
Thesis Proposal
Dynamic Intrinsic Geometry Processing

Mark Gillespie

December 2023

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Keenan Crane (CMU), Chair
James McCann (CMU)

Ioannis Gkioulekas (CMU)
Boris Springborn (TU Berlin)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Mark Gillespie

Last updated: December 1, 2023

Abstract

T
his thesis presents algorithms and data structures for performing
robust computation on surfaces that evolve over time. Throughout
scientific and geometric computing, surfaces are often modeled as
triangle meshes. However, finding high-quality meshes remains a
challenge because meshes play two distinct and often-conflicting

roles: defining both the surface geometry and a space of functions on that surface.
One solution to this dilemma, which has proven quite powerful in recent years, is

the use of intrinsic triangulations to decouple these two concerns. The key idea is that
given a triangle mesh representing an input surface, one can find many alternative
triangulations which encode the exact same intrinsic geometry but offer alternative
function spaces to work in. This techniquemakes it easy to find high-quality intrinsic
triangle meshes, sidestepping the tradeoffs of classical mesh construction. However,
the fact that intrinsic triangulations exactly preserve the input geometry—one of
the central benefits of the technique—also makes it challenging to apply to surfaces
whose geometry changes over time.

In this thesis we relax the assumption of exact geometry preservation, allowing
the intrinsic perspective to be applied to time-evolving surfaces. We take as examples
the problems of mesh simplification and surface parameterization. In the case
of mesh simplification, we provide a general-purpose data structure for intrinsic
triangulations which share only the topological class of the input surface, but may
feature different geometry. In the case of surface parameterization, we build more
efficient data structures and algorithms for the special case where the geometry
changes conformally, using a connection between discrete conformal maps and
hyperbolic geometry. In both cases, we find that the intrinsic perspective leads to
simple algorithms which are still robust and efficient on a variety of examples.

Contents

1 Introduction 1

2 Background & Related Work 2
2.1 Notation & Conventions . 3
2.2 Manifolds . 4

2.2.1 Smooth Structure . 4
2.2.2 Riemannian Structure . 5

2.3 Polyhedral Surfaces . 6
2.3.1 Triangulations . 6
2.3.2 Polyhedral Geometry . 7
2.3.3 Retriangulation . 9

2.4 Static Intrinsic Triangulations . 9
2.4.1 Mapping & Correspondence . 9

3 Surface Simplification 10
3.1 Intrinsic Vertex Removal . 10

3.1.1 Vertex Flattening . 11
3.1.2 Flat Vertex Removal . 11

3.2 Correspondence Tracking . 12
3.2.1 Mapping Points . 12
3.2.2 Mapping Edges . 12

3.3 Measuring Distortion . 13
3.3.1 Flat Error Metric . 13
3.3.2 Intrinsic Curvature Error Metric . 14

3.4 Results . 15
3.4.1 Comparison with Extrinsic Methods . 15
3.4.2 Geometric Algorithms . 15

4 Surface Parameterization 18
4.1 Correspondence Data . 19

4.1.1 Normal Coordinates . 20
4.1.2 Roundabouts . 21

4.2 Mapping . 21

iii

4.2.1 Tracing Edges . 22
4.2.2 Recovering Geodesics . 23
4.2.3 Common Refinement . 23
4.2.4 Interpolation . 23

4.3 Planar Parameterization . 24
4.3.1 Variational Formulation . 24
4.3.2 Energy Evaluation . 24
4.3.3 Optimization . 25
4.3.4 Surfaces with Boundary . 25
4.3.5 Planar Layout . 26

4.4 Results . 27

5 Proposed Work 29
5.1 Intrinsic Simplification of Nonmanifold Meshes 29
5.2 Timeline . 30

A A Brief Introduction to Hyperbolic Geometry 36
A.1 Models of Hyperbolic Geometry . 36
A.2 Ideal Polyhedra . 37

A.2.1 Euclidean-Ideal Correspondence . 38
A.2.2 Ptolemy Flip . 38
A.2.3 Delaunay Triangulations . 39
A.2.4 Intrinsic Delaunay Triangulations . 39
A.2.5 Ideal Delaunay Triangulations . 39

iv

Chapter 1

Introduction

“You see,” Mrs. Whatsit said, “if a very small insect were to move from the section of skirt in Mrs.
Who’s right hand to that in her left, it would be quite a long walk for him if he had to walk
straight across.”

Madeleine L’Engle, A Wrinkle in Time

T
he distinction between intrinsic and extrinsic properties has played a central
role throughout the history of differential geometry, dating back to pioneering
work by Gauß [1825] and Riemann [1854] in the early 19th century. Intrinsic
geometry describes the properties of a surface which depend on local measure-
ments along the surface like lengths or angles, independent of the surface’s

embedding in space. A common metaphor—referenced above—is that intrinsic geometry takes
the perspective of an ant walking along the surface. By contrast, extrinsic geometry encompasses
the properties which do depend on the embedding of a surface. Importantly, one can consider
surfaces which have only intrinsic geometry, without any embedding into ambient space. This
intrinsic perspective is famously used in general relativity, where one considers the curved
spacetime of our universe without requiring any larger space for the universe to “curve into”.

More recently, the intrinsic perspective has become a useful tool in geometry processing,
where it allows one to work with triangle meshes which are not embedded into R3—and even
meshes which cannot be embedded into R3. This opens up a larger space of meshes to work in,
providing meshes of much higher quality than is possible extrinsically, while still supporting
a wide variety of geometry processing tasks. However, existing techniques apply only as a
precomputation for static objects: they find alternative representations of fixed objects, but
these representations immediately become invalid if the object deforms.

This thesis explores two settings where intrinsic triangulations sit atop changing geometries:

1. Maintaining an intrinsic triangulation while coarsening a surface to perform intrinsic
simplification (Chapter 3, [Liu et al. 2023]).

2. Using an intrinsic triangulation while parameterizing a surface via discrete conformal
maps (Chapter 4, [Gillespie et al. 2021b]).

In addition, Chapter 5 proposes a possible extension of the intrinsic coarsening technique to
simplify nonmanifold meshes, and concludes with my planned graduation timeline.

1

Chapter 2

Background & Related Work

The start of intrinsic geometry was made by Gauss’ paper “Disquisitiones generales circa su-
perficies curvas,” which appeared in 1827. Since that time, intrinsic geometry has advanced so
far that, at present, all of its major issues can be considered solved, at least those that deal with
the geometry of small pieces of regular surfaces . . . Meanwhile, irregular surfaces merit no less
consideration, as they often occur in real life and can be made from, say, a sheet of paper. For
example, any polyhedron or cone, or the surface of a lens with sharp edges are not regular. It is
no wonder then that there is a need to study irregular surfaces, too.

A. D. Alexandrov [1948]

P
erhaps the first major result concerning the intrinsic geometry of polyhedra—
rather than smooth surfaces—was Alexandrov’s uniqueness theorem for embed-
dings of convex polyhedra in the 1940s [Alexandrov 1942]. A decade and a half
later Regge [1961] took inspiration from Alexandrov’s work and used intrinsic
polyhedra in his study of numerical general relativity. It is fitting that general

relativity, which motivated much of the development of smooth differential geometry, was also
a key impetus behind the devlopment of discrete differential geometry.

From there, the study of polyhedral intrinsic geometry branched in several direction: Troy-
anov [1986] developed the smooth theory of polyhedra in his study of smooth conformal maps
between polyhedral surfaces, while Rivin [1994] defined intrinsic Delaunay triangulations of
polyhedral surfaces and introduced the deep connections between Euclidean and ideal hyperbolic
polyhedra. He also introduced the flip algorithm for computing intrinsic Delaunay triangulations.
Several years later Indermitte et al. [2001] fixed a flaw in Rivin’s proof of correctness of the flip
algorithm, although they themselves left open the possibility of a topological obstruction which
was only ruled out by Bobenko & Springborn [2007]. Glickenstein [2005, 2023] generalized the
intrinsic Delaunay triangulation and edge flip algorithm, introducing increasingly broad classes
of triangulations such as weighted, Thurston, and duality triangulations, sharing many of the
important properties of intrinsic Delaunay triangulations. Bobenko & Izmestiev [2008] used
weighted Delaunay triangulations to provide a constructive proof of Alexandrov’s theorem on
isometric embeddings of convex polytopes.

In parallel, intrinsic geometry has developed through the study of discrete conformal maps,
starting with the work of Roček & Williams [1984] on discrete conformal field theories. Discrete

2

Notation & Conventions Chapter 2 Background & Related Work

conformal maps were rediscovered in mathematics by Luo [2004] in his work on combinatorial
Yamabe flow, starting a line of work which culiminated in the discrete uniformization theorem
for polyhedral surfaces [Gu et al. 2018a; b; Springborn 2019].

The computer graphics community was introduced to intrinsic geometry by the work of
Kharevych et al. [2006] and Springborn et al. [2008] on discrete conformal parameterization,
and the work of Fisher et al. [2007] exploring the benefits of intrinsic Delaunay triangulations.
de Goes et al. [2014] went on to explore applications of weighted triangulations in geometry
processing, including architectural design andmesh generation. More recently, Sharp et al. [2019]
proposed a lightweight data structure for computing with intrinsic triangulations, alongside a
suite of novel intrinsic retriangulation algorithms beyond the intrinsic Delaunay flips introduced
by Rivin in the ’90s. Gillespie et al. [2021a] introduced a more robust data structure for encoding
intrinsic triangulations. Since then, intrinsic triangulation have proved useful in a variety
of contexts, from spectral geometry processing [Fumero et al. 2020] to mesh deformation
[Finnendahl et al. 2023]. A more exhaustive survey of the literature on intrinsic triangulations
and their applications was provided by Sharp et al. [2021].

Notably, all past work has considered intrinsic triangulations which are isometric to the
reference input surface—i.e. intrinsic triangulations which preserve the input geometry exactly.
In this thesis, we introduce data strucures an algorithms for manipulating intrinsic triangulations
of surfaces whose geometry changes over time. These data structures necessarily accomodate
intrinsic triangulations whose geometry differs in various ways from the input geometry.

In the rest of this chapter, we review our notation and conventions (Section 2.1), before
providing an introduction to the concepts from smooth (Section 2.2) and discrete (Section 2.3)
differential geometry used in this thesis, and a discussion of intrinsic triangulations (Section 2.4).

2.1 Notation & Conventions

Throughout, we consider a manifold triangle mesh 𝑀 with vertex set 𝑉 ,
edge set 𝐸 and face set 𝐹 . We denote vertices by indices 𝑖 ∈ 𝑉 and edges
and faces by tuples 𝑖𝑗 ∈ 𝐸, 𝑖𝑗𝑘 ∈ 𝐹 respectively. We also denote oriented
halfedges by ⇀

𝑖𝑗 ∈ 𝐻 . The value of a function 𝑢 : 𝑉 → R at vertex 𝑖 is
written as 𝑢𝑖 ; similarly, values on edges are denoted 𝑢𝑖𝑗 and values on faces
are denoted𝑢𝑖𝑗𝑘 . A value at the corner of face 𝑖𝑗𝑘 incident on vertex 𝑖 is denoted𝑢 𝑗𝑘

𝑖
. For instance,

the position of a vertex may be denoted 𝑝𝑖 , the length of an edge ℓ𝑖𝑗 , the area of a face 𝐴𝑖𝑗𝑘 , or
the angle of a corner \ 𝑗𝑘

𝑖
. Since our meshes are allowed to be general Δ-complexes, they may

feature e.g. multiple edges between the same pair of vertices (the details are discussed more
in Section 2.3.1). Consequently, our edge notation 𝑖𝑗 may not specify a unique edge from the
mesh—it is merely used to indicate a particular edge that happense to go from vertex 𝑖 to vertex
𝑗 (where 𝑖 may equal 𝑗). Similar caveats apply to the notation for faces.

Defining the degree of a vertex in a Δ-complex also requires some care, as the same
edge may be incident on a vertex more than once. We define the degree deg(𝑖) as the
number of incident edges counted with multiplicity, i.e., +2 for a self-edge from 𝑖 back
to 𝑖 , and +1 for any other edge 𝑖𝑗 with 𝑗 ≠ 𝑖 . For instance, in the inset figure vertex
𝑖 has degree four, even though it is contained in only three distinct edges; vertices 𝑗
and 𝑘 both have degree one.

3

Chapter 2 Background & Related Work Manifolds

When our mesh changes over times, we denote the original mesh by𝑀 = (𝑉 , 𝐸, 𝐹) and the
modified mesh by𝑀 = (𝑉 , 𝐸, 𝐹). Quantities on the modified mesh are indicated in the same way,
so e.g. the edge lengths on the modified mesh are denoted by ℓ̃ : 𝐸 → R≥0.

2.2 Manifolds

p

p

UpInformally speaking, a manifold is a space which “looks like R𝑛
everywhere”. More formally, a manifold𝑀 is a topological space
where every point 𝑝 ∈ 𝑀 is contained in some open set𝑈𝑝 which
is in continuous bijection with an open set in R𝑛. So a sphere
is a manifold, since every point on the sphere is contained in a
disk which can be mapped continuously to the unit disk in the
plane. By contrast, a double-knapped cone is not a manifold,
because no neighborhood of the tip can be mapped to the plane
by a continuous bijection. Each mapping to the plane is called a chart, as it describes the “terrain”
around a point 𝑝 , and the collection of all of these charts is referred to as an atlas.

So far, our notion of a manifold is purely topological—since our charts are continuous maps,
we have defined manifolds as spaces which look like R𝑛 everywhere as topological spaces. To
move from the world of topology to geometry, we have to equip our manifolds with additional
structure. The twomost important examples in this thesis will be smooth structure (Section 2.2.1)—
allowing us to talk about differentiability of functions in addition to continuity—and Riemannian
structure (Section 2.2.2)—allowing us to measure lengths and angles along the surface.

2.2.1 Smooth Structure

A smooth structure on a manifold 𝑀 determines which functions 𝑓 : 𝑀 → R are smooth (i.e.
infinitely differentiable). Traditionally, this is expressed using a special atlas of charts which
is declared to be smooth: then a function 𝑓 is smooth on𝑀 if its expression in each chart is a
smooth function on R𝑛 . As long as the charts satisfy some simple compatibility conditions on
their overlaps, then this definition is independent of which particular charts we select from the
atlas to check 𝑓 ’s smoothness [Lee 2012, Chapter 1].

p
Tangent Spaces A smooth structure on𝑀 allows one to define tangent spaces
associated to points on 𝑀 . Conceptually, the tangent space 𝑇𝑝𝑀 represents
the plane tangent to𝑀 at point 𝑝 , giving a linear approximation of the domain
around this point. Somewhat counterintuitively, these tangent spaces can be
defined purely intrinsically, without any embedding to provide the position of
𝑀 in R𝑛 . The key idea is that tangent vectors can be thought of as derivatives of curves lying on
𝑀 . Since the smooth structure allows us to talk about derivatives of curves, this is enough to
define tangent vectors, and hence tangent spaces. The tangent bundle 𝑇𝑀 is the collection of all
tangent spaces:

𝑇𝑀 :=
⊔
𝑝∈𝑀

𝑇𝑝𝑀. (2.1)

4

Manifolds Chapter 2 Background & Related Work

Any smooth mapping 𝑓 : 𝑀 → 𝑁 between manifolds 𝑀 and 𝑁 has a linear approximation
𝑑 𝑓 : 𝑇𝑀 → 𝑇𝑁 which sends tangent vectors on𝑀 to tangent vectors on 𝑁 . This map is often
called the differential, or push-forward, since it pushes vectors from𝑀 to 𝑁 .

