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My field: Geometry Processing
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My field: Geometry Processing
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Geometric data is all around us



Computation is essential

5[ Gao, Huth, Lescroart & Gallant 2015 ]



Computation is essential
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unfold

[ Gao, Huth, Lescroart & Gallant 2015 ]



Computation is essential

7
[ Boyer, Lipman, 
St. Clair, et al. 2011 ]
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Key tool: Math
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[Euler, 1744]

[Cayley, 1896][Beltrami, 1868]

[Babylonian table, c.1800 BCE] [Zhou, c. 200]



Working with 3D shapes is hard
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Goal: predict sound by finding 
vibrational modes

build bilaplacian matrix 
and find eigenvectors



Working with 3D shapes is hard
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Goal: predict sound by finding 
vibrational modes

Result:



Problem: triangle quality
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Result:



Problem: triangle quality

13

using bad 
triangles 

using good 
triangles 

• Same number of vertices 

• Not a resolution issue 

• Same geometry 

• Not an approximation issue



Problem: triangle quality
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using bad 
triangles 

using good 
triangles 

• Same number of vertices 

• Not a resolution issue 

• Same geometry 

• Not an approximation issue

Problem. Our triangles play two roles. 
They encode both: 

1. the geometry of a surface 
2. a space of functions on that surface.



Intrinsic triangles
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i

jk

broadening our idea of what a triangle is

 flexibility to build models 
out of good triangles

⟹



Intrinsic triangles
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Clean solution to 
low quality triangles 
if  you have a fixed 
background surface 

to build on
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What if our geometry 
changes over time?

What if there is no fixed 
background surface?



Dynamic intrinsic geometry processing
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In my thesis, 
I present data structures & algorithms 

for using intrinsic triangulations 
on time-evolving surfaces



Outline
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I. BACKGROUND II. SIMPLIFICATION III. PARAMETERIZATION

Track intrinsic triangulation 
while simplifying a surface

IV. PROPOSED WORK

[ Gillespie, Springborn, & 
Crane. 2021. Discrete conformal 
equivalence of polyhedral 
surfaces. ACM TOG ]

[ Liu, Gillespie, Chisle!, Sharp, 
Jacobson & Crane. 2023. Surface 
Simplification using Intrinsic 
Error Metrics. ACM TOG ]

Track intrinsic triangulation 
while fla!ening a surface

Track intrinsic triangulation 
on more general surfaces



I. Background



Status quo: remeshing

• State-of-the-art is robust but slow 

• Volumetric techniques

21

[Hu, Zhou, Gao, 
Jacobson, Zorin 

& Panozzo 2018]

[Hu, Schneider, 
Wang, Zorin & 
Panozzo 2020]

runtime: 
43 minutes

runtime: 
47 minutes

I. Background



3k faces3k faces

Trade offs of extrinsic 
remeshing
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triangle quality X ✔ ✔

mesh size ✔ X ✔

geometric fidelity ✔ ✔ X

330k faces

I. Background



Intrinsic triangulations 
sidestep the trade off

23

I. Background

runs in seconds  



Triangulations

• Only combinatorial information 

• May be irregular (e.g., two edges of a face may be glued together)
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A triangulation is a collection of 
triangles glued together along 
their edges to form a surface

I. Background



Extrinsic and intrinsic 
triangulations
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An extrinsic triangulation is a triangulation 
equipped with vertex positions p : V → ℝ3

An intrinsic triangulation is a triangulation equipped 
with positive edge lengths  satisfying 
the triangle inequality

ℓ : E → ℝ>0

extrinsic

intrinsic

easy

hard
(in convex case, see 

[Bobenko &
 

Izm
estiev 2008]) 

I. Background

I’ll refer to both as “triangle meshes”



Correspondence

• Traditional case: intrinsic triangulation si!ing on 
top of an extrinsic triangulation 

• Exact same geometry
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A correspondence between two 
triangulations is a function 
mapping one onto the other

I. Background

i

jk
Recall:



The challenge of dynamic 
intrinsic triangulations

27

I. Background

• Tracking correspondence between meshes with 
di"erent geometry

[Fisher, Springborn, 
Bobenko & Schröder 2006]

[Sharp, Soliman & 
Crane 2019]

#10 #4

1

1

22

[Gillespie, Sharp 
& Crane 2021]

CORRESPONDENCE WITH 
SAME GEOMETRY

CORRESPONDENCE WITH 
DIFFERENT GEOMETRY

???



