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Fig. 1. Any collection of closed loops can be expressed as the boundary of some collection of regions, plus additional nonbounding loops. We describe an
algorithm for recovering this decomposition, even from input curves that exhibit topological errors and ambiguities such as gaps and self-intersections.

In the plane, the winding number is the number of times a curve wraps

around a given point. Winding numbers are a basic component of geometric

algorithms such as point-in-polygon tests, and their generalization to data

with noise or topological errors has proven valuable for geometry process-

ing tasks ranging from surface reconstruction to mesh booleans. However,

standard definitions do not immediately apply on surfaces, where not all

curves bound regions. We develop a meaningful generalization, starting

with the well-known relationship between winding numbers and harmonic

functions. By processing the derivatives of such functions, we can robustly

filter out components of the input that do not bound any region. Ultimately,

our algorithm yields (i) a closed, completed version of the input curves, (ii)

integer labels for regions that are meaningfully bounded by these curves,

and (iii) the complementary curves that do not bound any region. The main

computational cost is solving a standard Poisson equation, or for surfaces

with nontrivial topology, a sparse linear program. We also introduce special

basis functions to represent singularities that naturally occur at endpoints

of open curves.
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1 INTRODUCTION
Winding numbers are a basic concept from differential geometry

[Do Carmo 2016, Section 5.7], and arise naturally in settings rang-

ing from surface reconstruction [Kazhdan et al. 2006] to mesh

booleans [Zhou et al. 2016] to tetrahedral meshing [Hu et al. 2018].

This concept does not, however, have a standard extension to curves

on surfaces, posing challenges for surface processing algorithms

that seek to distinguish inside from outside. The basic issue is that,

on surfaces, a closed loop may not be the boundary of a well-defined

region (Figure 2). Standard tools from topology, such as basic sim-

plicial homology, are unfortunately insufficient when curves have

topological errors, as often arise in applications. Conversely, exist-

ing algorithms for robust inside-outside tests do not handle curves

on surfaces [Jacobson et al. 2013]. We address both issues.

Basic Problem. Any collection Γ of unbroken (i.e., closed), oriented
loops can be decomposed into subsets that do and do not bound

regions of a surface 𝑀 (Figure 1). Informally, we wish to label all

regions meaningfully bounded by Γ, and explicitly identify curves

that do not bound regions. A more precise problem statement is

given in Section 3. Unfortunately, computing such a decomposition
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Fig. 2. Is the point 𝑝 “inside” or “outside” the curve Γ? On surfaces, this
question does not always have a meaningful answer.

is not as simple as classifying each loop as bounding or nonbound-

ing: for one thing, a region boundary may be comprised of several

independent nonbounding loops (e.g. Figure 6). Moreover, the input

Γ may be given as an arbitrary set of oriented edges, which are not

a priori decomposed into distinct loops (Figure 7). When there are

errors in the input (e.g., gaps or spurious intersections) one must

also somehow complete the input to form closed curves.

Basic Approach. The classic winding number is a special case of

the signed solid angle function, which is itself a particular harmonic
function, i.e.,

winding number ⊂ solid angle ⊂ harmonic functions

Since classic winding numbers are not well-defined for broken

curves, Jacobson et al. [2013] consider the solid angle function,

which they call the generalized winding number (GWN). In turn,

solid angle is not well-defined for curves on surfaces—leading us

to consider more general harmonic functions 𝑢 which jump across

Γ. For instance, if Γ is simple (i.e., has no self-intersections), then 𝑢

satisfies a Laplace equation with jump boundary conditions, namely

Δ𝑢 = 0, on𝑀 \ Γ,
𝑢+ − 𝑢− = 1, on Γ,
𝜕𝑢+/𝜕𝑛 = 𝜕𝑢−/𝜕𝑛, on Γ.

(1)

Here 𝑢± (𝑥) := lim𝜀→0 𝑢 (𝑥 ± 𝜀𝑛(𝑥)) is the
value of 𝑢 on either side of Γ in the nor-

mal direction 𝑛 (see [Krutitskii 2001] for

a careful treatment in the case 𝑀 = R2
).

On surfaces, however, 𝑢 can be “polluted”

by the influence of nonbounding curves

(Figure 3). Our approach is to filter out this influence via de Rham
cohomology: rather than work with 𝑢 itself, we process its gradi-

ent vector field (or more properly, the differential 1-form 𝑑𝑢), and

recover curves from this processed field. For broken input curves,

where there are many possible choices, we also introduce a regular-

izer that leads to a unique solution. Overall, just as solid angle has

provided robust tools for geometry processing in Euclidean space,

“cohomological geometry processing” provides a robust approach to

processing submanifolds in domains of more general topology.

