrinsic simplification

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex

Intrinsic vertex removal

- Intrinsic view: replace curved vertex with flat patch

Intrinsic vertex removal

- Intrinsic view: replace curved vertex with flat patch

Vertex flattening

- Map neighboring triangles to plane such that:
(1) Distortion is low
(2) Boundary edge lengths are preserved

- Discrete conformal parameterization [Springborn, Schröder \& Pinkall 2008]
- Constraint easy to impose
- Efficient 1D optimization problem
- Flat vertex removal - also a standard operation

Intrinsic simplification

II. Intrinsic simplification - intrinsic curvature error

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex

Distortion: curvature redistribution

We approximate the transport cost of this curvature redistribution

Simplification with the curvature transport cost

II. Intrinsic simplification - intrinsic curvature error

Other transport costs

II. Intrinsic simplification - intrinsic curvature error

- Track transport cost of other data in same way
- Can take weighted combinations of costs

coarsening via area

Surface correspondence

- Simplifying the mesh changes its geometry
- Breaks existing data structures
- But, only uses a few local operations

- Each is a simple mapping
- Encode correspondence via list of operations

[^1]

Prolongation

- Transfer piecewise-linear functions:
- Just find values at vertices
- Encode by a matrix

Pulling back vector fields

IIIII. IIImturiirmssiic siilirmppliffficcattiom

- correspondence
- Approximate differential of point mapping

Encode by complex prolongation matrix

II. Intrinsic simplification

Results

Hierarchies accelerate computation

- Accelerate many geometric tasks
- Even helps with extrinsic problems

Robust hierarchy construction

II. Intrinsic simplification

Speedup vs error in geodesic distance

II. Intrinsic simplification

Performance

- Linear scaling
- Constant work per vertex

Removes ~10,000 vertices per second
time (s)

III. Surface Parameterization

[Gillespie, Springborn, \& Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM Transactions on Graphics

Parameterization

III. Parameterization

Mapping surfaces into the plane

Texture mapping

III. Parameterization

[Timen 2012]

The uniformization theorem

 [Poincare 1907; Koebe 1907; Troyanov 1991]
III. Parameterization

Any surface is conformally equivalent to a surface of constant curvature.

Image: [Crane, Pinkall \& Schröder 2013]

conformal map = angle-preserving smooth maps with helpful properties

The discrete uniformization theorem

[Gu, Luo, Sun \& Wu 2018; Springborn 2019]

III. Parameterization

Any valid \dagger vertex curvatures can be realized by some discrete conformal map.

The discrete uniformization theorem

[Gu, Luo, Sun \& Wu 2018; Springborn 2019]
ANSN $1 \times+$

easy to lay out in plane

III. Parameterization

The discrete spherical uniformization theorem

[Springborn 2019]

III. Parameterization

Any simply-connected triangle mesh is discretely conformally equivalent to a mesh whose vertices lie on the unit sphere

Discrete uniformization in action

[Gillespie, Springborn, \& Crane. 2021]

9

Triangle mesh \hookleftarrow hyperbolic polyhedron

[Bobenko, Pinkall \& Springborn 2010]
"Decorated
Triangle mesh ideal hyperbolic polyhedron"

To encode a dynamic Euclidean polyhedron, we can actually store a static hyperbolic polyhedron

Conformal changes to Euclidean geometry

Changes preserving hyperbolic geometry

Intrinsic triangulations of hyperbolic polyhedra

III. Parameterization

Hyperbolic correspondence problem

Correspondence between hyperbolic polyhedra

III. Parameterization

- Adapt Euclidean techniques to hyperbolic setting?

[Fisher, Springborn, Bobenko \& Schröder 2006]

[Sharp, Soliman \& Crane 2019]
integer coordinates [Ours]

Projective interpolation

III. Parameterization

- [Springborn, Schröder \& Pinkall 2008]: projective interpolation
- Hyperbolic isometry
- [Ours]: novel projective interpolation using the hyperboloid model

Variable triangulation > fixed triangulation

III. Parameterization

Fixed triangulation (CETM)

Variable triangulation (CEPS)

Starting from Delaunay

III. Parameterization

Final algorithm

III. Parameterization

flip to (Euclidean) Delaunay
solve for discrete conformal map

lay out in plane
extract correspondence
interpolate via
hyperboloid

IV. Proposed work

nonmanifold intrinsic simplification

Problem: nonmanifold meshes

IV: Proposed work

- Manifold : looks like the plane locally

- Common simplifying assumption ... but often violated in practice

Nonmanifold meshes complicate the intrinsic picture

IV: Proposed work

- Recall: edge flips
- What does this mean
 for nonmanifold edges?

Lots of meshes are nonmanifold

Solution: the manifold double cover

IV: Proposed work

- Build associated manifold mesh to work with instead
- Follow [Sharp \& Crane 2020]

Prelude: orienting nonorientable meshes

- Orientation distinguishes two sides
- Visualize with arrows

IV: Proposed work

Prelude: orienting nonorientable meshes

- Orientation distinguishes two sides
- Visualize with arrows
- Not every surface is orientable

Problem: no consistent choice of arrow for all faces

Easy "solution": draw both arrows

IV: Proposed work

- Sounds like cheating...
- ... but contains a good idea

Easy "solution": draw both arrows

IV: Proposed work

- Sounds like cheating...
- ... but contains a good idea

Easy "solution": draw both arrows

IV: Proposed work

- Sounds like cheating...
- ... but contains a good idea

Easy "solution": draw both arrows

IV: Proposed work

- Sounds like cheating...
- ... but contains a good idea

And it also works on nonmanifold meshes

- Just make two copies of each face
- General strategy for nonmanifold geometry processing:

1. Build manifold double cover
2. Do manifold geometry processing

Questions to explore:

IV: Proposed work

compatibility between sheets

Questions to explore:

IV: Proposed work

choice of double cover

Multiple options for double cover

Timeline:

IV: Proposed work

Dec. 2023 - JAN. 2024:

- finish ongoing work (Harnack tracing); submit to Siggraph

Timeline:

IV: Proposed work

DEC	JAN	FEB	MAR	APR	MAY

Dec. 2023 - JAN. 2024: JAN. - APR. 2024:

- finish ongoing work (Harnack tracing); submit to Siggraph
- nonmanifold intrinsic simplification
- finish up an unrelated project on "circular arc triangulations"

Timeline:

IV: Proposed work

DEC	JAN	FEB	MAR	APR	MAY

DEC. 2023 - JAN. 2024:

- finish ongoing work (Harnack tracing); submit to Siggraph

JAN. - APR. 2024:

- nonmanifold intrinsic simplification
- finish up an unrelated project on "circular arc triangulations"

APR. - JUN. 2024:

- Write thesis

Timeline:

IV: Proposed work

Thanks for listening

Supplemental Slides

Bad basis functions

Input basis function
Intrinsic basis function
[Sharp, Soliman \& Crane 2019]

Delaunay flip complexity

Adaptive simplification

III. Intrinsic simplification

- results

input

input

$$
\text { constrained coarsening } \quad \text { Poisson solve }
$$

Near-developable surfaces

intrinsic simplification

[^0]: intrinsic Delaunay

[^1]: 1. Flip edge 1
 2. Scale vertex 5
 3. Remove vertex 5
 4. Flip edge 8
 5. Flip edge 12
 6. Scale vertex 2