The space of intrinsic 
triangulations is large

28

extrinsic 
triangulations

intrinsic 
triangulations

…

I. Background



Delaunay triangulations

• Countless useful properties: 
• Essentially unique, maximize angles lexicographically, minimize 

spectrum lexicographically, smoothest interpolation, positive 
cotan weights…  

• Characterized by empty circumcircle condition

29

α + β ≤ γ + δ

I. Background



Intrinsic Delaunay triangulations

• [Indermi!e, Liebling, Troyanov & Clemençon 2001, 
Bobenko & Springborn 2007]: empty intrinsic circumcircles 

• Maintain many nice properties.                                 
[Sharp, Gillespie & Crane 2021; §4.1.1] 

• Compute by a simple algorithm: 

• Flip any non-Delaunay edge until none remain

30

Faster than reading 
the mesh from disk

I. Background



Intrinsic Delaunay triangulations 
provide good function spaces

31

I. Background

original mesh intrinsic Delaunay 
triangulation 



Intrinsic Delaunay Refinement

Add vertices intrinsically 
to improve quality

32

I. Background

[Sharp, Soliman & Crane 2019]



A brief history of intrinsic 
triangulations

33

Foundations: [Alexandrov 1948; Regge 1961]
Geometry Processing: [Fisher, Springborn, Bobenko & Schröder 2006; Bobenko & Springborn 

2007, Bobenko & Izmestiev 2008; Sun, Wu, Gu & Luo 2015; Sharp, 
Soliman & Crane 2019; Fumero, Möller & Rodolà 2020; Gillespie, 
Springborn & Crane 2021; Finnendahl, Schwartz & Alexa 2023]

I. Background



II. Intrinsic Simplification

Liu, Gillespie, Chisle!, Sharp, Jacobson, & Crane. 2023. Surface Simplification 
using Intrinsic Error Metrics. ACM Transactions on Graphics[ ]



Exact geometry preservation: 
a blessing and a curse

35

|V|=871,434

|V| ~ 27,000,000

II. Intrinsic simplification
# motivation

Compute geometric quantities 
directly on the original surface 

Preserves unnecessary 
geometric details



Coarse meshes can be 
perfectly adequate

36

|V
| =

 2
50

k

II. Intrinsic simplification
# motivation



1.511λ2 =

1.639λ3 =

0.491λ1 =

|V
| =

 1
2.5

k

Coarse meshes can be 
perfectly adequate

37

runtime: 
23.14 s

runtime: 
0.9 s

0.484λ1 =

|V
| =

 2
50

k

1.907λ4 =

1.610λ2 =

1.747λ3 =

1.978λ4 =

Near-identical, but 25x faster

II. Intrinsic simplification
# motivation



Traditional goal: 
extrinsic simplification

• Find a coarse mesh close in space to the original 

• O$en designed to optimize for visual fidelity

38|F|
 = 30

,00
0

|F|
 = 3,

00
0

|F|
 = 30

0
|F| = 30

II. Intrinsic simplification
# motivation



Intrinsic problems benefit 
from intrinsic simplification

• Extrinsic methods preserve 
irrelevant extrinsic details 

• Intrinsic approach opens up a 
larger space of triangulations 

• Extreme example: near-
developable surfaces

39

intrinsic simplification 

extrinsic simplification 

input

II. Intrinsic simplification
# motivation



Inspiration: quadric error 
simplification
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1. Local simplification operation 2. Accumulated distortion measurements

• Algorithm: repeatedly collapse cheapest edge 

• E"icient: all local operations 

• Accurate: accumulates error estimates

[Garland & 
Heckbert 1997]