1.1 Related Work
Connections between winding numbers, solid angles, and harmonic

functions have long appeared in mathematics, physics, and scientific

computing [Binysh and Alexander 2018]. Both Euler [1781] and

Lagrange [1798] give formulas for the solid angle of a triangle;

Gauss [1838, Sections 37-38] notes the relationship of solid angle to

magnetic potential; Maxwell [1881, Articles 409-11, 417-21] further

+1

-2
u

-1

0

contoured function

PSR/GWN

-2

+1 -1

-1

-1
-1

0

0

0

Fig. 3. Both Poisson surface reconstruction (PSR) and generalized winding
numbers (GWN) compute a harmonic function subject to jump conditions
across the input curves. On surfaces, contouring this function can yield
regions that do not follow the input curves, and may give bogus winding
numbers that jump across nonbounding curves (compare with Figure 1).

makes connections to jump conditions à la Equation 1. Methods for

approximating solid angles also play an integral role in boundary
element methods (BEM) for the Laplace equation [Ning et al. 2010].

To date, however, there has been little focus on the surface case.

1.1.1 Computer Graphics. In computer graphics, winding numbers

were first applied to point-in-polygon queries [Shimrat 1962; Haines

1994]. Solid angle also plays a key role in rendering, e.g., for finite
element radiosity [Goral et al. 1984] or importance sampling for

direct illumination [Veach and Guibas 1995, Section 2.1].

1.1.2 Geometry Processing. In geometry processing, the utility of

the solid angle function has been rediscovered twice, via both Poisson
surface reconstruction (PSR) [Kazhdan et al. 2006] and the generalized
winding number (GWN) [Jacobson et al. 2013]. These methods are in

turn key components of a wide variety of applications [Hu et al. 2018;

Zhou et al. 2016; Chi and Song 2021; Müller et al. 2021; Dvořák et al.

2022; Collet et al. 2015; Chang et al. 2017]. As briefly noted by Barill

et al. [2018, Section 2.1], PSR and GWN are ultimately different

numerical discretizations of the same continuous problem: PSR

effectively adopts the PDE perspective from Section 1, focusing on

reconstruction from oriented points. GWN instead uses a boundary

integral formulation, adopting hierarchical methods from the BEM

literature to obtain a fast approximation [Barill et al. 2018]. Either

way, contouring the function 𝑢 does not in general yield useful

results for nonbounding curves on surfaces (Figure 3). In fact, GWN

is sometimes inadequate even for problems involving regions in the

plane (Figure 20), which can be viewed as surfaces with boundary.

11 00 11 00

+1+1
+11

2

Harmonic functions with discontinuities do arise

in surface processing, e.g., for diffusion curves [Sun
et al. 2012] or SeamCuts [Lucquin et al. 2017]. How-

ever, these methods assign fixed Dirichlet boundary

conditions on both sides of the curve (inset, top),
whereas the harmonic function needed to compute

winding numbers must instead satisfy the jump con-

ditions from Equation 1 (inset, bottom). Harmonic functions contin-

uous up to jumps also arise naturally in surface parameterization,
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e.g., as conjugate harmonic functions in conformal mapping [Gu

and Yau 2003; Sawhney and Crane 2017]; our treatment of such

functions is similar to Tong et al. [2006].

1.1.3 Turning Numbers on Surfaces. The winding number, which

assigns a value to each point, is distinct from the turning number,
which assigns a single number to a whole curve, counting the rota-

tions experienced by its tangent. Erickson [2017] gives an amusing

account of the historical confusion between these two terms, noting

that much past work on “winding numbers” on surfaces in fact

concerns the turning number [Reinhart 1960, 1963; Chillingworth

1972; Humphries and Johnson 1989; McIntyre and Cairns 1993].