It is important to note that these tangent spaces are defined only as abstract vector spaces,
without any canonical choice of basis or inner product. So we can do arithmetic with tangent
vectors—we can add them together or scale them up and down—but we cannot yet measure the
lengths of vectors or angles between them. In the next section we will equip our surfaces with a
Riemannian metric which will provide us with an inner product on our tangent spaces.

Similarly, since tangent vectors based at different points on the surface live in different
tangent spaces, we cannot compare vectors which live at different points—e.g. we cannot ask
whether two vectors point in the “same” direction, since they are elements of different vector
spaces. Later on, we will see how a Riemannian metric also allows us to relate vectors in different
tangent spaces through parallel transport.

Uniqueness of Smooth Structure Topological manifolds of dimension 𝑛 ≤ 3 have a unique
smooth structure (up to diffeomorphism). Interestingly, the standard proof begins by showing
that these manifolds can be triangulated piecewise-linearly [Moise 1952], and then proceeding
to show that such triangulations can be smoothed to obtain a smooth structure [Hirsch & Mazur
1974]. Triangulations, which we use to encode polyhedral surfaces in Section 2.3.1 are also
an essential tool in the continuous setting. On the other hand, higher-dimensional manifolds
may have different smooth structures; for instance, Milnor [1956] famously constructed smooth
structures on the 7-sphere inequivalent to the standard one.

2.2.2 Riemannian Structure

A Riemannian structure on𝑀 allows us to start doing geometry, measuring lengths and angles
and so forth for curves running along 𝑀 . Formally, this structure is usually encoded via a
Riemannian metric 𝑔, which provides an inner product on each tangent space of𝑀 . That is to
say, at each point 𝑝 we have a symmetric, bilinear, positive-definite form 𝑔𝑝 : 𝑇𝑝𝑀 ×𝑇𝑝𝑀 → R.
To emphasize that 𝑔𝑝 is an inner product on 𝑇𝑝𝑀 , we will sometimes write 𝑔𝑝 (𝑋,𝑌) as ⟨𝑋,𝑌 ⟩𝑔
for vectors 𝑋,𝑌 ∈ 𝑇𝑝𝑀 , and similarly, we will write 𝑔𝑝 (𝑋,𝑋) as ∥𝑋 ∥2𝑝 for vectors 𝑋 ∈ 𝑇𝑝𝑀 .

Isometries An isometry is a smooth mapping 𝑓 : 𝑀 → 𝑁 between manifolds𝑀 and 𝑁 which
preserves the metric. So, for instance, if 𝛾 is a curve on 𝑀 , then 𝑓 ◦ 𝛾 is a curve of the same
length on 𝑁 . Similarly, if two curves 𝛾1 and 𝛾2 meet at an angle \ on𝑀 , then the curves 𝑓 ◦ 𝛾1
and 𝑓 ◦ 𝛾1 must meet at the same angle \ on 𝑁 .

Geodesics To measure the length of a curve 𝛾 : [0,𝑇] → 𝑀 , we add up the size of its velocity
at all times from 0 to 𝑇 . More formally, the length of 𝛾 can be expressed as the integral

𝐿(𝛾) :=
∫ 𝑇

0
∥ ¤𝛾 (𝑡)∥𝑔 𝑑𝑡, (2.2)

where ¤𝛾 : [0,𝑇] → 𝑇𝑀 is the derivative of 𝛾 . Now that we can measure the lengths of curves
along𝑀 , we can also define distances between points in𝑀 : the distance between points 𝑥 and 𝑦

5

Chapter 2 Background & Related Work Polyhedral Surfaces

on𝑀 is simply the length of the shortest path from 𝑥 to 𝑦. If𝑀 is equal to R𝑛 with the standard
metric, then the shortest line between two points will be a straight line connecting them. On
general Riemannian manifolds, then, we thing of shortest paths as generalizations of straight
lines.

A geodesic is a (unit-speed) curve 𝛾 which is a locally shortest path, in the sense that for
sufficiently close times 𝑠 and 𝑡 , 𝛾 follows the shortest path between 𝛾 (𝑠) and 𝛾 (𝑡). However,
𝛾 itself may not be the shortest path between its endpoints. A classic example of a geodesic
which is not a shortest path is a curve wrapping around the equator of the sphere. This is locally
shortest, since over any short time interval it follows a shortest path, but of course walking all
of the way around the sphere is longer than not moving at all.

2.3 Polyhedral Surfaces

Up

p

p

Informally speaking, a polyhedral surface is a collection of trian-
gles which have been glued together to form a manifold. Just as in
the smooth setting, a triangulated sphere is a manifold, whereas
a double-knapped pyramid is not. And like in the smooth set-
ting, we can consider different structures on a polyhedral surface:
we can consider a triangulation, which yields topological infor-
mation about the surface (Section 2.3.1), and we can consider a
metric (Section 2.3.2), which yields geometric information about
the surface.

2.3.1 Triangulations

Figure 2.1: In a Δ-complex, the vertices of
an edge or triangle are not required to be
distinct. One can build a cone by gluing
together two edges of the same triangle (top),
or a torus out of two triangles and just a
single vertex (bottom).

In this thesis, we will represent the connectivity of
a polyhedral surfaces using a triangulation. More
precisely, we use a Δ-complex, which consists of a
collection of disjoint triangles along with a prescribed
gluing which attaches their vertices and edges to-
gether. Explicitly, this amounts to a collection of tri-
angles 𝑖0 𝑗0𝑘0, . . . 𝑖 |𝐹 | 𝑗 |𝐹 |𝑘 |𝐹 | , alongside a list of vertex
gluings 𝑎 ∼ 𝑏 and a list of edge gluings (𝑎, 𝑏) ∼ (𝑐, 𝑑),
where 𝑎, 𝑏, 𝑐, 𝑑 are vertices from the disjoint trian-
gles. Figure 2.1 shows some examples; a more formal
definition is provided by Hatcher [2002, Section 2.1].
Finally, throughout this thesis we consider only pure
2-complexes, i.e., we require that every vertex and
edge is contained in some triangle (and triangles are
the cells of greatest dimension).

Existence Radó [1925] showed that every surface can be triangulated, which is to say that
every topological 2-manifold is homeomorphic to some Δ-complex [Moise 2013, Chapter 8].
Perhaps the more surprising fact is that this theorem is not true in higher dimensions: Kirby &

6

Polyhedral Surfaces Chapter 2 Background & Related Work

Siebenmann [1969] showed that topological manifolds of dimension ≥ 6 are triangulable if and
only if a certain cohomology class ^ (𝑀) ∈ 𝐻 4(𝑀 ;Z/2Z) vanishes. However, Whitehead [1940]
showed that every smooth (or even just𝐶1) manifold can be triangulated. In any case, this thesis
only considers surfaces, where working with triangulations is much more straightforward.

Equivalence Two triangulations of a manifold are said to be combinatorially equivalent if
they have a common subdivision, i.e. if there is a finer triangulation which can express all faces
of both triangulations as unions of its finer faces. In 1908, Steinitz [1908] and Tietze [1908]
conjectured that any two triangulations of a topological manifold are combinatorially equivalent,
which came to be known as the Hauptvermutung (main conjecture) of geometric topology. This
conjecture holds true in dimensions two [Radó 1925] and three [Moise 1952], but again fails in
higher dimensions [Kirby & Siebenmann 1969].

Although any two triangulations of a given surface are combinatorially equivalent, the
choice of triangulation can have dramatic impacts in practice.

Data Structures Perhaps the most common mesh data structure is the vertex-face adjacency list,
which simply stores the three three vertices associated with each triangle. This representation is
simple and easy to use, as it requires only an |𝐹 | ×3matrix. However, a vertex-face adjacency list
alone does not provide enough information to encode a general Δ-complex: it provides a vertex
gluing map, but leaves the edge gluing map implicit. When working with extrinsic triangle
meshes in R3 this information is sufficient to recover the triangulation, but when working
intrinsically one must store more information.

Fortunately, many of the other standard mesh data structures can be used out of the box to
represent general Δ-complexes. For instance one can use winged-edge or halfedge structures
[Baumgart 1975; Kettner 1999; Weiler 1985]; Botsch et al. [2010] provide an accessible introduc-
tion to these data structures. Alternatively, Sharp & Crane [2020a] observe that one can simply
augment the vertex-face adjacency list with an additional array storing the edge gluing map to
fully encode a general Δ-complex.

Tangent Spaces Away from vertices, tangent vectors on a manifold triangulation are straight-
forward to reason about, especially in our setting of interest where the triangles are given flat
Euclidean metrics (Section 2.3.2). But even at vertices, there are still well-defined tangent spaces.
After all, a manifold 2-dimensional Δ-complex is in particular a topological surface, which has
a unique smooth structure. In the next section, we will use a metric on the triangulation to
construct a convenient parameterization for these tangent spaces.

2.3.2 Polyhedral Geometry

A polyhedral cone metric on a surface𝑀 with vertex set𝑉 is a smooth Riemannian metric on the
punctured surface𝑀 \𝑉 which is intrinsically flat everywhere. Such a metric can be encoded by
a set of positive edge lengths ℓ : 𝐸 → R>0 satisfying the triangle inequality ℓ𝑖𝑗 + ℓ𝑗𝑘 > ℓ𝑘𝑖 at each
triangle corner; conversely, any such set of lengths determines a valid intrinsic metric. Under
this metric, each triangle is isometric to a standard Euclidean triangle with the presecribed edge

7

Chapter 2 Background & Related Work Polyhedral Surfaces

lengths. One typically obtains initial edge lengths ℓ𝑖𝑗 = ∥𝑝𝑖 − 𝑝 𝑗 ∥ from input vertex positions
𝑝 : 𝑉 → R3, but in principle this could be any abstract metric (e.g., coming from a cone flattening
[Bobenko & Springborn 2004]). As usual, this metric allows us to measure lengths and angles
along the surface. For instance, triangle corner angles \ 𝑗𝑘

𝑖
∈ (0, 𝜋) can be determined from

the edge lengths via the law of cosines. Sharp et al. [2021, Appendix A] provide a detailed
explanation of how to compute many geometric quantities of interest from edge lengths.

Curvature Although a polyhedral conemetric is flat almost everywhere, it still has ameaningful
notion of curvature: each interior vertex 𝑖 has an associated discrete Gaussian curvature

Ω𝑖 := 2𝜋 −
∑︁
𝑖𝑗𝑘∋𝑖

\
𝑗𝑘

𝑖
. (2.3)

This angle defect measures the deviation of vertex 𝑖 from being flat, and can be interpreted as
the integral of Gaussian curvature over a small surface patch containing vertex 𝑖 . Similarly, each
boundary vertex has an associate discrete geodesic curvature

^𝑖 := 𝜋 −
∑︁
𝑖𝑗𝑘∋𝑖

\
𝑗𝑘

𝑖
, (2.4)

measuring the deviation of the boundary from a straight line around 𝑖 .

Vertex Tangent Spaces Even though the smooth polyhedral
metric is not technically defined at a vertex 𝑖 , it still provides
us with a convenient parameterization of the tangent space 𝑇𝑖𝑀 .
Any sufficiently small neighborhood of vertex 𝑖 is isometric a
cone of total angle Θ𝑖 . Following Knöppel et al. [2013, Section
6], we express the direction of any tangent vector 𝑣 ∈ 𝑇𝑖𝑀 as a
normalized angle 𝜑 := 2𝜋\/Θ ∈ [0, 2𝜋), where \ is the angle of
𝑣 relative to an arbitrary but fixed reference edge 𝑖𝑗0, and Θ is
the total angle sum at vertex 𝑖 . The vector itself is then encoded
as a complex number 𝑟𝑒 i𝜑 ∈ C, where i is the imaginary unit and
𝑟 is the vector’s magnitude. Note that although we have used the metric to define a particular
coordinate system on 𝑇𝑖𝑀 , the tangent space itself is well-defined independent of our choice of
metric.

Parallel Transport The tangent spaces at adjacent vertices 𝑖 and 𝑗 are a priori just a pair
of abstract vector spaces which are entirely unrelated to each other. However, once we have
equipped our surface with a polyhedral metric we can use parallel transport to map vectors
between the two tangent spaces. Concretely, we let the angular coordinate 𝜑𝑖𝑗 ∈ [0, 2𝜋) encode
the outgoing direction of an oriented edge 𝑖𝑗 from vertex 𝑖; we use 𝑒𝑖𝑗 ∈ 𝑇𝑖𝑀 to denote the
vector with direction 𝜑𝑖𝑗 and magnitude ℓ𝑖𝑗 . The corresponding direction at vertex 𝑗 is given by
𝜑 𝑗𝑖 + 𝜋 . Hence, we can parallel transport vectors from 𝑇𝑖𝑀 to 𝑇𝑗𝑀 following edge 𝑖𝑗 by applying
a rotation 𝑅𝑖𝑗 := 𝑒 i((𝜑 𝑗𝑖+𝜋)−𝜑𝑖𝑗) (encoded as a unit complex number). See Sharp et al. [2019, §3.3 &
§5.2] for further discussion.

8

Static Intrinsic Triangulations Chapter 2 Background & Related Work

Exponential and Logarithmic Map The exponential map
exp𝑥 (𝑢) of a tangent vector 𝑢 at point 𝑥 computes the point 𝑝
reached by starting at point 𝑥 and walking straight (i.e., along a
geodesic) with initial direction 𝑢 for a distance ∥𝑢∥ (inset, left).
Concretely, this can be evaluated by laying out the relevant se-
quence of triangles in the plane and drawing a straight line (inset,
right). Note that for any oriented edge 𝑖𝑗 we have exp𝑖 (𝑒𝑖𝑗) = 𝑗 . Conversely, the logarithmic
map log𝑥 (𝑝) of a given point 𝑝 ∈ 𝑀 taken at point 𝑥 gives the smallest tangent vector 𝑢 at 𝑥
such that exp𝑥 (𝑢) = 𝑝 . Hence, for any point 𝑝 and veretx 𝑖 , we have that exp𝑥 (log𝑥 (𝑝)) = 𝑝 .
However, it is not necessarily the case that for any tangent vector 𝑣 we have log𝑥 (exp𝑥 (𝑣)) = 𝑣 ,
since there may be a shorter path leading to the same destination. In particular, log𝑖 (𝑗) may not
always yield the edge vector 𝑒𝑖𝑗 .

2.3.3 Retriangulation

edge flip

not flippable

Intrinsic Edge Flip Consider an edge 𝑖𝑗 contained in triangles
𝑖𝑗𝑘, 𝑗𝑖𝑙 . An edge flip replaces 𝑖𝑗 with the opposite diagonal 𝑘𝑙 . An
edge 𝑖𝑗 is flippable if and only if

(i) deg 𝑖, deg 𝑗 ≥ 2 and

(ii) triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 form a convex quadrilateral,

i.e., if both \ 𝑗𝑘
𝑖

+ \ 𝑙 𝑗
𝑖
and \𝑘𝑖𝑗 + \ 𝑖𝑙𝑗 are less than 𝜋 [Sharp & Crane

2020b, §3.1.3]. Note that these conditions are considerably easier
to check than in the extrinsic case [Liu et al. 2020, Appendix C].