II. Intrinsic simplification
# motivation



Intrinsic simplification
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1. Local simplification operation

intrinsic vertex removal

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

II. Intrinsic simplification



Intrinsic simplification

42

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

1. Local simplification operation

intrinsic vertex removal

II. Intrinsic simplification



• Intrinsic view: replace curved vertex with flat patch

Intrinsic vertex removal

43

# intrinsic vertex removal 
II. Intrinsic simplification



Intrinsic vertex removal

• Intrinsic view: replace curved vertex with flat patch

44

parameterize remove flat vertex 

# intrinsic vertex removal 
II. Intrinsic simplification



Vertex flattening

• Map neighboring triangles to plane such that: 

(1) Distortion is low 

(2) Boundary edge lengths are preserved 

• Discrete conformal parameterization [Springborn, Schröder & Pinkall 2008] 

• Constraint easy to impose 

• E"icient 1D optimization problem 

• Flat vertex removal

45

– also a standard operation

# intrinsic vertex removal 
II. Intrinsic simplification



1. Local simplification operation

intrinsic vertex removal

• Algorithm: repeatedly remove cheapest vertex

2. Accumulated distortion measurements

intrinsic curvature error

Intrinsic simplification

46

# intrinsic curvature error 
II. Intrinsic simplification



Distortion: curvature redistribution
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We approximate the transport cost of this curvature redistribution

# intrinsic curvature error 
II. Intrinsic simplification



Simplification with the 
curvature transport cost

48

input m
esh

 

coarsening 
via curvature 
transport cost 

# intrinsic curvature error 
II. Intrinsic simplification



Other transport costs

• Track transport cost of other data in same way 

• Can take weighted combinations of costs

49

input m
esh

 

coarsening 
via curvature 
transport cost 

coarsening 
via area 

transport cost 

coarsening via 
blended cost 

# intrinsic curvature error 
II. Intrinsic simplification



Surface correspondence

• Simplifying the mesh changes its geometry 

• Breaks existing data structures 

• But, only uses a few local operations 

• Each is a simple mapping 

• Encode correspondence via list of operations

50

edge flip 

vertex scaling 

vertex removal 

" correspondence
II. Intrinsic simplification

1. Flip edge 1 
2. Scale vertex 5 
3. Remove vertex 5 
4. Flip edge 8 
5. Flip edge 12 
6. Scale vertex 2 
7. Remove vertex 2 



Prolongation

• Transfer piecewise-linear functions: 

• Just find values at vertices 

• Encode by a matrix

51
φ̃ ∈ ℝ|Vc|φ ∈ ℝ|V| P ∈ ℝ|V|×|Vc|

i f (i)
fφ(i) := φ̃( f(i))

" correspondence
II. Intrinsic simplification



Pulling back vector fields

• Approximate di"erential of point mapping

52

III. Intrinsic simplification
" correspondence

Encode by complex 
prolongation matrix

" correspondence
II. Intrinsic simplification



Results

II. Intrinsic simplification



Surface hierarchies

54|V |=1,009,118|V |=1,009,118

inputinput

|V|=72k|V|=72k |V|=4k|V|=4k |V|=282|V|=282

|V |=288k|V |=288k |V |=18k|V |=18k |V |=1k|V |=1k " results
II. Intrinsic simplification



Hierarchies accelerate computation

• Accelerate many geometric tasks 

• Even helps with extrinsic 
problems

55

mean curvature flow 
20x speedup

" results
II. Intrinsic simplification



Robust hierarchy construction
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extrinsic 
coarsening

extrinsic 
refinement 

+ coarsening

extrinsic 
remeshing 

+ coarsening

intrinsic 
simplification 

(ours) 

failed

failed

" results
II. Intrinsic simplification



Speedup vs error in geodesic distance

57

|V| = 20k |V| = 10k |V| = 100 |V| = 10

ground 
truth 

speedup/error: 3x / 0.0002% 840x / 0.2% 4880x / 1.5%

" results
II. Intrinsic simplification



Performance

• Linear scaling 

• Constant work per vertex

58# input vertices

time (s)