1.1.4 Winding Numbers on Surfaces. McIntyre and Cairns [1993,

Lemma 2] also describe a function that behaves like the winding

number for bounding curves, but for nonbounding curves must in-

troduce arbitrary discontinuities to keep this function piecewise con-

stant. Chernov and Rudyak [2009] define a so-called affine winding
number, which is useful only for curves within a common homotopy

class. Concurrent with our work, Riso et al. [2022] give a method for

computing winding numbers of perfectly closed curves that are al-

ready partitioned into distinct loops. Nonbounding components are

addressed via user-guided edits. Though there are naïve ways to au-

tomate such edits (e.g., remove or duplicate all nonbounding loops,

or add extraneous homology generators), such strategies deviate

significantly from the input. To find the minimal valid modification

(as we do), Riso et al.would have to solve an integer linear program—

akin to our LP in Section 3.4 (or the reduced version proposed in

Section 6). In contrast, our method is already fully automatic, and

does not require that the input already be split into distinct loops.

Moreover, we handle broken curves, nonmanifold and nonorientable

surfaces, and curves terminating on the boundary, which Riso et al.
do not. On the other hand, our method takes seconds to minutes,

whereas theirs runs at real-time rates.

1.1.5 Cohomological Geometry Processing. Our approach is rooted

in the theory of de Rham cohomology: we reason about curves via

the dual perspective of differential forms. In a similar spirit, Born

et al. [2021] use de Rham cohomology to reason about the topology

of noisy maps between surfaces. Our curve completion step can

likewise be viewed as a variant of the optimal homologous chain
problem (OHCP) of Dey et al. [2010], reformulated via harmonic

1-forms. Both the OHCP and our problem can also be viewed as

simplicial versions of the nonlinear Hodge theory discussed by

Wang and Chern [2021, Appendix A]. A key difference is that this

past work applies applies cohomology constraints that are known

a priori, whereas we use cohomology as a tool to infer high-level
topological information from noisy input data.

1.2 Outline
We first establish definitions and notation (Section 2) used in our

algorithm (Section 3). Section 4 explains how this algorithm natu-

rally arises from a duality between curves and 1-forms, with jump

harmonic functions serving as a “bridge” between the two. Sec-

tion 5 evaluates our method in a geometry processing context, and

Section 6 discusses limitations and opportunities for improvement.

2 PRELIMINARIES

2.1 Meshes
We represent the domain as a triangle mesh

𝑀 = (𝑉 , 𝐸, 𝐹 ), with no restrictions on connec-

tivity. We denote vertices by indices 𝑖 ∈ 𝑉 , edges

by pairs 𝑖 𝑗 ∈ 𝐸, and faces by triples 𝑖 𝑗𝑘 ∈ 𝐹 . For
brevity, we often assume that any interior, mani-

fold, oriented edge 𝑖 𝑗 is contained in two triangles

labeled 𝑖 𝑗𝑘 , 𝑗𝑖𝑙 , where 𝑘 and 𝑙 sit to the left and right of 𝑖 𝑗 , resp. We

also denote triangle corners by indices
𝑗𝑘
𝑖
∈ 𝐶 . We use 𝜕𝑀 to denote

the boundary of𝑀 , and 𝐸int to denote the set of interior edges, i.e.,
edges not contained in 𝜕𝑀 . A quantity 𝑓 at vertex 𝑖 is denoted by 𝑓𝑖 .

Similarly, a value at edge 𝑖 𝑗 is denoted by 𝑓𝑖𝑗 , a value at face 𝑖 𝑗𝑘 by

𝑓𝑖𝑗𝑘 , and a value at corner 𝑖 of face 𝑖 𝑗𝑘 by 𝑓
𝑗𝑘
𝑖
. We use ℓ𝑖𝑗 for edge

lengths, 𝐴𝑖𝑗𝑘 for triangle areas, and 𝛼
𝑗𝑘
𝑖

for corner angles.

2.2 Curves
The input to our algorithm is a collection of oriented curves on a

mesh𝑀 , which can in general be a union of open or closed curves,

and may intersect arbitrarily (e.g., two curves can run along the

same edge). We often use the terms broken and unbroken for open

and closed curves, resp., as they are more evocative of the application

context (e.g., curves that have been corrupted).

We encode any collection of oriented curves as a 1-chain Γ, i.e., a
signed integer Γ𝑖𝑗 ∈ Z for each oriented edge, counting the number

of oriented traversals of Γ along 𝑖 𝑗 (hence, Γ𝑖𝑗 = −Γ𝑗𝑖 ). For example,

if a curve passes over 𝑖 𝑗 three times, going from 𝑖 to 𝑗 once, and

𝑗 to 𝑖 twice, then Γ𝑖𝑗 = −1. By abuse of notation, we often refer

to Γ as a set, e.g., writing 𝑖 𝑗 ∈ Γ when Γ𝑖𝑗 ≠ 0. On nonmanifold

meshes, we omit edges 𝑖 𝑗 that pass through nonmanifold vertices

by setting Γ𝑖𝑗 = 0, since here it is not clear how different “sides” of

the curve should be defined. Instead, we leverage the robustness of

our method to deal with these additional gaps.