Intrinsic Delaunay Triangulation A triangulation is intrinsic Delaunay if it satisfies the angle
sum condition \ 𝑖𝑗

𝑘
+ \ 𝑗𝑖

𝑙
< 𝜋 at all interior edges 𝑖𝑗 ∈ 𝐸. Such triangulations extend many useful

properties of 2D Delaunay triangulations to surface meshes—[Sharp et al. 2021, §4.1.1] gives a
detailed list. A triangulation can be made intrinsic Delaunay via a simple greedy algorithm: flip
non-Delaunay edges until none remain [Bobenko & Springborn 2007].

2.4 Static Intrinsic Triangulations

2.4.1 Mapping & Correspondence

If one starts with an extrinsic triangle mesh and performs a sequence of intrinsic edge flips, one
obtains an intrinsic triangulation which preserves the original geometry exactly—it is isometric
to the extrinsic mesh. In practice, it is often essential to be able to evaluate this isometry
explicitly, i.e. to map points back and forth between the original extrinsic triangulation and the
new intrinsic triangulation. We call this mapping a correspondence between triangulations. Using
the fact that the mapping is an isometry, one can build efficient data structures for evaluating
the correspondence, using integer coordinates [Gillespie et al. 2021a] or signpost vectors [Sharp
et al. 2019].

9

Chapter 3

Surface Simplification

Discarding is not the point; what matters is keeping those things that bring you joy. If you discard
everything until you have nothing left but an empty house, I don’t think you’ll be happy living
there. Our goal in tidying should be to create a living environment filled with the things we love.

Marie Kondō

T
he first instance of dynamic surfaces that we will consider is surface simplifica-
tion. Whereas past simplification methods focus on visual appearance, our goal
is to solve equations on the surface. Hence, rather than approximate the extrin-
sic geometry, we construct a coarse intrinsic triangulation which approximates
the input domain. In the spirit of the quadric error metric (QEM) of Garland &

Heckbert [1997], we perform greedy decimation while agglomerating global information about
approximation error. In lieu of extrinsic quadrics, however, we store intrinsic tangent vectors
that track how far curvature “drifts” as the surface evolves during simplification. This process
also yields a bijective map between the fine and coarse mesh, and prolongation operators for
both scalar- and vector-valued data. Moreover, we obtain hard guarantees on element quality
via intrinsic retriangulation—a feature unique to the intrinsic setting. The overall payoff is a
“black box” approach to geometry processing, which decouples mesh resolution from the size of
matrices used to solve equations.

3.1 Intrinsic Vertex Removal

Extrinsic simplification methods reduce vertex count by making local changes to the mesh
connectivity [Garland & Heckbert 1997; Hoppe 1996; Schroeder et al. 1992]. We extend local
simplification to the intrinsic setting, using vertex removal as our atomic simplification operation.
Intrinsic simplification provides strictly more possibilities than its extrinsic counterpart, since
any extrinsic operation can be represented intrinsically.

Our method removes a vertex 𝑖 in three steps:

1. Intrinsically flatten 𝑖 (Section 3.1.1).

2. Remove 𝑖 from the triangulation (Section 3.1.2).

3. Flip to an intrinsic Delaunay triangulation (Section 2.3.3).

10

Intrinsic Vertex Removal Chapter 3 Surface Simplification

The vertex removal step extends the scheme of Gillespie et al. [2021a, §3.5] to handle boundary
vertices as well. Note that all changes to the geometry occur in the first step, redistributing the
curvature at 𝑖 to neighboring vertices 𝑗 . The second step merely retriangulates a flat region, and
the third step performs only intrinsic edge flips. Hence, when measuring distortion in Section 3.3
will need only consider the first (flattening) step to prioritize vertex removals. Maintaining a
Delaunay triangulation at each step helps ensure numerical robustness throughout simplification.

Special cases To remove an ear vertex 𝑖 , it is tempting to remove the triangle 𝑖𝑗𝑘 containing
𝑖 . However, doing so leaves points on the fine mesh that do not map anywhere on the coarse
mesh. Instead, we turn any ear into a regular boundary vertex by flipping the opposite edge 𝑗𝑘 .

We cannot remove vertices 𝑖 incident on a boundary self-edge, since every boundary loop
must contain at least one vertex. Likewise, vertices 𝑖 of self-faces (i.e., triangles with only a
single distinct vertex) can cause trouble for flipping, and are skipped.

3.1.1 Vertex Flattening

We first eliminate all curvature at vertex 𝑖 . For this operation to remain local and valid we must
bijectively flatten the one-ring of vertex 𝑖 , while keeping edge lengths along the boundary of
this region fixed. Extrinsic flattening schemes can fix boundary vertices, but it is unclear how to
construct the least-distorting boundary polygon with prescribed lengths. In contrast, the CETM
algorithm of Springborn et al. [2008] supports edge length constraints, and operates directly on
an intrinsic triangulation. More details on CETM can be found in Chapter 4.

For some vertices, this procedure may fail to find a valid parameterization. In this case, we
simply skip removing this vertex and move on to remove another vertex instead.

3.1.2 Flat Vertex Removal

interior

�ip
rem

ove

boundaryTo remove a flattened vertex 𝑖 , we flip it to a degree-3 vertex and replace
the three triangles 𝑖𝑎𝑏, 𝑖𝑏𝑐, 𝑖𝑐𝑎 incident on 𝑖 with the single triangle
𝑎𝑏𝑐 (inset, left). Since the vertex neighborhood is already flat, these
operations preserve the geometry. Gillespie et al. [2021a, Appendix
D.1] show that iteratively flipping any remaining flippable edge 𝑖 𝑗
incident on 𝑖 will yield a degree-3 vertex, so long as the neighborhood
remains simplicial. Hence, at each step we first flip any self-edges
(𝑖 = 𝑗); if there are none, we flip the edge 𝑖𝑗 with largest angle sum
\
𝑖𝑗

𝑘
+ \ 𝑗𝑖

𝑙
(since only convex triangle pairs can be flipped). In the rare

case where deg 𝑖 > 3 and no flippable edges remain, we skip this vertex
removal and revert the mesh to its previous state. If 𝑖 is a boundary
vertex, we again perform edge flips until deg 𝑖 = 3 and replace the two
resulting triangles 𝑖𝑎𝑏, 𝑖𝑐𝑎 with the single triangle 𝑎𝑏𝑐 (inset, right). Here again the geometry is
unchanged, since 𝑖 has no geodesic curvature. When 𝑖 is an ear vertex we need only flip the
opposite edge to give 𝑖 degree-3, while for regular boundary vertices we use the same procedure
as for interior vertices.

11

Chapter 3 Surface Simplification Correspondence Tracking

After removal, we must also update the angular coordinates 𝜑 𝑗𝑘 and corresponding edge
vectors 𝑒 𝑗𝑘 for each edge 𝑗𝑘 with endpoints adjacent to 𝑖 (Section 2.3.2). We then flip the mesh
to an intrinsic Delaunay triangulation, à la Section 2.3.3.

3.2 Correspondence Tracking

3.2.1 Mapping Points

To map any point 𝑝 on the fine mesh to a point 𝑝 on the coarse mesh, we track its barycentric
coordinates through local coarsening operations (namely: edge flips, vertex flattenings, and
vertex removals). This map is trivially bijective, since at each step we simply re-write the given
barycentric coordinates with respect to a different triangulation of the same planar region. The
only way to violate bijectivity would be to perform a non-bijective vertex flattening—which we
explicitly forbid. To evaluate this map on demand, one can record the list of local operations,
and “re-play” these operations for each new query point, as done by Liu et al. [2020].

1. Edge flips: To track a point 𝑝 through an intrinsic
edge flip, we unfold the two adjacent triangles
into the plane using the formulas provided by
Sharp et al. [2021, Section 2.3.7], and compute the
barycentric coordinates of 𝑝 in the new triangle. �ip

p p

pp

2. Vertex flattening: We must also compute new barycentric coordinates 𝑏 after each vertex
flattening (Section 3.1.1). Here we use the projective interpolation scheme of Springborn
et al. [2008, §3.4]. Since our parameterization is a discrete conformal equivalence, this
scheme defines a continuous (𝐶0) bijective map. Let 𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘 be barycentric coordinates
for a point in face 𝑖𝑗𝑘 , and let 𝑢𝑖 be the scale factor at 𝑖 . Then

(𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘) =
(𝑒𝑢𝑖𝑏𝑖, 𝑏 𝑗 , 𝑏𝑘)
𝑒𝑢𝑖𝑏𝑖 + 𝑏 𝑗 + 𝑏𝑘

, (3.1)

where the denominator ensures our updated values still sum to 1.

3. Vertex removal: Once vertex 𝑖 is flattened and flipped
to degree three, its neighborhood can be laid out in
the plane without distortion. Here we apply standard
formulas to compute barycentric coordinates for ver-
tex 𝑖 in the new triangle, along with coordinates for
any points located in the three removed triangles.

i

i

i

remove

i

3.2.2 Mapping Edges

In addition to mapping points between the fine and coarse meshes, we can also map an edge on
one mesh to the corresponding polygonal curve on the other. The key is to determine how each
local operation modifies a polygonal curve. In our case, edge flips and vertex insertion/removal

12

Measuring Distortion Chapter 3 Surface Simplification

may add vertices to the polygonal curve, but leave its geometry the same, while vertex flattening
distortions the curve geometry but leaves its combinatorics the same. Mapping edges allows us
to draw the intrinsic triangulation sitting atop the extrinsic mesh, and to compute the common
subdivision of the two triangulations.

3.3 Measuring Distortion

To prioritize vertex removals, we must quantify the cost of removing a vertex. Standard extrinsic
metrics, such as QEM, are not appropriate: even if they could somehow be evaluated intrinsically,
they would attempt to preserve irrelevant aspects of the geometry. Our method is however
inspired by the remarkable effectiveness of greedy local error accumulation in QEM. Likewise,
metrics that focus on finite element equality (à la [Shewchuk 2002]) are not appropriate, since
the triangulation used to encode the intrinsic geometry is transient and subject to change.

Our ICE metric is instead based on two intrinsic and triangulation-independent concepts:
optimal transport [Santambrogio 2015], and the Karcher mean [Karcher 2014]. Optimal transport
helps quantify the effort of redistributing mass, providing the local cost for our metric. Karcher
means encode the center of mass of all fine vertices contributing to a coarse vertex 𝑖 , providing a
way of accumulating information. These two pieces fit together in a natural way: after a single
vertex removal, the mass-weighted norm of all error vectors 𝑡𝑖 encoding Karcher means is exactly
equal to the optimal transport cost. Hence, after many vertex removals this norm approximates
the cost of transporting the initial fine mass distribution to the coarsened vertices. Vertex
removals that keep cost small should hence be prioritized, since they better preserve the initial
mass distribution. Just as in QEM, this information is captured by a fixed-size representation
(masses and tangent vectors at each vertex) that is easily agglomerated during coarsening. For
clarity of exposition we first define error metrics in 2D, before generalizing to surfaces and
incorporating data like curvature or other attributes.

3.3.1 Flat Error Metric

Consider a mass distribution 𝑚 : 𝑉 → R≥0 at mesh vertices, representing any nonnegative
user-defined quantity (signed quantities will be addressed in Section 3.3.2). Suppose we remove
vertex 𝑖 , redistributing its mass𝑚𝑖 to its immediate neighbors 𝑗 . In particular, let 𝛼𝑖𝑗 ∈ [0, 1] be
the fraction of𝑚𝑖 sent to vertex 𝑗 (hence

∑
𝑗∼𝑖 𝛼𝑖𝑗 = 1), so that the new mass at 𝑗 is

�̃� 𝑗 =𝑚 𝑗 + 𝛼𝑖𝑗𝑚𝑖 . (3.2)

To measure how mass is transported across the surface, we need to track not only the mass
distribution, but also where mass came from. Hence, at each vertex 𝑖 we store an error vector
𝑡𝑖 (initially set to zero) pointing to the center of mass 𝑐𝑖 of all vertices that contributed to the
current value of𝑚𝑖 . Explicitly, after removing 𝑖 , the center of mass at vertex 𝑗 is

𝑐 𝑗 =
𝛼𝑖𝑗𝑚𝑖𝑥𝑖 +𝑚 𝑗𝑥 𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

, (3.3)

13

Chapter 3 Surface Simplification Measuring Distortion

where 𝑥𝑖 ∈ R2 denotes the location of vertex 𝑖 . The vector pointing from 𝑥 𝑗 to 𝑐 𝑗 is thus

𝑡 𝑗 = 𝑐 𝑗 − 𝑥 𝑗 =
𝛼𝑖𝑗𝑚𝑖𝑒 𝑗𝑖

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

, (3.4)

where 𝑒 𝑗𝑖 = 𝑥𝑖 −𝑥 𝑗 is the vector along edge 𝑗𝑖 . The total cost of removing 𝑖 can then be measured
by summing up the mass-weighted norms of these vectors. Noting that ∥𝑒 𝑗𝑖 ∥ = ℓ𝑖𝑗 , we get a cost

𝐶𝑖 =
∑︁
𝑗∼𝑖
�̃� 𝑗 ∥𝑡 𝑗 ∥ =

∑︁
𝑗∼𝑖
𝛼𝑖𝑗𝑚𝑖ℓ𝑖𝑗 . (3.5)

This cost also coincides with the so-called 1-Wasserstein distance between the old and new mass
distribution [Santambrogio 2015, Chapter 5]. Intuitively, this distance measures the total “effort”
of moving mass from 𝑖 to neighbors 𝑗 , penalizing not only the amount of mass moved, but also
the distance traveled.

Rather than assign a cost to each vertex removal in isolation, we can accumulate information
about how mass has been redistributed across all prior removals. At each step, we update the
mass distribution via Equation (3.2), but also update vectors encoding the centers of mass via

𝑡 𝑗 =
𝛼𝑖𝑗𝑚𝑖 (𝑡𝑖 + 𝑒 𝑗𝑖) +𝑚 𝑗𝑡 𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

. (3.6)

In other words, we re-express 𝑡𝑖 relative to 𝑥 𝑗 by adding the edge vector 𝑒 𝑗𝑖 , then take the
mass-weighted average of the old error vector 𝑡 𝑗 with this new vector. The overall cost is
still evaluated via Equation (3.5), but now approximates the effort of moving the initial mass
distribution to the current one—rather than just penalizing the most recent change. This cost is
only approximate since the 1-Wasserstein distance to the center of mass is not in general equal
to the distance to the original fine distribution—but it is usually quite close. Thus, our error
metric favors decimation sequences which keep each coarse vertex close to the center of all fine
vertices that contribute to its mass.