103

10-1

100

101

102

104 105 106

O(n)

Removes ~10,000 
vertices per second

" results
II. Intrinsic simplification



III. Surface Parameterization

Gillespie, Springborn, & Crane. 2021. Discrete conformal equivalence 
of polyhedral surfaces. ACM Transactions on Graphics[ ]



Parameterization
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III. Parameterization

Mapping surfaces into the plane

[ Gao, Huth, 
Lescroart & 
Gallant 2015 ]



Texture mapping
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III. Parameterization

[ Timen 2012 ]



The uniformization theorem
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Image: [Crane, Pinkall & Schröder 2013] 

[Poincare 1907; Koebe 1907; Troyanov 1991]

Any surface is conformally 
equivalent to a surface of 
constant curvature.

III. Parameterization

conformal map = angle-preserving 

smooth maps with helpful properties 



The discrete uniformization theorem
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 [Gu, Luo, Sun & Wu 2018; Springborn 2019]

Any valid† vertex curvatures 
can be realized by some 
discrete conformal map.

III. Parameterization

†i.e.  and satisfying Gauss-Bonnet≤ 2π



The discrete uniformization theorem
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 [Gu, Luo, Sun & Wu 2018; Springborn 2019] III. Parameterization

easy to lay 
out in plane 



The discrete spherical uniformization theorem
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 [Springborn 2019]

Any simply-connected triangle 
mesh is discretely conformally 
equivalent to a mesh whose 
vertices lie on the unit sphere

III. Parameterization



Discrete uniformization in action

66bad meshes difficult cones spherical maps

 [Gillespie, Springborn, & Crane. 2021]



Triangle mesh ⟷ hyperbolic polyhedron

67

 [Bobenko, Pinkall & Springborn 2010]

Triangle 
mesh

“Decorated 
ideal hyperbolic 

polyhedron”

III. Parameterization

Conformal changes to 
Euclidean geometry

Changes preserving 
hyperbolic geometry

To encode a dynamic Euclidean polyhedron, we can 
actually store a static hyperbolic polyhedron



Intrinsic triangulations of 
hyperbolic polyhedra
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adjust horospheres hyperbolic edge flip

ideal Delaunay triangulation

Hyperbolic correspondence problem

III. Parameterization



Correspondence between 
hyperbolic polyhedra

• Adapt Euclidean techniques to hyperbolic se!ing?

69

integer coordinates 

hyperbolic 
signposts 

III. Parameterization

[Fisher, Springborn, 
Bobenko & Schröder 2006]

[Sharp, Soliman & 
Crane 2019]

#10 #4

prohibitively 
complex floating point 

errors  

[Ours]
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projective

Projective interpolation

• [Springborn, Schröder & Pinkall 2008]: projective interpolation 

• Hyperbolic isometry 

• [Ours]: novel projective interpolation using the hyperboloid model

70

geodesic

Poincaré diskideal
point ideal

point

H2 H2

H 2

ideal point

horocycle horocycle

ideal
triangle

ideal
triangle

Klein disk

hyperboloid

geodesic

horocycle

geodesic
idealtriangle

III. Parameterization



Variable triangulation > fixed triangulation

71
Fixed triangulation (CETM) Variable triangulation (CEPS)

III. Parameterization
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Starting from Delaunay

Delaunaynon-Delaunay

=

input (polyhedral)

III. Parameterization



Final algorithm

73

flip to (Euclidean) 
Delaunay 

solve for discrete 
conformal map 

lay out in 
plane 

extract 
correspondence 

interpolate via 
hyperboloid 

III. Parameterization



IV. Proposed work
nonmanifold intrinsic simplification 



IV: Proposed work
Problem: nonmanifold meshes

75

p

p

manifold

nonmanifold

• Common simplifying assumption …

• Manifold : looks like the plane locally

but o$en violated in practice



IV: Proposed work

Nonmanifold meshes complicate 
the intrinsic picture

76

• Recall: edge flips 

• What does this mean 
for nonmanifold edges?

