PERSPECTIVES ON WINDING NUMBERS

Nicole Feng, Mark Gillespie, Keenan Crane

This short note explores the many different ways one can characterize the winding number of a curve I around a point p, and why these
standard perspectives fail to generalize to curves on surfaces. Ultimately, all perspectives lead back to one of just three analytical descriptions:
an integral over the curve I', an integral over a circle around the point p, or a particular Laplace equation. On sufaces, however, these
formulations have undesirable consequences for curves that do not correspond to region boundaries, helping to motivate the recent surface

winding number approach of Feng et al. [2023].

NoTATION AND CONVENTIONS

We use | - | and (-, -) to denote the standard Euclidean norm and
inner product for vectors in R%. We use J : R? — R?; (x,y) —
(—y, x) to denote a quarter turn in the counter-clockwise direc-
tion. For any two vectors u,0 € Rz, we define a scalar-valued
cross product u X v := uj02 — ugvy; note that (Ju,v) = u X v. For
any function f(t) of a single parameter ¢, we let f() := % f(t).

Throughout we consider compact curves I' on a smooth surface
M, possibly with boundary dM; an important special case is the
Euclidean plane M = R%. We use S! to denote the circle, which
serves as the domain for a single closed loop. More generally, we
use I to denote the domain of I', which may be an open interval,
aclosed loop, or a larger collection of loops and intervals. We use
wr (p) to denote the winding number of a curve (or collection of
curves) I around a point p; when T is not closed, this function
also describes the signed solid angle.

We use A to denote the negative-semidefinite Laplace-Beltrami
operator onzM wlzlich locally behaves like the ordinary Laplace
operator 5 + 8y2 A function u : M — R is harmonic if it is
in the kernel of the Laplacian, i.e., if Au = 0.

1 TOPOLOGICAL DEGREE

The basic idea of the winding number is that it captures how many
times a curve I' “winds” around a given point p. In particular, for a
single closed planar loop T : S! — R?, consider the covering map
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The winding number wr (p) can then be defined as the degree of ¢,
i.e. the number of times ¢ covers the circle S, taking orientation into
account. For instance, if ¢ goes once around the circle in a counter-
clockwise direction we get a winding number +1, in the clockwise
direction we get —1, and if it goes around the circle multiple times we
get a winding number of magnitude greater than one (Figure 1). The
winding number is also given by the total signed length of the image
of S! under ¢, divided by the circumference of the circle. Since ¢(t)
is always a point on the unit circle, we can express the infinitesimal
signed length as (Jo(t), (¢)), i.e., by measuring the length of the
tangent vector ¢(t) along the counter-clockwise direction Jo(t)
tangent to the circle (Figure 2, left). The total signed length is then
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Fig. 1. For curves I in the plane, the winding number function wr (p) gives
the number of times the curve I wraps around any given point p.

given by an integral over the circle, namely

wr(p) = = / o (1) x (1) d, @

where we have used the 1dent1ty (Ju,v) = u x v. If the point p
is at the origin (which can always be achieved by translating our
coordinate system), then substituting Equation 1 into Equation 2
yields a formula for wr(0) as an integral over the curve I':

1 I'(t) x I'(t) dt
2 / IT(£)]?

For curves on surfaces we cannot apply this same idea, since in
general the way a curve I' winds around a point p may not define a
continuous map to the circle akin to ¢. Consider for instance the
curve I depicted in Figure 2, right, which gets “stuck” if we try
to contract it to a small circle around the point ¢. Indeed, winding
numbers are not meaningful for nonbounding loops: by definition
they do not bound any region, and do not have a well-defined inside
and outside. Hence, any definition of winding numbers for curves on
surfaces must carefully account for the topology of the underlying
domain.
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Fig. 2. Left: one way to define the winding number is to contract the curve
T to a circle around p, and count how many times it covers the circle. Right:
on surfaces, however, not all curves are contractible—consider for instance
I;, which cannot be contracted around q.
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Fig. 3. Left: the solid angle function (a.k.a. the generalized winding number)
is the total signed length of the projection of T’ onto a circle around p:
positive for counter-clockwise motion, and negative for clockwise motion.
Right: applying this same idea on surfaces, by using the log map to measure
signed angles, yields garbage since the log map jumps discontinuously.

2 SOLID ANGLE

One can interpret the signed length of ¢ as the total signed angle
subtended by the curve T over a small circle around p. This idea
extends naturally to open curves, in which case the subtended angle
is the fraction of the “sky” covered by T for an observer standing at
p (Figure 3, left). Unlike physical solid angle, however, the signed
subtended angle is counted with multiplicity, and will be negative
whenever I and S! are oppositely oriented.