3.3.2 Intrinsic Curvature Error Metric

Due to the Gauss-Bonnet theorem, flattening a vertex 𝑖 conservatively redistributes curvature to
neighboring vertices 𝑗 , making curvature a natural “mass” distribution to guide simplification. A
challenge here is that the old and new curvatures 𝐾 and �̃� are not in general positive quantities.
One possibility might be to use a transport cost for signed measures such as [Mainini 2012], but
doing so would require us to solve a small optimal transport problem for each vertex removal.
We instead adopt a cheap alternative. In particular, we define convex weights

𝛼𝑖𝑗 :=
|�̃� 𝑗 − 𝐾 𝑗 |∑
𝑙∼𝑖 |�̃�𝑙 − 𝐾𝑙 |

. (3.7)

For boundary vertices we use the same formula, but replace Gaussian curvature 𝐾 with geodesic
curvature ^. If vertex 𝑖 is already flat prior to removal, then there is no change in curvature
and we simply distribute mass equally to all neighbors. We then split the initial fine curvature

14

Results Chapter 3 Surface Simplification

function 𝐾 (or ^) into two positive mass functions 𝐾+
𝑖
:= max(𝐾𝑖, 0) and 𝐾−

𝑖
:= −min(𝐾𝑖, 0).

Each of these quantities is tracked throughout simplification like𝑚𝑖 above, using two separate
vectors 𝑡+𝑖 and 𝑡−𝑖 (respectively), and weights 𝛼 from Equation (3.7):

𝑡±𝑗 =
𝛼𝑖𝑗𝑚𝑖 (𝑅𝑖𝑗𝑡±𝑖 + 𝑒 𝑗𝑖) +𝑚 𝑗𝑡

±
𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗

. (3.8)

The parallel transport term 𝑅𝑖𝑗 to account for the surface curvature. The overall error, which
defines the ICE metric, is then the sum of the errors in the two curvature functions (à la
Equation (3.5)). Note that if a vertex 𝑖 cannot be flattened or removed, we assign it an infinite
cost (which may later get updated to a finite value when its neighbors are removed.

3.4 Results

3.4.1 Comparison with Extrinsic Methods

anisotropic distortion area distortion (log)

0

0

max max

min

Liu et al. 2021
(mean error: 9.6%)

ICE
(mean error 8.1%)

Liu et al. 2021
(mean error: 1.19)

ICE
(mean error: 1.12)

Figure 3.1: Even on an extremely nice triangulation of a
highly regular surface we see a reduction in distortion
relative to past methods—owing to the much larger space
of intrinsic triangulations.

The flexibility gained by working in the
larger space of intrinsic triangulations
leads to lower geometric distortion than
extrinsic meshes exhibit on meshes of
equivalent size. In Figure 3.1 we coarsen
a 28k bunny mesh down to 200 vertices
with both the method of Liu et al. [2021]
and our method. Even on this highly
regular geometry we observe a modest
reduction of both area distortion and
anisotropic distortion. For more difficult
triangulations, or surfaces with lower in-
trinsic curvature, we observe more signif-
icant gains.

input

% error

QEM

ICE

0% 0.1% 9.5% 81.7%

0% 0.1% 0.2% 3.4%

Figure 3.2: On surfaces with small extrinsic curvature, we
achieve dramatically lower error in surface area compared
to extrinsic methods like QEM.

As an extreme case, Figure 3.2
coarsens a developable surface from [Ver-
hoeven et al. 2022] via both QEM and ICE.
Since coarse extrinsic edges are shortest
paths in R𝑛 , they underestimate intrinsic
distances (hence areas); in contrast, intrin-
sic edges are essentially embedded in the
original surface, providing better approx-
imation of the original geometry.

3.4.2 Geometric Algorithms

15

Chapter 3 Surface Simplification Results

input QEM

[Liu et al 2021]

ICE

ground
truth

di�erencedi�erence di�erencedi�erence

Figure 3.3: For the same vertex budget as extrin-
sic methods like QEM, ICE provides more accurate
solutions for basic problems like solving a Poisson
equation—seen here via smoother isolines that better
approximate the ground truth.

Partial Differential Equations Better do-
main approximation in turn improves the
quality of solutions computed on coarse
meshes. For example, in Figure 3.3 we coarsen
a cloth simulation mesh down to 500 vertices
with an extrinsic method ([Liu et al. 2021]
using QEM simplification) and our intrinsic
method. We then solve a Poisson problem
on the coarse meshes and apply prolongation,
yielding more accurate results in the intrinsic
case.

16

Results Chapter 3 Surface Simplification

speedup/error:
ground
truth
ground
truth

3x / 2x10-4% 76x / 0.01% 840x / 0.2% 4880x / 1.5%

|V |=20k 50% 5% 0.5% 0.05%

Figure 3.4: Intrinsic coarsening offers an attractive approach to approximating single-source geodesic
distance, here providing a three orders of magnitude speedup for a fraction of a percent relative error.

Lee et al. 1998 ICEground truth

di
st

an
ce

er
ro

r
m

es
h

0

max

Figure 3.5: As geodesic distance is an intrinsic quantity, it
is more accurately approximated via intrinsic coarsening—
here providing a 4x reduction in relative error.

Single-SourceGeodesicDistance Geodesic
distance is an intrinsic quantity, making
it a natural fit for intrinsic coarsening. In
Figure 3.5 we compare ICE to the extrinsic
method of Lee et al. [1998] by measuring
the difference between the exact distance
on the fine input, and prolongated dis-
tances from the coarse meshes (both com-
puted via [Mitchell et al. 1987]); here ICE
achieves a roughly 4x reduction in rela-
tive error. Figure 3.4 illustrates the speed-
accuracy trade off of using ICE, here re-
ducing cost by three orders of magnitude
while introducing only ∼ 1% relative ap-
proximation error.

gr
ou

nd
 t

ru
th

co
ar

se
ne

d

660.2 s

0.4 s
(1650x)

…

…

Figure 3.6: For a mesh with 6k vertices we obtain
an all-pairs geodesic distance matrix 1650x faster,
while incurring only 1.4% relative error.

All-Pairs Geodesic Distance The benefits
of an accurate intrinsic approximation become
even more pronounced when approximating the
dense matrix𝐷 ∈ 𝑅 |𝑉 |×|𝑉 | of all pairs of geodesic
distances—a shape descriptor often used in cor-
respondence and learning methods [Shamai &
Kimmel 2017]. We can compute a low-rank ap-
proximation of 𝐷 via

𝐷 := 𝑃𝐷𝑃⊤,

where𝐷 is the coarse all-pairs matrix (computed
again via [Mitchell et al. 1987]). See for instance Figure 3.6—here again we achieve several orders
of magnitude speedup, with only 1.4% relative error.

17

Chapter 4

Surface Parameterization

He handed it to Harrow, who gently unfolded it in the way that only a bone magician could and
in the way that always made Gideon’s jaw hurt. She turned it into a long ribbon of enamel, an
orange with the skin taken off and flattened, a three-dimensional object turned two-dimensional.

Tamsyn Muir, Gideon the Ninth

W
e now turn our attention to another instance of time-evolving surfaces: finding
surface parameterizations. In particular, we describe a numerical method which
computes maps that are locally injective and discretely conformal in an exact
sense. Unlike previous methods for discrete conformal parameterization, the
method is guaranteed to work for any manifold triangle mesh, with no restric-

tions on triangulation quality or cone singularities. In particular we consider maps from surfaces
of any genus (with or without boundary) to the plane, and globally bijective maps from genus
zero surfaces to the sphere. Recent theoretical developments have shown that each task can be
formulated as a convex problem where the triangulation is allowed to change—we complete the
picture by introducing the machinery needed to actually construct a discrete conformal map.

In the smooth setting, existence of conformal maps is guaranteed by the uniformization
theorem [Abikoff 1981]. Very recently, Gu et al. [2018a,b] and Springborn [2019] established
an analogous discrete uniformization theorem for triangle meshes. However, these theoretical
results fall short of providing practical algorithms, since they do not describe how to construct
the mapping between the input and target domain. We present the first end-to-end algorithm
for computing and evaluating this map—in particular, we provide:

• a combinatorial data structure for correspondences between triangulations (Section 4.1),

• a scheme for evaluating discrete conformal maps based on the light cone (Section 4.2), and

• critical details needed to implement discrete uniformization including a careful treatment
of numerics and boundary conditions (Section 4.3), and subtleties of the spherical case.

Our optimization procedure is a simple modification of the CETM algorithm (from Springborn
et al. [2008], Conformal Equivalence of Triangle Meshes): we minimize the same energy, but
evaluate it on a triangulation that changes according to the current scale factors. However, since

18

Correspondence Data Chapter 4 Surface Parameterization

Input
Triangulation

Delaunay
Triangulation

Uniformized
Triangulation

Common
Refinement

Textured
Surface

Planar
Layout

make Delaunay
(Euclidean flips)

minimize energy
(Ptolemy flips)

map to plane trace edges of
TA, TC over TB

extract
connectivity

interpolate positions
& texture coordinatespu

re
ly

in
tr

in
si

c

Figure 4.1: Steps of our algorithm. Throughout we color the input mesh T𝐴 red, its intrinsic Delaunay
triangulation T𝐵 yellow, the uniformized triangulation T𝐶 blue, and the common refinement S of all three
green. (Note: triangulations in dashed boxes are purely intrinsic and never actually embedded in R𝑛 .)

the triangulation may now change, this procedure does not yield an explicit parameterization
of the input. To improve the quality of the map, we also need to flip the input to an intrinsic
Delaunay triangulation before starting the optimization. The main difficulty in developing a
practical algorithm is therefore tracking and evaluating the correspondence between these three
triangulations—Figure 4.1 gives an overview of the whole process. Importantly, even though the
Euclidean geometry of our polyhedron changes during optimization, it can always be seen as
different reflections of the same underlying hyperbolic polyhedron, which greatly simplifies the
problem of correspondence.

4.1 Correspondence Data

We begin by describing our data structure for encoding the correspondence between different
triangulations of the same polyhedron. In particular, we introduce an implicit, integer-based
encoding that is easily updated via local formulas during each edge flip. An explicit geometric
correspondence is later extracted from this information once all flips have been performed (e.g.,
after uniformization)—see Section 4.2. Since this encoding uses only integer data, it avoids
robustness issues that can arise with floating-point representations.

To encode the correspondence between triangulations T1, T2 sharing vertex set V, we store

(1) normal coordinates, which count how many times T1 crosses each edge of T2 (Section 4.1.1),
and

(2) roundabouts, which give the circular ordering of edges from both T1 and T2 around each
vertex (Section 4.1.2).

Normal coordinates enable us to later trace geodesic segments from each vertex 𝑖 to all neigh-
boring vertices 𝑗 in T1, yielding curves along T2 (Section 4.2.1). Roundabouts provide the
correspondence between these traced segments and logical edges of T1. This latter data is needed
because the two endpoints 𝑖, 𝑗 of a traced segment may not uniquely determine an edge.

For our flattening procedure we use this scheme to track the correspondence both between
T𝐴 and T𝐵 (as Euclidean polyhedra), and between T𝐵 and T𝐶 (as hyperbolic polyhedra). In the
rest of this section we provide more detail about the data that we store, and in the next section
we give an overview of how the correspondence can be evaluated using this data.

19

Chapter 4 Surface Parameterization Correspondence Data

4.1.1 Normal Coordinates

i

j

k

edges leaving
corner k

edges crossing
corner k

normal coordinates nij

edge of T1

edge of T2

1

0

0

0
01

1 3

0

i

j

k

Figure 4.2: Left: normal coordinates𝑛𝑖𝑗 count
the number of times each edge 𝑖𝑗 in a tri-
angulation T2 crosses any edge of another
triangulation T1 transversely. Right: these
coordinates can be used to determine other
quantities, such as how many edges of T1
cross or leave a corner of a triangle from T2.

Normal coordinates count the number of times a col-
lection of curves cross each edge of a fixed triangula-
tion (Figure 4.2). Our use of normal coordinates devi-
ates from the standard treatment in two ways. First,
rather than closed topological curves, we consider
open geodesic segments that terminate at vertices.
Second, we always assume that our normal coordi-
nates encode the edges of another triangulation of
the same vertex set. These assumptions enable us
to develop a novel edge flip formula, given in Sec-
tion 4.1.1. In particular, for each edge 𝑖𝑗 of T2, we
store the number of times 𝑛𝑖𝑗 ∈ Z≥0 that any edge of
T1 crosses 𝑖𝑗 transversely (Figure 4.2, left). Hence, for
edges 𝑖𝑗 shared by both T1 and T2 we have 𝑛𝑖𝑗 = 0.
From these numbers we can determine how many
edges in T1 emanate from corner 𝑘 of a triangle 𝑖𝑗𝑘
in T2 (excluding those along edges of T2) :

𝑒
𝑖 𝑗

𝑘
= max

(
0, 𝑛𝑖𝑗 − 𝑛 𝑗𝑘 − 𝑛𝑘𝑖

)
. (4.1)

Likewise, the number of edges in T1 that cross corner 𝑘 of 𝑖𝑗𝑘 is

𝑐
𝑖 𝑗

𝑘
= 1

2

(
max

(
0, 𝑛 𝑗𝑘 + 𝑛𝑘𝑖 − 𝑛𝑖𝑗

)
− 𝑒 𝑗𝑘

𝑖
− 𝑒𝑘𝑖𝑗

)
. (4.2)

See Figure 4.2, right for examples.
i

j

l
k

Normal Coordinate Edge Flip Consider two triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 from T2. In the
simple case where no edge from T1 terminates in a corner of either triangle (see
inset), there is an edge flip update that resembles the Ptolemy relation [Mosher
1988]; [Thurston & Yuan 2012, Equation 1]:

𝑛𝑘𝑙 = max(𝑛𝑘𝑖 + 𝑛𝑙 𝑗 , 𝑛 𝑗𝑘 + 𝑛𝑙𝑖) − 𝑛𝑖𝑗 . (4.3)

In the general case, we must derive a more complicated formula:

𝑛𝑘𝑙 = max
(
0, 𝑐 𝑗𝑖

𝑙
+ 𝑐𝑖 𝑗

𝑘
+ 1

2

���𝑐𝑖𝑙𝑗 − 𝑐𝑘𝑖𝑗 ��� + 1
2

���𝑐𝑙 𝑗𝑖 − 𝑐 𝑗𝑘
𝑖

���− 1
2𝑒

𝑗𝑖

𝑙
− 1

2𝑒
𝑖 𝑗

𝑘
+ 𝑒𝑙 𝑗

𝑖
+ 𝑒 𝑗𝑘

𝑖
+ 𝑒𝑖𝑙𝑗 + 𝑒𝑘𝑖𝑗 + 𝛿𝑛𝑖𝑗

)
. (4.4)

Here 𝛿𝑥 is the Kronecker delta, equal to 1 for 𝑥 = 0 and 0 otherwise.

20

Mapping Chapter 4 Surface Parameterization

4.1.2 Roundabouts

i

0

12

3

4

halfedge of T1

halfedge of T2

both T1 and T2

roundabout

33
44 44

00
00

00
11

Figure 4.3: For each
halfedge of T2, the
roundabout gives the
next halfedge of T1.

Although normal coordinates completely describe a triangulation sitting
on top of T2, they do not tell us how the edges of this triangulation cor-
respond to the edges of T1 since, as noted above, two endpoints may not
uniquely identify an edge. We therefore augment our normal coordinates
with what we call roundabouts, in analogy with roundabouts or traffic cir-
cles found on roadways. At each vertex 𝑖 ∈ V, these roundabouts describe
how the outgoing halfedges of the two triangulations are interleaved.