2.2.1 Regions and Boundaries. A 2-chain is a signed

integer 𝑅𝑖𝑗𝑘 ∈ Z per oriented triangle, encoding a

region of the surface (possibly multiply-covered). Its

boundary is the 1-chain given by (𝜕𝑅)𝑖𝑗 := 𝑅𝑖𝑗𝑘 −𝑅 𝑗𝑖𝑙 .

We call a curve Γ bounding if it is the boundary of

a 2-chain, and nonbounding otherwise. Importantly, on domains

with boundary, we do not require bounding curves to include edges

𝑖 𝑗 ∈ 𝜕𝑀 , since we do not want to filter out curves that bound a

region in conjunction with the domain boundary (e.g., the curve
Γ in the inset). Formally, such curves are congruent to zero in the

relative homology group 𝐻1 (𝑀, 𝜕𝑀).

-1

-1

+1

2.2.2 Endpoints. A 0-chain is likewise a signed in-

teger per vertex, encoding a set of points (possibly

with multiplicity). For any 1-chain Γ, its endpoints are
given by the boundary 0-chain (𝜕Γ)𝑖 := −∑𝑖𝑗 Γ𝑖𝑗 . For
instance, if Γ is a path from 𝑖 to 𝑗 , then 𝜕Γ is −1 at

𝑖 , +1 at 𝑗 , and zero everywhere else. Note that one

can also have endpoints where multiple curves meet

(see inset). We use interior endpoints to refer to endpoints not con-

tained in 𝜕𝑀 . We use𝑉 ∗ to denote the set of vertices minus interior

endpoints, and 𝐸∗ for the set of edges with both endpoints in 𝑉 ∗.
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2.3 Jump Harmonic Functions
In the plane, the solid angle of a curve is a harmonic function that

jumps in value across the curve. We likewise consider harmonic

functions with discontinuous jumps. Such jump harmonic functions
are encoded by corner values 𝑓

𝑗𝑘
𝑖
∈ R, which are linearly inter-

polated within each triangle, and must be discretely harmonic up

to local piecewise constant shifts. More explicitly, there must exist

values 𝜎 at corners such that for each vertex 𝑖 ∈ 𝑉 , adding the

shift 𝜎
𝑗𝑘
𝑖

to each triangle 𝑖 𝑗𝑘 containing 𝑖 yields a function ˜𝑓 that is

discretely harmonic at vertex 𝑖 , i.e., (𝐿 ˜𝑓 )𝑖 = 0, where 𝐿 is the cotan
Laplacian given in Equation 6. As a consequence, the jump across

any edge 𝑖 𝑗 will be the same at both endpoints, i.e.,

𝑓
𝑗𝑘
𝑖
− 𝑓

𝑙 𝑗
𝑖

= 𝑓 𝑘𝑖𝑗 − 𝑓 𝑖𝑙𝑗 . (2)

2.3.1 Reduced Coordinates.
If the jumps in 𝑓 are known

values Λ𝑖𝑗 , then 𝑓 can be ex-

pressed by adding the cumu-

lative sum of jumps around 𝑖

to a reference value 𝑓
𝑗0 𝑗1
𝑖

at

some corner:

𝑓
𝑗𝑝 𝑗𝑝+1
𝑖

= 𝑓
𝑗0 𝑗1
𝑖
+ 𝑐 𝑗𝑝 𝑗𝑝+1

𝑖
, where 𝑐

𝑗𝑝 𝑗𝑝+1
𝑖

:=

𝑝∑︁
𝑚=1

Λ𝑖𝑗𝑚 . (3)

Here the neighbors 𝑗𝑝 of 𝑖 are indexed in counter-clockwise order.

At the boundary we assume that the reference value is stored at the

most clockwise corner. Since we disallow jumps across nonmanifold

edges (Section 2.2), we set 𝑐 = 0 for all corners around such vertices.