On a surface, one might be inclined to compute the subtended
angle via the logarithmic map. At any point p € M, the logarithmic
map! logp q gives the direction u and shortest distance |u| we must
walk along a straight path (i.e., geodesic) to reach q. Letting 6(t)
be the angle of the vector log, (I'(¢)), we could then try integrating
the quantity df to obtain a notion of winding number. The problem,
however, is that there are points at which there is not a unique
shortest path to points g on the curve I'. As our point p crosses
through this so-called cut locus, then, the integral /r dO may jump
discontinuously, as pictured in Figure 3. Moreover, the exponential
map may not be surjective on domains with boundary, hence the
log map may not be well-defined for some points on our curve.

3 RAY INTERSECTIONS

Alternatively, one can interpret the degree of the map ¢ as the
number of points along I" which get mapped to a generic point on
the circle (counted again with multiplicity). The number of points
which ¢ maps onto a unit vector v is precisely the number of signed
intersections yp(v) between I' and a ray leaving p in the direction v,
i.e., +1 if the ray has a positive dot product with the unit normal n of
T, and —1 otherwise. Hence, one can evaluate the winding number
at a point p by shooting a random ray from p and counting the
number of intersections with T' (Figure 4, left).

On a surface, the natural analogue of shooting a ray is to evaluate
the exponential map expp(tv), which traces out a geodesic curve
starting at p in the direction v for time ¢. Unlike the plane, however,
a geodesic may intersect a closed curve I' infinitely many times.
Artificially truncating it to a finite length yields an arbitrary answer
(Figure 4, center); moreover, the number of intersections may also
change completely with the ray direction v (Figure 4, right).

!In terms of the exponential map, discussed in Section 3, the log map gives the vector
u of smallest magnitude such that exp » (u) =q.

Fig. 4. Left: in the plane, the winding number of a closed curve I can be
found by counting the number of signed intersections with a generic ray—
here, wy(T) = =1+ 1 =0and wy(T') =1 - 1+1 = 1. Center, right: on a
surface, a geodesic ray may intersect a closed curve infinitely many times,
or change completely depending on the initial direction v.

Equivalently, we can take the average number of ray intersections
Xp(0) over all directions 0 € [0, 27) [Jacobson et al. 2013, Section
4.2]. We can perform a change of measure to integrate this quantity
over the curve I': when p is at the origin, the angle df subtended by
an infinitesimal piece of the curve T is inversely proportional to the
distance |T| from the origin, and proportional to the arc length I' ds
crossed with the direction T := T'/|T| from the origin to the curve
(to obtain signed length). Hence,

2 I'(s) xI(s)
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i.e., we again recover the winding number integral (Equation 3). Note
that this change of measure parallels the one used in rendering to
convert between integrals of radiance over the hemisphere and scene
surfaces [Veach and Guibas 1995, Section 2.1], e.g., for importance
sampling area lights (though here the visibility term is omitted).

4 NUMBERING REGIONS

w A more direct way to obtain the winding
w=1 number for a closed planar curve T is via

+1 }N an iterative algorithm: assign the value “0” to
the region outside the curve (i.e., the unique
unbounded component of R2 \ T'), then increment this value by +1
or —1 whenever we cross I' from the left or the right, resp. (see inset).
In the plane, this so-called Alexander numbering [Alexander 1928]
produces a well-defined function, independent of the order in which
one visits the regions bounded by the curve. On general surfaces,
however, the procedure may not determine winding numbers in
a canonical way. E.g., on a compact surface M no region is clearly

w

“outside” the curve, since all regions bounded by the curve are com-

pact. Moreover, visiting the bounded regions in different orders can
yield different numberings—see Figure 5.

Fig. 5. A naive approach to assigning winding numbers to regions does
not work on surfaces. For instance, even if we always assign “0” to the
largest region, the subsequent labeling may depend arbitrarily on the order
in which we visit neighboring regions.
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Fig. 6. Top: in the plane, the winding number function can be viewed as the
electric potential as the number of dipoles k goes to infinity—shown here
for an open and closed curve, where normals n determine dipole moments.
Bottom: on surfaces this same harmonic function is well-defined, but may
not provide a meaningful notion of inside/outside even for closed loops.