More explicitly, for each halfedge ⇀
𝑖𝑗 ∈ H2, the roundabout gives

the first halfedge from T1 following ⇀
𝑖𝑗 , encoded as an index 𝑟⇀

𝑖𝑗 ∈ Z≥0
(Figure 4.3). These indices start at zero, and enumerate the halfedges
from T1 in counter-clockwise order, starting at some arbitrary but fixed
halfedge. Note that if a halfedge from T2 coincides with a halfedge from
T1, the roundabout points to this halfedge, as indicated by self-arrows.

Roundabout Edge Flip Using per-vertex indices (instead of a map from 𝐻2 to 𝐻1) reduces
the edge flip update to integer arithmetic. In particular, to update roundabouts after flipping
an edge 𝑖𝑗 with opposite vertices 𝑘, 𝑙 , we first update the normal coordinates as described in
Section 4.1.1. We then have

𝑟⇀
𝑘𝑙 = mod(𝑟⇀

𝑘𝑖 + 𝑒𝑖𝑙𝑘 + 𝛿𝑛𝑘𝑖 , deg1(𝑘)),
𝑟⇀
𝑙𝑘 = mod(𝑟⇀

𝑙 𝑗 + 𝑒 𝑗𝑘𝑙 + 𝛿𝑛𝑙 𝑗 , deg1(𝑙)),
(4.5)

l

j

i

k

where deg1(𝑖) is the degree of vertex 𝑖 in the triangulation T1. In other
words, to find the first outgoing halfedge of T1 following⇀

𝑘𝑙 ∈ H2, we
start at ⇀𝑘𝑖 and add the number of edges 𝑒𝑖𝑙

𝑘
of T1 that emanate from

corner 𝑘 of triangle 𝑘𝑖𝑙 . Also, if⇀𝑘𝑖 is coincident with a halfedge from
T1, we add 1 to advance past this halfedge. The mod operation accounts
for wraparound. See inset for an example. This update resembles a
combinatorial version of the signpost update from Sharp et al. [2019,
p. 3.2.1]: integer indices 𝑟⇀

𝑖 𝑗 play the role of real-valued directions; the
integer counts 𝑒 𝑗𝑘

𝑖
play the role of real-valued angles.

4.2 Mapping

Following uniformization (Section 4.3), we have three triangulations: the input T𝐴 with vertex
positions 𝑓 , its intrinsic Delaunay triangulation T𝐵 , and the flattened mesh T𝐶 with texture
coordinates 𝑧 (Figure 4.1). For most tasks (e.g., texture mapping or remeshing), we will need
an explicit map between T𝐴 and T𝐶 , which we now construct. Using the correspondence data
from Section 4.1 we first trace out geodesics to identify the points where edges of T𝐴 and T𝐶

intersect edges of T𝐵 (Section 4.2.1). We use these points to construct the common refinement
S, i.e., a polygonal mesh that encompasses all three triangulations (Section 4.2.3). Finally, we
interpolate functions 𝑓 and 𝑧 across S (Section 4.2.4), obtaining an extrinsic polygon mesh with
vertex positions 𝑓𝑖 ∈ R3 and texture coordinates 𝑧 𝑗𝑘

𝑖
at each triangle corner.

21

Chapter 4 Surface Parameterization Mapping

lig
ht

 co
ne

hyperboloid

Figure 4.4: By drawing triangles in the light cone (left), the map between surfaces can be found by drawing
a straight line through the origin (center), which also works for two different triangulations (right).

Layout in the Light Cone As discussed in [Springborn et al. 2008, Section 3.4], conformally
equivalent edge lengths naturally induce a piecewise projective map. However, when the triangu-
lation is allowed to change, constructing this map becomes more difficult. A useful perspective,
different from previous work [Bobenko et al. 2015; Springborn 2019; Sun et al. 2015], is to consider
chordal triangles in the light cone—leading to simple interpolation formulas in homogeneous
coordinates (e.g., Equation (4.7)).

4.2.1 Tracing Edges

For the moment, consider just two triangulations T1, T2. We use the normal coordinates 𝑛 : E2 →
Z≥0 to trace out the sequence of edges in T2 crossed by each edge of T1 (Section 4.2.1). The
roundabouts 𝑟 : H2 → Z≥0 uniquely identify each traced sequence with the appropriate element
of E1. To get the curve geometry, we lay out a triangle strip in the Euclidean or hyperbolic plane,
and draw a straight line between endpoints (Section 4.2.2). The final curve is encoded by 1D
barycentric coordinates 𝑠, 𝑡 ∈ [0, 1] on each intersected edge.

Topological Tracing To identify the sequence of edges in T2 crossed by some edge in T1, we
start at one crossing and repeatedly identify the next edge crossed until the edge of T1 terminates
at a vertex. We can determine the next edge crossed purely from the stored normal coordinates,
by considering the three cases illustrated in Figure 4.5.

Note that the tracing procedure gives us each edge from T1 as a sequence of edge crossings
on T2. To express the edges from T2 as sequences of T1 edge crossings, we allocate an array of
size 𝑛𝑖𝑗 for each edge 𝑖 𝑗 ∈ E2. Each time a traced edge 𝑎𝑏 ∈ T1 crosses 𝑖𝑗 , we store a reference to

Case 1 Case 2 Case 3

Figure 4.5: A curve entering triangle 𝑗𝑖𝑘 along edge 𝑖 𝑗 can proceed in 3 ways: the left-most 𝑐𝑖𝑘𝑗 crossings
go left (left), the rightmost 𝑐𝑘 𝑗

𝑖
crossings go right (right), and the remaining crossings terminate at vertex

𝑘 (center).

22

Mapping Chapter 4 Surface Parameterization

𝑎𝑏 in entry 𝑝 of the array (using roundabouts to get the edge index).

4.2.2 Recovering Geodesics

To get the geometry of each traced edge 𝑎𝑏 ∈ E2, we use the crossing sequences
computed in Section 4.2.1 and the edge lengths ℓ to incrementally lay out a
triangle strip in the (Euclidean or hyperbolic) plane. We then intersect each
interior edge 𝑖𝑗 of this strip with the line from 𝑎 to 𝑏—by construction, this line
will be contained entirely inside the strip. In particular, if 𝑥𝑖 ∈ R2 are the vertices
of a Euclidean triangle strip, we can solve the equation

(1 − 𝑠)𝑥𝑎 + 𝑠𝑥𝑏 = (1 − 𝑡)𝑥𝑖 + 𝑡𝑥 𝑗 (4.6)

for the barycentric coordinates 𝑠, 𝑡 ∈ [0, 1] of the intersection point. The hyperbolic case is
conceptually the same except that we work in the hyperboloid model, and and also compute a
scale factor 𝑢 at each intersection point.

4.2.3 Common Refinement

Tracing out the edges, allows us to construct the common refinement S of T𝐴, T𝐵 , and T𝐶 .
To determine the connectivity of S we slice up each triangle 𝑖𝑗𝑘 ∈ F𝐵 independently, via
a strategy similar to Sharp et al. [2019, Section 3.4]. To avoid computing segment-segment
intersections directly (which is not numerically robust), we devise a strategy that takes advantage
of combinatorial information. Floating-point values serve only to determine the ordering of
intersection points along edges—and since neighboring triangles have identical barycentric
coordinates along their shared edge, we always obtain a consistent tessellation.

4.2.4 Interpolation

The vertex coordinates 𝑓𝑖 and texture coordinates 𝑧 𝑗𝑘
𝑖

define piecewise func-
tions over the faces of T𝐴 and T𝐶 , resp.; we now sample these functions onto
S. To do so, we will also need the scale factors 𝑢 obtained while tracing hy-
perbolic geodesics. We again process each triangle 𝑖𝑗𝑘 ∈ T𝐵 independently.
First, we interpolate data onto each edge 𝑖𝑗 of the triangle. For each edge
point 𝑝 along an edge 𝑎𝑏 ∈ E𝐴, let 𝑠𝑝, 𝑡𝑝 be the barycentric coordinates along
𝑎𝑏 and 𝑖𝑗 , resp.. Then 𝑓𝑝 = (1 − 𝑠𝑝) 𝑓𝑎 + 𝑠𝑝 𝑓𝑏 . Similarly, for an edge point 𝑞
along 𝑐𝑑 ∈ E𝐶 we have homogeneous texture coordinates

𝑧𝑞 = 𝑒
−𝑢𝑞 ((1 − 𝑠𝑞) (𝑧𝑐, 1) + 𝑠𝑞 (𝑧𝑑 , 1)) , (4.7)

where (𝑧, 1) indicates that a 1 has been appended to 𝑧. The scale factors 𝑒𝑢 arise from projective
rather than linear interpolation—see supplement for details. To get values of 𝑓 at edge points
𝑞, and values of 𝑧 at edge points 𝑝 , we linearly interpolate between adjacent known values
along 𝑖𝑗 . Finally, to get the values at each face point, we write the endpoints of the two incident
fragments in 2D barycentric coordinates relative to 𝑖𝑗𝑘 , and compute the intersection point

23

Chapter 4 Surface Parameterization Planar Parameterization

in homogeneous coordinates. The resulting 𝑠, 𝑡 values are then used to linearly interpolate
𝑓 and 𝑧 from the segment endpoints. Note that since texture coordinates are discontinuous
across cuts, we store 𝑧 at corners rather than vertices. The final surface can be visualized by
tessellating polygons into triangles; just as in [Springborn et al. 2008, Section 3.4] we perform a
homogeneous divide on texture coordinates 𝑧 at each sample point (e.g., each pixel).

4.3 Planar Parameterization

Here we describe our procedure for planar parameterization (Figure 4.1)—see the paper for the
spherical case. Given an input mesh T𝐴, we first flip to an intrinsic Delaunay triangulation
T𝐵 , which preserves the Euclidean geometry and defines the discrete conformal structure. We
then solve an optimization problem for scale factors 𝑢 that transform T𝐵 into a triangulation T𝐶

with the prescribed angle defects (Section 4.3.3). After optimization, we lay T𝐶 out in the plane
(Section 4.3.5), and pull this layout back to the input mesh as described in Section 4.2.

4.3.1 Variational Formulation

The input to our discrete uniformization procedure is the intrinsic Delaunay triangulation T𝐵 ,
and target angle defects Ω∗ : V → R which must satisfy a discrete Gauss-Bonnet condition:

1
2𝜋

∑︁
𝑖∈V

Ω∗
𝑖 = |V| − |E𝐵 | + |F𝐵 | (4.8)

(see Section 4.3.4 for a generalization to surfaces with boundary). Note that target defects Ω∗
𝑖

must be smaller than 2𝜋 , since the sum of angles around a vertex is always positive. Minimizing
a convex energy E then yields scale factors 𝑢 relative to T𝐵 . Unlike CETM we flip to Delaunay
whenever we need to evaluate the energy or its derivatives (see Section 4.3.2). This process is
completely hidden inside a callback routine—from the perspective of the optimizer, one simply
has to solve an unconstrained problem that is convex and twice continuously differentiable (𝐶2).

4.3.2 Energy Evaluation

To evaluate our energy for any given 𝑢, we first compute the edge lengths ℓ̃𝑖𝑗 = 𝑒 (𝑢𝑖+𝑢 𝑗)/2ℓ𝐵𝑖𝑗 , and
flip to the corresponding ideal Delaunay triangulation𝑇 = (V, Ẽ, F̃) via Ptolemy flips. These flips
change the Euclidean geometry but preserve the discrete conformal structure. We use _̃, \̃ , and
Ω̃ to denote the corresponding Penner coordinates, interior angles, and angle defects, resp.

Energy The discrete conformal energy is then given by

E (𝑢) =
∑︁
𝑖∈V

(2𝜋 − Ω∗
𝑖) 𝑢𝑖 −

∑︁
𝑖 𝑗∈Ẽ

𝜋_̃𝑖𝑗 +
∑︁
𝑖 𝑗𝑘∈F̃

2𝑓 (_̃𝑖𝑗 , _̃ 𝑗𝑘 , _̃𝑘𝑖), (4.9)

where 𝑓 (_̃𝑖𝑗 , _̃ 𝑗𝑘 , _̃𝑘𝑖) := 1
2

(
\̃
𝑗𝑘

𝑖
_̃ 𝑗𝑘 + \̃𝑘𝑖𝑗 _̃𝑘𝑖 + \̃

𝑖 𝑗

𝑘
_̃𝑖𝑗

)
+ Л(\̃ 𝑗𝑘

𝑖
) + Л(\̃𝑘𝑖𝑗) + Л(\̃ 𝑖 𝑗

𝑘
). Here Л denotes

Milnor’s Lobachevsky function Л(\) := −
∫ \
0 log |2 sin𝑢 | 𝑑𝑢, and is related to Clausen’s integral

via Л(\) = 1
2Cl2(2\), which is implemented in standard numerical packages [Galassi et al. 1994].

24

Planar Parameterization Chapter 4 Surface Parameterization

Gradient At each vertex 𝑖 ∈ V, the gradient of the energy is

𝜕𝑢𝑖E = Ω̃𝑖 − Ω∗
𝑖 (4.10)

Note, then, that any stationary point 𝜕𝑢E = 0 achieves the desired angle defects Ω̃ = Ω∗.

Hessian The Hessian is given by the positive-semidefinite cotan Laplacian
𝐿 ∈ R|V|×|V| [MacNeal 1949, Section 3.2; Crane et al. 2013, Chapter 6]. Since
a Δ complex may contain more than one edge with the same endpoints, the
off-diagonal entries 𝐿𝑖𝑗 and 𝐿 𝑗𝑖 are obtained by summing the values 1

2 (cot\
𝑖𝑗

𝑘
+

cot\ 𝑗𝑖
𝑙
) over all edges 𝑖𝑗 ∈ Ẽ with endpoints 𝑖 and 𝑗 , where 𝑘, 𝑙 are the vertices opposite the edge.

For each vertex 𝑖 ∈ V, we then have a diagonal entry 𝐿𝑖𝑖 = −∑
𝑖 𝑗∈Ẽ 𝐿𝑖𝑗 , where the sum is taken

over all edges incident on 𝑖 . Note that self-edges (where 𝑖 = 𝑗) make no contribution.

4.3.3 Optimization

Since the energy E is convex and globally 𝐶2, it can be minimized using any standard method
for convex optimization. We use Newton’s method with backtracking line search, as described
in Algorithms 9.5 and 9.2 of Boyd & Vandenberghe [2004], resp. In particular, we use the descent
direction 𝑣 ∈ R|V| obtained by solving the linear system

𝐿𝑣 = 𝜕𝑢E, (4.11)

where 𝜕𝑢E ∈ R|V| encodes the gradient defined in Section 4.3.2. Note that the matrix 𝐿 has a
one-dimensional kernel of constant vectors. We simply use the solution 𝑣 that has no constant
component (which corresponds to a global scaling). Although 𝐿 is rank deficient, the system is
solvable: Gauss-Bonnet ensures that the right-hand side sums to zero. We initialize Newton’s
method with 𝑢 = 0, but since the energy is convex this choice will not affect the result (apart
from a global scale).