+1
+1

-1
2.3.2 Singular Points. Consider a harmonic function

𝑓 that jumps in value only across the input curve (i.e.,
Λ = Γ). At an interior endpoint 𝑖 the jumps Γ𝑖𝑗 do
not sum to zero, hence there are no corner values

compatible with all jumps. The function 𝑓 thus has a

singular point at 𝑖 . In practice, we do not store values of 𝑓 at interior

endpoints of Γ—instead, 𝑓 is encoded by the |𝑉 ∗ | reference values
𝑓
𝑗0 𝑗1
𝑖

, which we denote by a vector 𝑓0 ∈ R |𝑉
∗ |
.

piecewise-linear 
interpolation of θ

projective 
interpolation of θ

Fig. 4. Near endpoints of a curve Γ, a jump harmonic function behaves like
the angular coordinate function 𝜃 (𝑥 ) (left), which is poorly captured by
piecewise-linear functions (center). Our custom interpolant (right) better
captures the singular behavior.

Interpolation. To visualize 𝑓 in a triangle 𝑖 𝑗𝑘 containing a singular

vertex 𝑖 , we perform the following projective interpolation, inspired
by Knöppel et al. [2015, Section 4.3]:

𝑓 (𝜆𝑖 , 𝜆 𝑗 , 𝜆𝑘 ) :=
𝜆 𝑗 𝑓

𝑘𝑖
𝑗
+ 𝜆𝑘 𝑓

𝑖𝑗

𝑘

𝜆 𝑗 + 𝜆𝑘
(4)

where (𝜆𝑖 , 𝜆 𝑗 , 𝜆𝑘 ) are barycentric coordinates. The interpolated func-
tion is constant along rays emanating from 𝑖 , correctly capturing

singular behavior near endpoints (Figure 4).

2.4 Derivative Operators
Since a jump harmonic function 𝑓 can have discon-

tinuities, we must be careful when defining (dis-

crete) derivatives. In particular, the jump derivative
J𝑓 (Section 2.4.1) describes discontinuous jumps

across edges, whereas theDarboux derivativeD 𝑓 (Sec-

tion 2.4.2) captures the complementary continuous

change along edges. The jump Laplacian 𝐿𝐽 (Section 2.4.3) measures

the failure of a function to be a jump harmonic function.

2.4.1 Jump Derivative. We use J to denote the discrete jump deriv-
ative, which measures the size of the jump across edge 𝑖 𝑗 :

(J𝑓 )𝑖𝑗 := 𝑓
𝑗𝑘
𝑖
− 𝑓

𝑙 𝑗
𝑖
,

which by Equation 2 is the same as the jump 𝑓 𝑘𝑖
𝑗
− 𝑓 𝑖𝑙

𝑗
. We let

(J𝑓 )𝑖𝑗 := 0 at boundary edges, and have (J𝑓 )𝑖𝑗 = 0 (no jumps) at

nonmanifold edges (Section 2.2). Formally, J𝑓 is a 1-chain.

2.4.2 Darboux Derivative. We also define the discrete Darboux de-
rivative D, which for each edge 𝑖 𝑗 ∈ 𝐸∗ is given by

(D 𝑓 )𝑖𝑗 := 𝑓 𝑘𝑖𝑗 − 𝑓
𝑗𝑘
𝑖

. (5)

Since 𝑓 is continuous up to jumps,D 𝑓 is the same no matter which

side of the edge is used to evaluate it (Equation 2). Note that this

definition also applies to nonmanifold edges, where all jumps are

zero. For edges 𝑖 𝑗 ∉ 𝐸∗ we let (D 𝑓 )𝑖𝑗 := 0, since the interpolated

function is constant along 𝑖 𝑗 which points in the radial direction

(Section 2.3.2). Formally, D 𝑓 is a discrete 1-form (Section 2.5); if

all jumps are multiples of 2𝜋 , it discretizes the usual continuous

Darboux derivative (see Corman and Crane [2019, Section 1.5]).

2.4.3 Jump Laplacian. Consider a function 𝑓 at corners which is

not necessarily harmonic, but still has known jumps Λ. The jump
Laplacian 𝐿𝐽 measures the failure of 𝑓 to be jump harmonic. Explic-

itly, let w𝑖𝑗 := 1

2

∑
𝑖𝑗𝑘∈𝐹 cot𝛼

𝑖𝑗

𝑘
be the usual cotan weights [MacNeal

1949, Section 3.2], and let 𝐿 ∈ R |𝑉 ∗ |× |𝑉 ∗ | be the standard cotan

matrix on 𝑉 ∗ with nonzero entries

𝐿𝑖𝑗 = 𝐿𝑗𝑖 = −w𝑖𝑗 , ∀𝑖 𝑗 ∈ 𝐸∗,
𝐿𝑖𝑖 =

∑
𝑖𝑗∈𝐸∗ w𝑖𝑗 , ∀𝑖 ∈ 𝑉 ∗ . (6)