5 HARMONIC FUNCTIONS

As noted in Feng et al. [2023, Section 1] and in Section 7, the winding
number function is also a particular harmonic function—for a simple
curve I' in the plane it is a solution to a Laplace equation with jumps,
namely,

Au = 0, onR?\T,
ut—u” =1, onT, (4)
out/on = du~ /on, onT.

The boundary conditions for this
Laplace equation are somewhat unusual:
rather than prescribing function values or
normal derivatives along T (i.e., Dirichlet
or Neumann conditions, resp.), we have
Jjump boundary conditions, which say that
the two solution values u* on either side of the curve must differ
by one, and that the normal derivative must be equal on both sides
of the curve (Krutitskii [2001] gives a more formal treatment).

Equation 4 is readily solved for curves on surfaces, and serves as
the starting point for the formulation in [Feng et al. 2023]. However,
it does not immediately resolve the question of how to define wind-
ing numbers on surfaces, since even for closed curves the solution
u may not be a piecewise integer function (Figure 6, bottom right
shows one example).

The PDE perspective can be connected to the standard definition
of winding numbers via the idea of a double layer potential. Con-
ceptually, we imagine that a collection of equal-magnitude positive
and negative electric charges are lined up along the curve T'. Each
positive/negative particle pair has an associated dipole potential, and
as we pack more and more charges along T (as in Figure 6, top),
the sum of these potentials converges to a harmonic function with
a constant jump across I (see [Brebbia et al. 1984, pp. 56-58] and
[Hsiao and Wendland 2008, Ch. 1] for more formal discussion). More
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explicitly, in 2D the dipole potential is given by the Poisson kernel

1 (nx-y)
P(x,y) = ————-. 5
(o) = =g ©)
If we assume a constant charge density along an arc-length param-
eterized curve T : I — R2, then at the originx =0 € R2 the total

potential of the double layer is given by the integral
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Since (J I, T) = I'XT, we recover the usual winding number integral
(Equation 3). In other words, the winding number function corre-
sponds to a double-layer potential of constant dipole density, as
observed by Maxwell [1881, Article 409]. This connection is central
to boundary element methods, as well as the recent method of Barill
et al. [2018] for computing generalized winding numbers.

6 ELECTROSTATICS

A more direct connection between winding numbers and electric
fields is given by Gauss’ law, which states that the flux of the electric
field E through a closed surface I' is given—up to a constant—by the
enclosed charge Q:

/E-ﬁdS:%Q (6)
r

If we place a single point charge at p, then the resulting electric flux
through I' is precisely the winding number of I" around p.

The electric field E induced by a point
charge can be written as the gradient
of an electric potential ¢, which can be
found as the solution to a Poisson equa-
tion. One can extend this procedure to
surfaces, solving a Poisson equation for
the electric potential of a point charge at p, taking its gradient to
obtain the electric field E, and then computing the flux through T
(inset). This gives the same solution as the jump equation in Sec-
tion 5, but is less attractive computationally because one must solve
a PDE once per evaluation point, rather than once per curve.

7 COMPLEX ANALYSIS

In 2D, every harmonic function is in a sense the “shadow” of a
richer complex function. For instance, the winding number integral
in Equation 3 is the real part of the complex integral:

1 1

C —
wr (p) = o /1" z—p dz, (7)

where 1 is the imaginary unit, and we view I as a complex-valued
curve I' : | — C. By exponentiating, we may obtain a complex
function f(p) = exp (2m wr (p)) whose argument—i.e. angle from
the origin—is given by the real part of wi(p) and whose magnitude
is determined by the imaginary part of wf (p). WhenT is an open
curve from a to b, we can write f(p) in closed form:

flpy =220 ®)

z-a
as shown in Figure 7. The function f depends only on I'’s endpoints,
oblivious to the location of the curve itself, since angle-valued func-
tions ignore the integer jumps across I'. In general, f has zeros
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Fig. 7. Top: the winding number function wr (p) is essentially the “shadow”
of a richer complex function f(p) naturally associated with any curve
I'. Bottom: though an analogous function can be defined on surfaces, its
imaginary part does not yield a useful labeling of inside/outside for all
curves I'.

at positive endpoints of I' and poles at negative endpoints. Hence,
wig = sz log f has logarithmic singularities at all endpoints of T,
where it locally looks like the function Arg(z).

An analogous procedure can be performed on orientable surfaces,
constructing a complex function associated with I whose argument
is given by wr. While the complex perspective does not resolve the
fundamental ambiguities of defining winding number on surfaces,
the description of the logarithmic singularities around the endpoints
of T is helpful when discretizing and interpolating jump harmonic
functions [Feng et al. 2023, Section 2.3.2].
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