4.3.4 Surfaces with Boundary

circular disk

convex

orthogonal

scale control

minimal area
distortion

polygonal

Figure 4.6: Our algorithm guarantees existence of
a locally injective discrete conformal map for any
prescribed boundary lengths or angles, which can
be used to achieve a rich variety of behavior.

For a smooth surface𝑀 with boundary 𝜕𝑀 , the
space of conformal maps to the plane is pa-
rameterized by a real-valued function along the
boundary—geometrically, this function can be
determined by prescribing either the scale fac-
tors 𝑢 or the curvature density ^ 𝑑𝑠 along 𝜕𝑀
(see [Sawhney & Crane 2017, Section 4.2] for
further discussion). We can specify such condi-
tions by either a scale factor𝑢𝑖 or target exterior
angle ^∗𝑖 at each boundary vertex 𝑖 ∈ 𝜕V. To
enforce these conditions, we glue together two
copies of the input mesh along the boundary (as
in Jin et al. [2004]), reducing the problem to the

25

Chapter 4 Surface Parameterization Planar Parameterization

no-boundary case. Unlike CETM, we can hence always find a solution with the prescribed
boundary data. Note that this construction extends Springborn [2019], which does not consider
surfaces with boundary; Sun et al. [2015] describe a similar scheme in the case of prescribed
boundary curvature. Maps to the circular disk are handled in a similar fashion, but using
spherical uniformization.

doubleFixed Boundary Curvature Suppose we want our flattened do-
main to have an exterior angle ^∗𝑖 at a boundary vertex 𝑖 . The angle
sum at 𝑖 must then be equal to 𝜋 − ^∗𝑖 , hence on the doubled domain
we prescribe an angle defect Ω∗

𝑖 = 2𝜋 − 2(𝜋 − ^∗) = 2^∗𝑖 . Since the
solution is unique, it must be symmetric across the two copies of the
original mesh. Hence, if we cut the uniformized surface along the
original boundary curve, each half will exhibit the desired angles ^∗.
The only requirement is that the angle defects and exterior angles
satisfy a Gauss-Bonnet condition

∑
𝑖∈V Ω

∗
𝑖 +

∑
𝑖∈𝜕V ^

∗
𝑖 = |V| − |E| + |F|. In Figure 4.6 we assign

target angles that yield convex (̂ ∗
𝑖 > 0), orthogonal (̂ ∗

𝑖 ∈ 𝜋
2Z), or polygonal boundaries (̂

∗
𝑖 = 0

almost everywhere).

Fixed Boundary Scale Factors To prescribe boundary scale factors, we fix the values 𝑢𝑖 at
vertices 𝑖 of the doubled domain corresponding to the original boundary. For instance, setting
𝑢𝑖 = 0 at all boundary vertices yields minimal area distortion [Chebyshev 1899, p. 242] in the
sense that it minimizes the variation in scale factors [Springborn et al. 2008, Appendix E]—see
Figure 4.6. Fixing these values restricts the convex energy E to a linear subspace; hence we are
still solving a convex problem. To compute the descent direction, we now solve the same system
(Equation (4.11)), except that we set zero Dirichlet boundary conditions at the boundary vertices,
since we do not want these values to change. The minimizer will exhibit the target angle defects
at interior vertices, since the gradient still only vanishes when Ω̃ = Ω∗.

4.3.5 Planar Layout

The final scale factors 𝑢 provide an intrinsic description of the flattened surface, which we then
lay out in the plane. Just as we do during optimization, we first scale the edge lengths and flip
to Delaunay using Ptolemy edge flips to get a final triangulation (T𝐶, ℓ𝐶). Since the final edge
lengths ℓ𝐶 describe a triangulation that is flat away from cone singularities, we can simply lay the
triangles out in the plane one at a time to get a parameterization with no flipped triangles. (The
paper discusses numerically robust alternatives.) Since coordinates are discontinuous across
cuts, we store values 𝑧 𝑗𝑘

𝑖
∈ R2 at corners.

26

Results Chapter 4 Surface Parameterization

4.4 Results

Figure 4.7: Our method computes locally injective, discretely conformal maps even for near-degenerate
triangulations (turquoise meshes) and extremely difficult configurations of cone singularities (magenta
meshes). We also compute globally bijective conformal maps to the sphere (yellow meshes).

CETM CEPS

Figure 4.8: Even when CETM succeeds,
the quality of the map may be lower since
it uses a different notion of conformal
equivalence (based on the input rather
than Delaunay triangulation).

This section evaluates the empirical behavior of our
method, here referred to as conformal equivalence of poly-
hedral surfaces (CEPS). Our main points of comparison is
the CETM algorithm of Springborn et al. [2008], which
does not use flips. All methods use identical code for
tracking correspondence, à la Section 4.1. The overall
observation is that CEPS succeeds on far more models
than CETM. Even when CETM does succeed, it may
not provide as good of an approximation of a smooth
conformal map (Figure 4.8).

Difficult Cone Configurations. We ran our method on the standard benchmark of Myles et al.
[2014], referred to as MPZ, which contains challenging cone configurations. CEPS succeeds on

0 50k 100k 150k 200k
0

1000

2000

C
EP

S
—

 t
ot

al
 t

im
e

(s
) Thingi10k dataset (di�icult triangulations)

0 20k 40k 60k 80k 100k #vertices #vertices

0

20

40

C
EP

S
—

 t
ot

al
 t

im
e

(s
) MPZ dataset (di�icult cone configurations)

CETM fails (41.8%)

CETM fails (36.5%)

Figure 4.9: Timings for our method (CEPS) on two datasets. Note that CETM fails on a large percentage
of models where we succeed (highlighted in red).

27

Chapter 4 Surface Parameterization Results

all 114 models, including extraction of the common refinement. Maps were discretely conformal
up to floating point error, with an average length cross ratio error of about 10−9, and no worse
than about 10−4. In contrast, CETM succeeded on only 73 models (Figure 4.9, top). Moreover, the
tracing and refinement steps of CEPS could be trivially parallelized over edges and faces, resp..

Many injective but non-conformal methods do not do as well on this difficult benchmark: as
reported by Bright et al. [2017, Section 8.1], their method and the methods of Chien et al. [2016],
Aigerman et al. [2014], Levi & Zorin [2014], and Lipman [2012] succeed on 104, 102, 97, 93, and
90 models, resp. Many of these methods have running times on the order of minutes or (on the
most difficult examples) hours, versus seconds for our method. On the other hand, we must
change/refine the triangulation, whereas these methods keep the triangulation fixed. Like CEPS,
the combinatorial method of Zhou et al. [2020] succeeds on all MPZ models, but can yield highly
distorted maps that are expensive to optimize; cost is again on the order of minutes to hours.

Thing ID: 662115Thing ID: 112917

Figure 4.11: Our implementation robustly handles
extremely poor triangulations (left) failing only on
the most pathological inputs (right).

Difficult Triangulations. As a stress test of
floating-point behavior, we parameterized all
manifoldmeshes fromThingi10k, splitting dis-
connected meshes into their connected com-
ponents (32,744 examples in total), and using
a time out of 2000 seconds. Note that previ-
ous work on cone parameterization does not
even attempt this benchmark, which has dra-
matically worse element quality than MPZ.
For these examples we apply the greedy cone
placement strategy from Springborn et al.
[2008, Section 5.1], stopping when all log scale
factors 𝑢𝑖 are in the range [−5, 5] (i.e., a max scale factor of about 150). Here CEPS successfully
computes a parameterized mesh S for 98.6% of models, yielding an injective map on 97.7%.
Examples where we fail are quite pathological (e.g., Figure 4.11, right). Overall about 68% and
15% of failures were due to failure of iterative straightening or optimization (resp.) to converge
within the time limit, and for about 13% Delaunay flipping failed due to floating point error. The
worst cross ratio error was typically around 10−5. CETM fails on almost half of these examples
(Figure 4.9).

Figure 4.10: Since we allow edge flips, we
need not worry how coarse the mesh is near
large cones. Here we set all but one angle
defect to almost 2𝜋—the remaining vertex has
an angle defect of −1032.79.

28

Chapter 5

Proposed Work

Time is a tool you can put on the wall, or wear it on your wrist.
The past is far behind us, the future doesn’t exist

Joseph Pelling and Becky Sloan, Don’t Hug Me I’m Scared

O
ne key limitation of the intrinsic techniques presented so far is that they are
limited to manifold triangle meshes. Nonmanifold meshes pose a challenge
when working intrinsically: we often lay neighborhoods of our mesh out in the
plane, but nonmanifold meshes are precisely the meshes which cannot always
be mapped injectively to the plane. And worse, edge flips—a fundamental

operation of intrinsic geometry processing—do not make sense for nonmanifold edges.
In Section 5.1, I propose a method for intrinsically simplifying nonmanifold meshes following

the approach of Sharp & Crane [2020a]. In Section 5.2, I present my planned timeline to finish
this work and other ongoing work in time to graduate in the spring.

5.1 Intrinsic Simplification of Nonmanifold Meshes

nonmanifold
mesh
nonmanifold
mesh

double
cover
double
cover

We can address these problems by following and considering the ori-
entable double cover of a nonmanifold mesh (inset). The key idea is that
given any mesh, we can construct a new manifold mesh by making two
copies of each triangle and attaching them together in an appropriate
way. If you think of the original mesh as describing a slightly-thickened
volume, rather than an infinitesimally-thin surface, then this double cover models the boundary
of the volume.

nonmanifold meshnonmanifold mesh simplified double coversimplified double cover Importantly, functions on the original
mesh correspond bijectively symmetric func-
tions on the double cover, so if you need to
compute a function with given properties on
the original mesh, you can equivalently find
a symmetric function on the double cover in-
stead. Hence, to simplify a nonmanifold mesh
intrinsically, we can first pass to its manifold

29

Chapter 5 Proposed Work Timeline

double cover, and then simplify the double cover. However, doing so directly may produce
different triangulations on the two sides of the double cover—especially in flat regions of the
mesh or on models with a high degree of symmetry—which makes it difficult to specify what it
means for a function to by “symmetric” on this simplified double cover. It is probably beneficial
to force the two sides to have the same triangulation by always removing corresponding vertices
on both sides at the same time. On the other hand, this will require some tricky implementation
to allow backtracking if one vertex removal succeeds and the subsequent removal on the other
side fails, and modifying the intrinsic simplification algorithm eliminates some of the conceptual
simplicity of the double cover approach. So it will also be interesting to measure how well it
works to construct the double cover and then run the existing simplification algorithm with no
modification.

While investigating nonmanifold intrinsic simplification, I also plan to do a more thorough
evaluation of the existing intrinsic simplification code and add some quality of life features to
make it easier to use.

5.2 Timeline

1. Dec. 2023 – Jan. 2024: finish up ongoing work (Harnack tracing); submit to Siggraph

2. Jan. – Apr. 2024: investigate nonmanifold intrinsic simplification. And finish up an
unrelated project on “circular arc triangulations” (meshes whose edges follow circular
arcs rather than straight lines).

3. Apr. – Jun. 2024: write thesis

4. Jun. 2024: thesis defense

30

Bibliography

Abikoff, W. (Oct. 1981). “The uniformization theorem”. The American Mathematical Monthly
88.8, pp. 574–492. doi: 10.2307/2320507.

Aigerman, N., Poranne, R., and Lipman, Y. (July 2014). “Lifted bijections for low distortion surface
mappings”. ACM Transactions on Graphics 33.4, pp. 1–12. doi: 10.1145/2601097.2601158.

Alekseevskij, D., Vinberg, E. B., and Solodovnikov, A. (June 1993). “Geometry of spaces of
constant curvature”. Geometry II. Vol. 29. Encyclopaedia of Mathematical Sciences. Springer.
doi: 10.1007/978-3-662-02901-5_1.

Alexandrov, A. D. (1942). “Existence of a convex polyhedron and of a convex surface with a
given metric”. Matematicheskii Sbornik 53.11, pp. 15–65.

Alexandrov, A. D. (1948). Intrinsic Geometry of Convex Surfaces. Vol. 2. OGIZ, Moscow-Leningrad.
doi: 10.1201/9780203643846.

Baumgart, B. G. (May 1975). “A polyhedron representation for computer vision”. Proceedings
of the May 19-22, 1975, National Computer Conference and Exposition, pp. 589–596. doi:
10.1145/1499949.1500071.

Bobenko, A. and Springborn, B. (2004). “Variational principles for circle patterns and Koebe’s
theorem”. Transactions of the American Mathematical Society 356.2, pp. 659–689. doi: 10.
1090/S0002-9947-03-03239-2.

Bobenko, A. I. and Izmestiev, I. (2008). “Alexandrov’s theorem, weighted Delaunay triangulations,
and mixed volumes”. Annales de l’Institut Fourier. Vol. 58. 2, pp. 447–505. doi: 10.5802/aif.
2358.

Bobenko, A. I., Pinkall, U., and Springborn, B. A. (2015). “Discrete conformal maps and ideal
hyperbolic polyhedra”. Geometry & Topology 19.4, pp. 2155–2215. doi: 10.2140/gt.2015.
19.2155.

Bobenko, A. I. and Springborn, B. A. (Sept. 2007). “A discrete Laplace–Beltrami operator for
simplicial surfaces”. Discrete & Computational Geometry 38.4, pp. 740–756. doi: 10.1007/
s00454-007-9006-1.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. (2010). Polygon Mesh Processing. doi:
10.1201/b10688.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. doi:
10.1017/CBO9780511804441.

Bright, A., Chien, E., and Weber, O. (July 2017). “Harmonic global parametrization with rational
holonomy”. ACM Transactions on Graphics 36.4, pp. 1–15. doi: 10.1145/3072959.3073646.

31

https://doi.org/10.2307/2320507
https://doi.org/10.1145/2601097.2601158
https://doi.org/10.1007/978-3-662-02901-5_1
https://doi.org/10.1201/9780203643846
https://doi.org/10.1145/1499949.1500071
https://doi.org/10.1090/S0002-9947-03-03239-2
https://doi.org/10.1090/S0002-9947-03-03239-2
https://doi.org/10.5802/aif.2358
https://doi.org/10.5802/aif.2358
https://doi.org/10.2140/gt.2015.19.2155
https://doi.org/10.2140/gt.2015.19.2155
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1201/b10688
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/3072959.3073646

Chapter 5 BIBLIOGRAPHY BIBLIOGRAPHY

Cannon, J. W., Floyd, W. J., Kenyon, R., Parry, W. R., et al. (1997). Hyperbolic Geometry. Vol. 31.
MSRI Publications. isbn: 0-521-62048-1.

Chebyshev, P. L. (1899). Œuvres de P.L. Tchebychef. Vol. 1. Commissionaires de l’Académie
Impériale des Sciences.

Chien, E., Levi, Z., and Weber, O. (Dec. 2016). “Bounded distortion parametrization in the space
of metrics”. ACM Transactions on Graphics 35.6, pp. 1–16. doi: 10.1145/2980179.2982426.

Crane, K., de Goes, F., Desbrun, M., and Schröder, P. (2013). “Digital geometry processing with
discrete exterior calculus”. ACM SIGGRAPH 2013 Courses. ACM. doi: 10.1145/2504435.
2504442.

de Goes, F., Memari, P., Mullen, P., and Desbrun, M. (June 2014). “Weighted triangulations for
geometry processing”. ACM Transactions on Graphics 33.3, pp. 1–13. doi: 10.1145/2602143.