We also define 𝑏 ∈ R |𝑉 ∗ | to be the vector of values

𝑏𝑖 =
1

2

∑︁
𝑖𝑗∈𝐸∗

w𝑖𝑗 (𝑐𝑖𝑘𝑗 − 𝑐
𝑗𝑘
𝑖
), (7)

where 𝑐 is defined as in Equation 3, and for each edge 𝑖 𝑗 in the sum,

𝑖 𝑗𝑘 is any triangle containing 𝑖 𝑗 . Substituting Equation 3 into the

usual expression for the cotan Laplacian (written as a sum over
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integrate w/
shortest jumps

(Sec. 3.4)

extract jumps
& re-solve
(Sec. 3.5)

round
(Sec. 3.5.1)

Hodge
decomposition

(Sec. 3.3)

jump Laplace
equation
(Sec. 3.2)

Fig. 5. Top: main steps of our algorithm—notice that on surfaces with trivial topology, we need only solve a single Poisson equation. Bottom: visualization of
the functions and derivatives used at each step. Though we round the final output to obtain integer region labels𝑊 and nonbounding loops𝐺 , real-valued
data 𝑤,𝑔 provides richer information about uncertainty.

triangles) shows that the Laplacian of the locally shifted function

can be expressed as the ordinary Laplacian 𝐿 applied to the reference

values 𝑓0, minus a constant vector 𝑏 that depends only on Λ:

𝐿𝐽 𝑓 = 𝐿𝑓0 − 𝑏. (8)

We omit vertices 𝑖 ∈ 𝑉 \𝑉 ∗, since a function with jumps Λ cannot

be harmonic at interior endpoints—in the smooth setting, such

functions locally behave like the angle function 𝜃 shown in Figure 4,

left. Note that 𝐿𝐽 𝑓 = 0 discretizes Equation 1, by absorbing the jump

conditions into the definition of the operator.

2.5 Discrete Differential Forms

i

ij

We use discrete exterior calculus [Desbrun et al.

2006] to perform the Hodge decomposition in Sec-

tion 3.3; see Crane et al. [2013, Chapter 3] for a

more thorough introduction. However, since we

want to work with general (possibly nonmanifold)

triangle meshes, we follow Sharp et al. [2019a] and

define the discrete Hodge star operators by taking

volume ratios involving all incident elements (see inset), yielding

diagonal matrices with entries (∗0)𝑖 := 1

3

∑
𝑖𝑗𝑘∈𝐹 𝐴𝑖𝑗𝑘 for all 𝑖 ∈ 𝑉 ,

(∗1)𝑖𝑗 := w𝑖𝑗 for all 𝑖 𝑗 ∈ 𝐸, where w𝑖𝑗 are the cotan weights from

Section 2.4.3, and (∗2)𝑖𝑗𝑘 := 1/𝐴𝑖𝑗𝑘 for all 𝑖 𝑗𝑘 ∈ 𝐹 . Otherwise, we
use the standard discrete exterior derivative matrices 𝑑𝑘 ; the discrete
codifferential is then 𝛿𝑘 := ∗−1

𝑘−1
𝑑𝑇
𝑘−1
∗𝑘 .

2.5.1 Helmholtz-Hodge Decomposition. As discussed by Desbrun

et al. [2006, Section 7], any 1-form𝜔 can be expressed via aHelmholtz-
Hodge decomposition

𝜔 = 𝑑𝛼 + 𝛿𝛽 + 𝛾

where 𝛼 and 𝛽 are 0- and 2-forms, and 𝛾 is a harmonic 1-form. As

detailed in Crane et al. [2013, Chapter 8], this decomposition can be

computed by solving a pair of Poisson equations

Δ0𝛼 = 𝛿1𝜔 and Δ2𝛽 = 𝑑1𝜔, (9)

where Δ0
:= ∗−1

0
𝑑𝑇

0
∗1 𝑑0 and Δ2

:= 𝑑1 ∗−1

1
𝑑𝑇

1
∗2 are the discrete

0- and 2-form Laplacians, resp., with their usual zero-Neumann

boundary conditions.