???



Lots of meshes are nonmanifold

77

[Zhou & Jacobson 2016]

0% 25% 50% 75% 100%

Vertex manifold

Manifold assumption 
fails on all these meshes



IV: Proposed work
Solution: the manifold double cover

78

• Build associated manifold mesh to work with instead 

• Follow [Sharp & Crane 2020]



IV: Proposed work

Prelude: orienting 
nonorientable meshes

79

• Orientation distinguishes two sides 

• Visualize with arrows



IV: Proposed work

Prelude: orienting 
nonorientable meshes

80

• Orientation distinguishes two sides 

• Visualize with arrows 

• Not every surface is orientable

Problem: no consistent choice 
of arrow for all faces



IV: Proposed work
Easy “solution”: draw both arrows

81

• Sounds like cheating… 

• … but contains a good idea



IV: Proposed work
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• Sounds like cheating… 

• … but contains a good idea

Easy “solution”: draw both arrows



IV: Proposed work
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• Sounds like cheating… 

• … but contains a good idea

Easy “solution”: draw both arrows



IV: Proposed work
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• Sounds like cheating… 

• … but contains a good idea

Take both options

Orientable 
“double cover”

Easy “solution”: draw both arrows



IV: Proposed work

And it also works on 
nonmanifold meshes

85

• Just make two copies of each face 

• General strategy for nonmanifold 
geometry processing: 

1. Build manifold double cover 

2. Do manifold geometry processing



IV: Proposed work

Intrinsic simplification 
of nonmanifold meshes

86

nonmanifold mesh 1. build double cover 2. simplify intrinsically  



IV: Proposed work
Questions to explore:

87

compatibility between sheets

removed di"erent vertices 

does this ma!er? 



IV: Proposed work
Questions to explore:

88

choice of double cover 
Multiple options for double cover

which is best? does it maer? 



IV: Proposed work
Timeline:
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DEC JAN FEB MAR APR MAY JUN

DEC. 2023 – JAN. 2024:

• finish ongoing work 
(Harnack tracing); 
submit to Siggraph 



IV: Proposed work
Timeline:
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DEC JAN FEB MAR APR MAY JUN

DEC. 2023 – JAN. 2024: JAN. – APR. 2024:

• finish ongoing work 
(Harnack tracing); 
submit to Siggraph 

• nonmanifold intrinsic simplification 
• finish up an unrelated project on “circular 

arc triangulations”



IV: Proposed work
Timeline:
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DEC JAN FEB MAR APR MAY JUN

DEC. 2023 – JAN. 2024: JAN. – APR. 2024: APR. – JUN. 2024:

• finish ongoing work 
(Harnack tracing); 
submit to Siggraph 

• nonmanifold intrinsic simplification 
• finish up an unrelated project on “circular 

arc triangulations”

• Write thesis



IV: Proposed work
Timeline:
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DEC JAN FEB MAR APR MAY JUN

DEC. 2023 – JAN. 2024: JAN. – APR. 2024: APR. – JUN. 2024: JUN. 2024:

• finish ongoing work 
(Harnack tracing); 
submit to Siggraph 

• nonmanifold intrinsic simplification 
• finish up an unrelated project on “circular 

arc triangulations”

• Write thesis • Defend thesis



Thanks for 
listening

93



Supplemental Slides
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Bad basis functions

Input basis function Intrinsic basis function

[Sharp, Soliman & Crane 2019]



Delaunay flip complexity
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10 100 104 10103 5 106

1

10

100

104
105

103

106

[Sharp, Soliman 
& Crane 2019]



Adaptive simplification

105

input anisotropic coarsening
(max principal direction)

anisotropic coarsening
(min principal direction)input adaptive coarsening heat kernel

|V |=99,037 |V |=1000

input constrained coarsening Poisson solve

constraintsconstraints

III. Intrinsic simplification
" results



Near-developable surfaces

114

intrinsic simplification 

extrinsic simplification 

III. Intrinsic simplification
" results