Finnendahl, U., Schwartz, M., and Alexa, M. (Apr. 2023). “Arap revisited discretizing the elastic
energy using intrinsic voronoi cells”. Computer Graphics Forum (SGP). doi: 10.1111/cgf.
14790.

Fisher, M., Springborn, B., Schröder, P., and Bobenko, A. (Aug. 2007). “An algorithm for the
construction of intrinsic delaunay triangulations with applications to digital geometry
processing”. Computing 81.2, pp. 199–213. doi: 10.1007/s00607-007-0249-8.

Fumero, M., Möller, M., and Rodolà, E. (Nov. 2020). “Nonlinear spectral geometry processing
via the tv transform”. ACM Transactions on Graphics 39.6, pp. 1–16. doi: 10.1145/3414685.
3417849.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., and
Ulerich, R. (1994). GNU Scientific Library. Vol. 20. ACM.

Garland, M. and Heckbert, P. S. (Aug. 1997). “Surface simplification using quadric error metrics”.
SIGGRAPH 1997. ACM, pp. 209–216. doi: 10.1145/258734.258849.

Gauß, C. F. (1825). General Investigations of Curved Surfaces.
Gillespie, M., Sharp, N., and Crane, K. (Dec. 2021a). “Integer coordinates for intrinsic geometry

processing”. ACM Transactions on Graphics 40.6, pp. 1–13. doi: 10.1145/3478513.3480522.
Gillespie, M., Springborn, B., and Crane, K. (July 2021b). “Discrete conformal equivalence of

polyhedral surfaces”. ACM Transactions on Graphics 40.4, pp. 1–20. doi: 10.1145/3592401.
Glickenstein, D. (2005). “Geometric triangulations and discrete Laplacians on manifolds”. arXiv

preprint.
Glickenstein, D. (2023). “Geometric triangulations and discrete Laplacians on manifolds: an

update”. Computational Geometry. doi: 10.1016/j.comgeo.2023.102063.
Gu, X. D., Guo, R., Luo, F., Sun, J., and Wu, T. (July 2018a). “A discrete uniformization theorem for

polyhedral surfaces II”. Journal of Differential Geometry 109.3, pp. 431–466. doi: 10.4310/
jdg/1531188190.

Gu, X. D., Luo, F., Sun, J., and Wu, T. (June 2018b). “A discrete uniformization theorem for
polyhedral surfaces”. Journal of Differential Geometry 109.2, pp. 223–256. doi: 10.4310/jdg/
1527040872.

Hatcher, A. (2002). Algebraic Topology. isbn: 978-0-521-79540-1.
Hilbert, D. (Jan. 1901). “Ueber flächen von constanter Gaussscher krümmung”. Transactions of

the American Mathematical Society 2.1, pp. 87–99. doi: 10.2307/1986308.
Hirsch, M. W. and Mazur, B. (1974). Smoothings of Piecewise Linear Manifolds. Annals of Mathe-

matics Studies 80. Princeton University Press. doi: 10.1515/9781400881680.

32

https://library.slmath.org/books/Book31/files/cannon.pdf
https://archive.org/details/117744684_001/page/n255/mode/2up
https://doi.org/10.1145/2980179.2982426
https://doi.org/10.1145/2504435.2504442
https://doi.org/10.1145/2504435.2504442
https://doi.org/10.1145/2602143
https://doi.org/10.1111/cgf.14790
https://doi.org/10.1111/cgf.14790
https://doi.org/10.1007/s00607-007-0249-8
https://doi.org/10.1145/3414685.3417849
https://doi.org/10.1145/3414685.3417849
https://www.gnu.org/software/gsl/
https://doi.org/10.1145/258734.258849
https://archive.org/details/generalinvestiga00gaus
https://doi.org/10.1145/3478513.3480522
https://doi.org/10.1145/3592401
https://arxiv.org/pdf/math/0508188.pdf
https://doi.org/10.1016/j.comgeo.2023.102063
https://doi.org/10.4310/jdg/1531188190
https://doi.org/10.4310/jdg/1531188190
https://doi.org/10.4310/jdg/1527040872
https://doi.org/10.4310/jdg/1527040872
https://pi.math.cornell.edu/~hatcher/AT/ATpage.html
https://doi.org/10.2307/1986308
https://doi.org/10.1515/9781400881680

BIBLIOGRAPHY Chapter 5 BIBLIOGRAPHY

Hoppe, H. (Aug. 1996). “Progressive meshes”. SIGGRAPH 1996. ACM, pp. 99–108. doi: 10.1145/
237170.237216.

Indermitte, C., Liebling, T. M., Troyanov, M., and Clémençon, H. (2001). “Voronoi diagrams on
piecewise flat surfaces and an application to biological growth”. Theoretical Computer Science
263.1, pp. 263–274. issn: 0304-3975. doi: 10.1016/S0304-3975(00)00248-6.

Jin, M., Wang, Y., Yau, S.-T., and Gu, X. D. (2004). “Optimal global conformal surface parameteri-
zation”. IEEE Visualization 2004, pp. 267–274. doi: 10.1109/VISUAL.2004.75.

Karcher, H. (2014). “Riemannian center of mass and so called Karcher mean”. arXiv preprint
arXiv:1407.2087.

Kettner, L. (May 1999). “Using generic programming for designing a data structure for polyhedral
surfaces”. Computational Geometry 13.1. doi: 10.1016/S0925-7721(99)00007-3.

Kharevych, L., Springborn, B., and Schröder, P. (Apr. 2006). “Discrete conformal mappings via
circle patterns”. ACM Transactions on Graphics 25.2, pp. 412–438. doi: 10.1145/1138450.
1138461.

Kirby, R. C. and Siebenmann, L. C. (July 1969). “On the triangulation of manifolds and the
hauptvermutung”. Bulletin of the American Mathematical Society 75.4, pp. 742–749. doi:
10.1090/S0002-9904-1969-12271-8.

Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. (July 2013). “Globally optimal direction fields”.
ACM Transactions on Graphics 32.4. doi: 10.1145/2461912.2462005.

Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L. C., and Dobkin, D. P. (July 1998). “MAPS:
multiresolution adaptive parameterization of surfaces”. SIGGRAPH 1998. ACM, pp. 95–104.
doi: 10.1145/280814.280828.

Lee, J. M. (2012). Introduction to SmoothManifolds. 2nd ed. Vol. 218. Graduate Texts inMathematics.
Springer. isbn: 978-1-4419-9981-8. doi: 10.1007/978-1-4419-9982-5.

Levi, Z. and Zorin, D. (Nov. 2014). “Strict minimizers for geometric optimization”. ACM Transac-
tions on Graphics 33.6, pp. 1–14. doi: 10.1145/2661229.2661258.

Lipman, Y. (July 2012). “Bounded distortion mapping spaces for triangular meshes”. ACM Trans-
actions on Graphics 31.4, pp. 1–13. doi: 10.1145/2185520.2185604.

Liu, H.-T. D., Gillespie, M., Chislett, B., Sharp, N., Jacobson, A., and Crane, K. (July 2023). “Surface
simplification using intrinsic error metrics”. ACM Transactions on Graphics 42.4, pp. 1–17.
issn: 0730-0301. doi: 10.1145/3592403.

Liu, H. D., Kim, V. G., Chaudhuri, S., Aigerman, N., and Jacobson, A. (Aug. 2020). “Neural
subdivision”. ACM Transactions on Graphics 39.4, pp. 1–16. doi: 10.1145/3386569.3392418.

Liu, H. D., Zhang, J. E., Ben-Chen, M., and Jacobson, A. (July 2021). “Surface multigrid via
intrinsic prolongation”. ACM Transactions on Graphics 40.4, pp. 1–13. doi: 10.1145/3450626.
3459768.

Luo, F. (2004). “Combinatorial Yamabe flow on surfaces”. Communications in Contemporary
Mathematics 6.5, pp. 765–780. doi: 10.1142/S0219199704001501.

MacNeal, R. H. (1949). “The Solution of Partial Differential Equations by Means of Electrical
Networks”. PhD thesis. California Institute of Technology. doi: 10.7907/PZ04-5290.

Mainini, E. (2012). “A description of transport cost for signed measures”. Journal of Mathematical
Sciences 181, pp. 837–855. doi: 10.1007/s10958-012-0718-2.

Milnor, J. (Sept. 1956). “On manifolds homeomorphic to the 7-sphere”. Annals of Mathematics
64.2, pp. 399–405. doi: 10.2307/1969983.

33

https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1016/S0304-3975(00)00248-6
https://doi.org/10.1109/VISUAL.2004.75
https://arxiv.org/pdf/1407.2087.pdf
https://doi.org/10.1016/S0925-7721(99)00007-3
https://doi.org/10.1145/1138450.1138461
https://doi.org/10.1145/1138450.1138461
https://doi.org/10.1090/S0002-9904-1969-12271-8
https://doi.org/10.1145/2461912.2462005
https://doi.org/10.1145/280814.280828
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1145/2661229.2661258
https://doi.org/10.1145/2185520.2185604
https://doi.org/10.1145/3592403
https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1145/3450626.3459768
https://doi.org/10.1145/3450626.3459768
https://doi.org/10.1142/S0219199704001501
https://doi.org/10.7907/PZ04-5290
https://doi.org/10.1007/s10958-012-0718-2
https://doi.org/10.2307/1969983

Chapter 5 BIBLIOGRAPHY BIBLIOGRAPHY

Mitchell, J. S., Mount, D. M., and Papadimitriou, C. H. (1987). “The discrete geodesic problem”.
SIAM Journal on Computing 16.4, pp. 647–668. doi: 10.1137/0216045.

Moise, E. E. (July 1952). “Affine structures in 3-manifolds: V. the triangulation theorem and
hauptvermutung”. Annals of Mathematics 56.1, pp. 96–114. doi: 10.2307/1969769.

Moise, E. E. (2013). Geometric Topology in Dimensions 2 and 3. 1st ed. Vol. 47. Springer. doi:
10.1007/978-1-4612-9906-6.

Mosher, L. (Mar. 1988). “Tiling the projective foliation space of a punctured surface”. Transactions
of the American Mathematical Society 306.1, pp. 1–70. doi: 10.2307/2000830.

Myles, A., Pietroni, N., and Zorin, D. (July 2014). “Robust field-aligned global parametrization”.
ACM Transactions on Graphics 33.4, pp. 1–14. doi: 10.1145/2601097.2601154.

Penner, R. C. (Jan. 2012). Decorated Teichmüller Theory. QGM Master Class Series. European
Mathematical Society, Zürich. doi: 10.4171/075.

Radó, T. (1925). “Über den Begriff der Riemannschen Fläche”. Acta Litt. Sci. Univ. Szeged 2,
pp. 101–121.

Regge, T. (1961). “General relativity without coordinates”. Il Nuovo Cimento (1955-1965) 19.3. doi:
10.1007/BF02733251.

Riemann, B. (1854). On the Hypotheses which lie at the Bases of Geometry. doi: 10.1007/978-3-
319-26042-6.

Rivin, I. (May 1994). “Euclidean structures on simplicial surfaces and hyperbolic volume”. Annals
of Mathematics 139.3, pp. 553–580. doi: 10.2307/2118572.

Roček, M. and Williams, R. M. (1984). “The quantization of Regge calculus”. Zeitschrift für Physik
C Particles and Fields 21.4, pp. 371–381. doi: 10.1007/BF01581603.

Santambrogio, F. (2015). Optimal Transport for Applied Mathematicians. Vol. 87. Progress in
Nonlinear Differential Equations and Their Applications. Birkäuser Cham. doi: 10.1007/978-
3-319-20828-2.

Sawhney, R. and Crane, K. (2017). “Boundary first flattening”. ACM Transactions on Graphics
37.5, pp. 1–14. doi: 10.1145/3132705.

Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. (July 1992). “Decimation of triangle meshes”.
SIGGRAPH 1992. ACM, pp. 65–70. doi: 10.1145/142920.134010.

Shamai, G. and Kimmel, R. (July 2017). “Geodesic distance descriptors”. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2017.386.

Sharp, N. and Crane, K. (Aug. 2020a). “A Laplacian for nonmanifold triangle meshes”. Computer
Graphics Forum (SGP) 39.5. doi: 10.1111/cgf.14069.

Sharp, N. and Crane, K. (Nov. 2020b). “You can find geodesic paths in triangle meshes by just
flipping edges”. ACM Transactions on Graphics 39.6. doi: 10.1145/3414685.3417839.

Sharp, N., Gillespie, M., and Crane, K. (July 2021). “Geometry processing with intrinsic triangu-
lations”. ACM SIGGRAPH 2021 Courses. doi: 10.1145/3450508.3464592.

Sharp, N., Soliman, Y., and Crane, K. (July 2019). “Navigating intrinsic triangulations”. ACM
Transactions on Graphics 38.4. doi: 10.1145/3306346.3322979.

Shewchuk, J. R. (2002). “What Is a Good Linear Finite Element? Interpolation, Conditioning,
Anisotropy, and Quality Measures”.

Springborn, B., Schröder, P., and Pinkall, U. (Aug. 2008). “Conformal equivalence of triangle
meshes”. ACM Transactions on Graphics 27.3, pp. 1–11. doi: 10.1145/1360612.1360676.

34

https://doi.org/10.1137/0216045
https://doi.org/10.2307/1969769
https://doi.org/10.1007/978-1-4612-9906-6
https://doi.org/10.2307/2000830
https://doi.org/10.1145/2601097.2601154
https://doi.org/10.4171/075
https://www.maths.ed.ac.uk/~v1ranick/papers/rado.pdf
https://doi.org/10.1007/BF02733251
https://doi.org/10.1007/978-3-319-26042-6
https://doi.org/10.1007/978-3-319-26042-6
https://doi.org/10.2307/2118572
https://doi.org/10.1007/BF01581603
https://doi.org/10.1007/978-3-319-20828-2
https://doi.org/10.1007/978-3-319-20828-2
https://doi.org/10.1145/3132705
https://doi.org/10.1145/142920.134010
https://doi.org/10.1109/CVPR.2017.386
https://doi.org/10.1111/cgf.14069
https://doi.org/10.1145/3414685.3417839
https://doi.org/10.1145/3450508.3464592
https://doi.org/10.1145/3306346.3322979
https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdf
https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdf
https://doi.org/10.1145/1360612.1360676

BIBLIOGRAPHY Chapter BIBLIOGRAPHY

Springborn, B. A. (Sept. 2019). “Ideal hyperbolic polyhedra and discrete uniformization”. Discrete
& Computational Geometry 64, pp. 63–108. doi: 10.1007/s00454-019-00132-8.

Steinitz, E. (1908). “Beiträge zur Analysis situs”. Sitzungsberichte der Berliner Mathematische
Gesellschaft 7, pp. 29–49.

Sun, J., Wu, T., Gu, X. D., and Luo, F. (2015). “Discrete conformal deformation: algorithm and
experiments”. SIAM Journal on Imaging Sciences 8.3. doi: 10.1137/141001986.

Thurston, D. and Yuan, Q. (2012). “Notes on Curves on Surfaces”.
Tietze, H. (Dec. 1908). “Über die topologischen invariantenmehrdimensionalermannigfaltigkeiten”.