3 ALGORITHM
The steps of our algorithm are shown in Figure 5; see Section A of

the supplement for pseudocode. Given a collection Γ of input curves

on a mesh𝑀 , the output is an integer labeling𝑊 of regions bounded

by Γ, and closed curves 𝐺 that do not bound any region. We also

compute a real-valued function 𝑤 analogous to GWN, and a real-

valued 1-chain 𝑔 corresponding to 𝐺 . Just as𝑤 provides confidence

about inside/outside classification [Jacobson et al. 2013], 𝑔 provides

confidence about nonbounding loops in the input.

3.1 Overview
We seek a harmonic function 𝑤 that (i) jumps in value across the

input curve Γ, and (ii) approaches a piecewise-integer function as

the size of gaps in Γ goes to zero. The starting point is to compute

a harmonic function 𝑢 that jumps across Γ (Section 3.2). If Γ has

nonbounding components, this function will not look like a region

labeling. We therefore compute a residual function 𝑣 corresponding
to this nonbounding part, and subtract it from 𝑢 to get𝑤 .

Just by inspecting 𝑢, it is hard to determine the residual 𝑣 , i.e., it
is hard to say what part comes from nonbounding loops. However,

if 𝑢 were a piecewise constant region labeling, then its Darboux

derivative 𝜔 := D𝑢 would be zero everywhere. Hence, a nonzero 𝜔

must be the derivative of 𝑣 , and can thus be integrated to obtain 𝑣 .

3.1.1 Broken Curves. More generally, we must modify this basic

algorithm to make it robust to defects in Γ. In particular, we replace

three steps with “best fit” versions, which effectively provide a guess

for what the original, uncorrupted curve might have been:

• When Γ has no defects,𝜔 is a harmonic 1-form, since locally it

is the derivative of a harmonic function. Hence, for a broken

curve we use Helmholtz-Hodge decomposition to find the

harmonic 1-form 𝛾 closest to 𝜔 (Section 3.3).

• Likewise, when Γ is unbroken, the residual 𝑣 jumps only

across Γ. Hence, when Γ has gaps we seek to minimize the

length of the jump discontinuity between the gaps (Section 3.4).

• Finally, subtracting 𝑣 directly may introduce new discontinu-

ities in𝑤 wherever gaps were filled. Hence, we instead solve

for a harmonic function𝑤 that jumps by Γ−J𝑣 (Section 3.5).
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Fig. 6. Even if individual loops do not bound regions, they can conspire
to define a meaningful partition—here for instance we produce a correct
labeling, reproducing an example from Riso et al. [2022, Figure 4].

The functions 𝑣 and𝑤 are further processed to obtain integer la-

bels, a completion of the input curve, and a classification of bounding

vs. nonbounding components (Section 3.6). When𝑀 is topologically

trivial (i.e. simply-connected), there are by definition no nonbound-

ing loops, so we need not filter out their contributions. Here our

algorithm boils down to a single linear solve (Equation 1), followed

by rounding and curve completion ( Sections 3.5 and 3.6).

3.2 Jump Laplace Equation
We first solve for a harmonic function 𝑢 that jumps in value by Γ𝑖𝑗
across each edge 𝑖 𝑗 . In particular, we solve the Laplace equation

𝐿𝐽𝑢 = 0 with jumps Λ = Γ, or equivalently

𝐿𝑢0 = 𝑏, (10)

where 𝑏 is the constant vector defined in Equation 7, and 𝑢0 ∈ R |𝑉
∗ |

provides reference values at each vertex. Unlike a discrete Poisson

equation, 𝑏 need not be multiplied by area weights, since it simply

encodes the jump values. The corner values 𝑢
𝑗𝑘
𝑖

= (𝑢0)𝑖 + 𝑐 𝑗𝑘𝑖 , with

𝑐
𝑗𝑘
𝑖

defined as in Equation 3, then describe a jump harmonic function.

Note that since we do not fix any boundary values (and instead

impose jump boundary conditions), the solution 𝑢 to Equation 10

is determined only up to a constant shift. Since our next step is to

differentiate 𝑢, the constant does not matter here (though we will

carefully shift before rounding—see Section 3.5).

3.3 Derivative Processing
We next adjust the Darboux derivative 𝜔 = D𝑢 (Section 2.4.2) to

account for the fact that Γ may be broken. In general, the discrete

exterior derivative 𝑑 𝑓 of a harmonic 0-form 𝑓 is a harmonic 1-form.