Monatshefte für Mathematik und Physik 19, pp. 1–118. doi: 10.1007/BF01736688.
Troyanov, M. (1986). “Les surfaces Euclidiennes à singularités coniques”. L’Enseignement Mathé-

matique 32, pp. 79–94. doi: 10.5169/seals-55079.
Verhoeven, F., Vaxman, A., Hoffmann, T., and Sorkine-Hornung, O. (Mar. 2022). “Dev2pq: planar

quadrilateral strip remeshing of developable surfaces”. ACM Transactions on Graphics 41.3,
pp. 1–18. doi: 10.1145/3510002.

Weiler, K. (Jan. 1985). “Edge-based data structures for solid modeling in curved-surface environ-
ments”. IEEE Computer Graphics and Applications 5.1, pp. 21–40. doi: 10.1109/MCG.1985.
276271.

Whitehead, J. H. C. (Oct. 1940). “On 𝐶1-complexes”. Annals of Mathematics 41.4, pp. 809–824.
doi: 10.2307/1968861.

Zhou, J., Tu, C., Zorin, D., and Campen, M. (2020). “Combinatorial construction of seamless
parameter domains”. Computer Graphics Forum. Vol. 39, pp. 179–190. doi: 10.1111/cgf.
13922.

35

https://doi.org/10.1007/s00454-019-00132-8
https://www.maths.ed.ac.uk/~v1ranick/haupt/steinitz.pdf
https://doi.org/10.1137/141001986
https://math.berkeley.edu/~qchu/Notes/274/
https://doi.org/10.1007/BF01736688
https://doi.org/10.5169/seals-55079
https://doi.org/10.1145/3510002
https://doi.org/10.1109/MCG.1985.276271
https://doi.org/10.1109/MCG.1985.276271
https://doi.org/10.2307/1968861
https://doi.org/10.1111/cgf.13922
https://doi.org/10.1111/cgf.13922

AppendixA

A Brief Introduction

to Hyperbolic Geometry

A.1 Models of Hyperbolic Geometry

geodesic

Poincaré diskideal
point ideal

point

H2 H2

H 2

ideal point

horocycle horocycle

ideal
triangle

ideal
triangle

Klein disk

hyperboloid

geodesic

horocycle

geodesic
idealtriangle

Figure A.1: Since the hyperbolic plane 𝐻 2 cannot be
isometrically embedded in R3, it must be understood
through the use of several “models”—here we illustrate
how several key quantities are realized in each model.

Just as the sphere 𝑆2 is a surface of con-
stant curvature𝐾 = +1, the hyperbolic plane
𝐻 2 is a surface of constant negative curva-
ture 𝐾 = −1. Unlike 𝑆2, there is no way
to smoothly embed 𝐻 2 in Euclidean R3 iso-
metrically, i.e., without distorting its geom-
etry [Hilbert 1901]. Instead, we must visu-
alize it through one of several models, each
of which faithfully represents only some of
its geometric features. A good analogy is
the Mercator projection of the globe, which
preserves angles but distorts the size of land
masses. Figure A.1 depicts threemodels that
are useful for our purposes. For further background on hyperbolic geometry, see Alekseevskij
et al. [1993] and Cannon et al. [1997].

In the Poincaré disk model, points in 𝐻 2 are identified with points in the open unit disk
𝐷2 := {𝑝 ∈ R2 : |𝑝 | < 1}. Although this disk looks like a finite piece of the Euclidean plane,
lengths at a point 𝑝 ∈ 𝐷2 get scaled by 2/(1− |𝑝 |2) so that short distances near the boundary 𝜕𝐷2

represent large distances in 𝐻 2. One can hence travel any distance along a straightest curve or
geodesic without ever reaching the boundary—limit points on 𝜕𝐷2 are called ideal points. Though
geodesics are straight in 𝐻 2, in the Poincaré model they appear as circular arcs orthogonal to
𝜕𝐷2. The Poincaré model is conformal: angles between circular arcs give the true angle between
geodesics in𝐻 2. Finally, just as a straight line in R2 can be viewed as a circle of “infinite radius,” a
horocycle is the limit of a family of increasingly large circles tangent at a common point—drawn
in the Poincaré model as a circle tangent to the boundary.

The Beltrami-Klein model is much like the Poincaré model, but with a different metric.
Geodesics appear as straight lines, but Euclidean angles no longer give the true angles in 𝐻 2, i.e.,
the Beltrami-Klein model is not conformal. Horocycles in the Beltrami-Klein model appear as

36

Ideal Polyhedra Chapter A A Brief Introduction to Hyperbolic Geometry

Figure A.2: An ordinary triangle mesh (left) can always be viewed as an ideal hyperbolic polyhedron
(right), i.e., surface made from triangles of constant negative curvature and all three vertices at infinity.

ellipses. This model helps explain the relationship between Euclidean and hyperbolic polyhedra
(Appendix A.2.1).

lig
ht c

on
e

hyper boloidThe hyperboloid model represents 𝐻 2 as the upper sheet of the two-sheeted
hyperboloid. Just as the sphere is the set of all points 𝑝 ∈ R3 such that ⟨𝑝, 𝑝⟩ = 1,
this hyperboloid is the set of all points satisfying ⟨𝑝, 𝑝⟩2,1 = −1, where ⟨𝑝, 𝑞⟩2,1 :=
𝑝𝑥𝑞𝑥 + 𝑝𝑦𝑞𝑦 − 𝑝𝑧𝑞𝑧 is the Lorentz inner product; this inner product is also used to
measure the angles and lengths of vectors tangent to the hyperboloid. Geodesics
in 𝐻 2 correspond to intersections of the hyperboloid with planes through the origin, and ideal
points are identified with lines in the light cone L := {𝑝 ∈ R3 : ⟨𝑝, 𝑝⟩2,1 = 0}. Horocycles are
obtained by taking a plane tangent to L, shifting it in the positive 𝑧-direction, and intersecting
with the hyperboloid. Thus, we can identify horocycles with points in the positive light cone
L+ := {𝑝 ∈ L : 𝑝𝑧 > 0}; each point 𝑝 ∈ L+ also corresponds to the plane {𝑞 ∈ R3 : ⟨𝑝, 𝑞⟩2,1 = −1}.
The hyperboloid model is essential for developing our interpolation scheme—see Section 4.2.4.

A.2 Ideal Polyhedra

An ideal hyperbolic polyhedron is a surface of constant negative curvature, and a finite collection
of cusps analogous to Euclidean cone points (Figure A.2, right). We can construct ideal polyhedra
by gluing together ideal triangles: regions of 𝐻 2 bounded by three geodesics approaching
three ideal points at infinity (Figure A.1). A strange fact about ideal triangles is that they
are all congruent, i.e., they are identical up to isometries of 𝐻 2. Hence, the
geometry of an ideal polyhedron is determined entirely by how neighbor-
ing triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 are glued together—namely, how far we slide them
along the shared geodesic 𝑖𝑗 . One way to quantify gluings is to use shear
coordinates, which for each edge 𝑖𝑗 give the distance 𝑍𝑖𝑗 ∈ R between the
altitudes dropped from opposite vertices 𝑘 and 𝑙 (see inset). Alternatively,
we can pick an arbitrary horocycle at each vertex, yielding a decorated
ideal polyhedron. Though edges of an ideal triangle do not have finite
length, there is now a finite distance _𝑖𝑗 ∈ R between the horocycles at 𝑖 and 𝑗—these values are
called the Penner coordinates. Shear and Penner coordinates are related by

𝑍𝑖𝑗 =
1
2 (_𝑖𝑙 − _𝑙 𝑗 + _ 𝑗𝑘 − _𝑘𝑖) (A.1)

37

Chapter A A Brief Introduction to Hyperbolic Geometry Ideal Polyhedra

(see [Penner 2012, Corollary 4.16, p. 40]). Note that if the horocycles at 𝑖 and 𝑗 overlap, _𝑖𝑗
will be negative. Yet unlike negative Euclidean lengths, negative Penner coordinates will cause
no trouble for discrete uniformization. Likewise, whereas Euclidean lengths must satisfy the
triangle inequality, any three Penner coordinates _𝑖𝑗 , _ 𝑗𝑘 , _𝑘𝑖 ∈ R (whether positive or negative)
can be realized by some choice of horocycles.

A.2.1 Euclidean-Ideal Correspondence

Every Euclidean polyhedron gives rise to an ideal polyhedron, in the following way. Any
triangle 𝑖𝑗𝑘 ∈ F drawn in its Euclidean circumdisk can be interpreted as an ideal triangle in the
Beltrami-Klein model. To glue two ideal triangles 𝑖𝑗𝑘, 𝑗𝑖𝑙 together along an edge 𝑖𝑗 , we simply
identify the same points as in the Euclidean polyhedron. An ideal polyhedron constructed this
way will have shear coordinates 𝑍𝑖𝑗 = log 𝔠𝑖𝑗 , and if we assign Penner coordinates

_𝑖𝑗 = 2 log ℓ𝑖𝑗 (A.2)

we get a decorated version of the same polyhedron. In general, we can move from Euclidean to
hyperbolic polyhedra by “taking a logarithm”—for example, Equation (A.1) now just becomes
the logarithm of the length cross ratio. More importantly, for a fixed triangulation, a conformal
scaling of edge lengths corresponds to a shift in horocycles of the form

_̃𝑖𝑗 = _𝑖𝑗 + 𝑢𝑖 + 𝑢 𝑗 . (A.3)

In other words, conformally equivalent edge lengths ℓ, ℓ̃ describe the same ideal polyhedron,
just decorated with different horocycles.

A.2.2 Ptolemy Flip

normal coordinates
i

j

k

l

Euclidean lengths

i

j

k
l

5 0
1

l

k

j
i

2
3

4

roundabouts

Penner coordinates

i

j

lk

Figure A.3: For each edge flip, we need to update any
data stored on edges. Here we indicate quantities
involved in updating Euclidean edge lengths (top left),
Penner coordinates (top right), normal coordinates
(bottom left) and roundabouts (bottom right).

Penner coordinates are easily updated during
edge flips via Ptolemy’s relation [Penner 2012,
Corollary 4.16, p. 40]. Letting ℓ𝑖𝑗 = 𝑒_𝑖𝑗/2 for
each edge in Figure A.3 (top right), we com-
pute

ℓ𝑘𝑙 = (ℓ𝑘𝑖ℓ𝑙 𝑗 + ℓ𝑗𝑘ℓ𝑙𝑖)/ℓ𝑖𝑗 . (A.4)

The new Penner coordinate is then _𝑘𝑙 =

2 log(ℓ𝑘𝑙) (Figure A.3, top right). Since Equa-
tion (A.4) is a rational expression in ℓ , it is of-
ten simplest to just store and manipulate the
edge lengths ℓ rather than the Penner coordi-
nates _. See the paper for further discussion
of numerics.

Importantly, this so-called Ptolemy flip is the same as a Euclidean edge flip if and only if
the two Euclidean triangles are concyclic. In general, Euclidean flips may distort the discrete
conformal structure even though they preserve the Euclidean geometry, whereas Ptolemy flips

38

Ideal Polyhedra Chapter A A Brief Introduction to Hyperbolic Geometry

always preserve the hyperbolic metric, hence the conformal structure. Moreover, Euclidean
flips are well-defined only when the triangle inequalities are satisfied, whereas Ptolemy flips are
always well-defined.

A.2.3 Delaunay Triangulations

For polyhedral surfaces, discrete conformal equivalence is defined in terms of Delaunay tri-
angulations—not because they are “nice” in a numerical sense, but because they are key to
establishing the discrete uniformization theorem. Delaunay triangulations have similar but
distinct definitions in the Euclidean and ideal hyperbolic settings.

A.2.4 Intrinsic Delaunay Triangulations

A planar triangulation is Delaunay if there are no vertices inside any triangle circumcir-
cle. Equivalently, we can ask that every interior edge 𝑖𝑗 satisfy the local Delaunay condition

\
𝑖 𝑗

𝑘
+ \ 𝑗𝑖

𝑙
≤ 𝜋. (A.5)

This characterization generalizes to Euclidean polyhedra, since the edge lengths
ℓ are sufficient to determine the angles \ . Such intrinsic Delaunay triangula-
tions can be found using a simple greedy algorithm: while any edge fails to

satisfy Equation (A.5), perform a Euclidean flip. This algorithm terminates after finitely many
flips [Bobenko & Springborn 2007; Indermitte et al. 2001], and in practice takes about |E| flips on
real-world meshes [Sharp et al. 2019, Figure 10]. Note if two triangles are inscribed in a common
circle, then either diagonal satisfies Equation (A.5).

A.2.5 Ideal Delaunay Triangulations

A hyperbolic analogue is an ideal Delaunay triangulation [Springborn 2019, Section 4]: if ℓ = 𝑒_/2
are edge lengths associated with given Penner coordinates _, then every edge must satisfy the
local ideal Delaunay condition

ℓ2𝑖𝑗 (ℓ𝑗𝑘ℓ𝑘𝑖 + ℓ𝑖𝑙 ℓ𝑙 𝑗) < (ℓ𝑖𝑙 ℓ𝑘𝑖 + ℓ𝑗𝑘ℓ𝑙 𝑗) (ℓ𝑖𝑙 ℓ𝑗𝑘 + ℓ𝑘𝑖ℓ𝑙 𝑗), (A.6)

which we obtain by combining Equations 3 and 10 from Springborn [2019]. We can again find
such a triangulation by greedily flipping edges, but this time using Ptolemy flips. Remarkably, if
Equation (A.6) is satisfied globally, then the lengths ℓ always describe a valid Euclidean intrinsic
Delaunay triangulation [Springborn 2019, p. 4.14]. Yet working in the ideal setting enables us to
start with lengths that do not describe a valid Euclidean metric and flip to a valid one.

39

	Introduction
	Background & Related Work
	Notation & Conventions
	Manifolds
	Smooth Structure
	Riemannian Structure

	Polyhedral Surfaces
	Triangulations
	Polyhedral Geometry
	Retriangulation

	Static Intrinsic Triangulations
	Mapping & Correspondence

	Surface Simplification
	Intrinsic Vertex Removal
	Vertex Flattening
	Flat Vertex Removal

	Correspondence Tracking
	Mapping Points
	Mapping Edges

	Measuring Distortion
	Flat Error Metric
	Intrinsic Curvature Error Metric

	Results
	Comparison with Extrinsic Methods
	Geometric Algorithms

	Surface Parameterization
	Correspondence Data
	Normal Coordinates
	Roundabouts

	Mapping
	Tracing Edges
	Recovering Geodesics
	Common Refinement
	Interpolation

	Planar Parameterization
	Variational Formulation
	Energy Evaluation
	Optimization
	Surfaces with Boundary
	Planar Layout

	Results

	Proposed Work
	Intrinsic Simplification of Nonmanifold Meshes
	Timeline

	A Brief Introduction to Hyperbolic Geometry
	Models of Hyperbolic Geometry
	Ideal Polyhedra
	Euclidean-Ideal Correspondence
	Ptolemy Flip
	Delaunay Triangulations
	Intrinsic Delaunay Triangulations
	Ideal Delaunay Triangulations