If Γ is an unbroken curve, then 𝜔 is harmonic, since 𝑢 is a jump

harmonic function, for which D𝑢 behaves like the discrete exterior

derivative. However, if Γ is broken, 𝜔 will not be harmonic, and we

use Hodge decomposition (Section 2.5.1) to extract its harmonic part

𝛾 . In this case, only 𝛿𝛽 will be nonzero, due to singular behavior

near interior endpoints (Appendix A). Hence, we need only solve

the second Poisson equation Δ2𝛽 = 𝑑𝜔 , then evaluate 𝛾 ← 𝜔 − 𝛿𝛽 .

3.4 Residual Function
Our goal is now to find a residual function 𝑣 whose Darboux deriv-

ative looks like 𝛾 , and hence describes the nonbounding part of our

input curves. If we imagine this nonbounding part is a 1-chain 𝐺 ,

then 𝑣 must jump across𝐺 , and should not jump across the comple-

mentary bounding component Γ \𝐺 . However, the choice of 𝐺 is

Fig. 7. A collection of loops can be decomposed into bounding and non-
bounding components in many different ways. We look for the decomposi-
tion whose residual is shortest (middle).

in general ambiguous (Figure 7). Hence, we look for the minimal
jumps needed for 𝑣 to integrate 𝛾 . Also, the jumps in 𝑣 should never

be bigger than Γ, which would effectively add additional copies of

the input curves. Suppose for example that Γ consists
of two parallel nonbounding loops Γ1, Γ2 with same

orientation (see inset): if we do not limit the size of

the jump, then we may end up jumping by +2 across

Γ1 rather than +1 across both Γ1 and Γ2. Finally, since Γ may be

broken, we allow 𝑣 to jump across edges of the mesh not originally

included in Γ. By making jumps across such edges expensive, and

using a sparsity-inducing ℓ1-norm, we promote short completions.

Overall, we get an optimization problem

min

𝑣∈R|𝐶 |

∑︁
𝑖𝑗∈Γ∩𝐸int

ℓ𝑖𝑗 | (J𝑣)𝑖𝑗 | + 1

𝜀

∑︁
𝑖𝑗∈𝐸int\Γ

ℓ𝑖𝑗 | (J𝑣)𝑖𝑗 |

s.t. 𝑣𝑘𝑖
𝑗
− 𝑣 𝑗𝑘

𝑖
= 𝛾⇀

𝑖𝑗 , ∀⇀𝑖 𝑗 ∈ 𝑆,

0 ≤ (J𝑣)𝑖𝑗/Γ𝑖𝑗 ≤ 1, ∀𝑖 𝑗 ∈ Γ.

Here we use
⇀
𝑖 𝑗 ∈ 𝑆 to denote an oriented side

within a triangle; hence, the equality constraint

ensures that 𝑣 exactly integrates 𝛾 within each

triangle. The parameter 𝜀 in the objective controls

the relative cost of jumps across edges in Γ versus
jumps elsewhere (we use 𝜀 = 0.01 in all examples).

The inequality constraint ensures that 𝑣 jumps

by no more than Γ—since we take a quotient, the
sign of Γ does not impact the direction of the inequality.

We reduce the problem size from 3|𝐹 | to |𝐹 | via a change of

variables. First, we integrate 𝛾 in each triangle 𝑖 𝑗𝑘 to get local values

𝑣
𝑗𝑘
𝑖

:= 0, 𝑣𝑘𝑖
𝑗

:= 𝛾⇀
𝑖𝑗 , and 𝑣

𝑖𝑗

𝑘
:= 𝛾⇀

𝑖𝑗 + 𝛾⇀
𝑗𝑘 . Next, along each edge 𝑖 𝑗

we let 𝑠𝑖𝑗 := 𝑣
𝑗𝑘
𝑖
− 𝑣𝑙 𝑗

𝑖
be the jump between reference values. Rather

than optimize individual corner values, we can now just optimize

per-triangle shifts 𝜎𝑖𝑗𝑘 , measuring the jump across each edge as
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(𝜎𝑖𝑗𝑘 − 𝜎 𝑗𝑖𝑙 ) − 𝑠𝑖𝑗 . Our final problem is then

min

𝜎∈R|𝐹 |

∑︁
𝑖𝑗∈Γ∩𝐸int

ℓ𝑖𝑗 | (𝜎𝑖𝑗𝑘 − 𝜎 𝑗𝑖𝑙 ) − 𝑠𝑖𝑗 | +

1

𝜀

∑︁
𝑖𝑗∈𝐸int\Γ

ℓ𝑖𝑗 | (𝜎𝑖𝑗𝑘 − 𝜎 𝑗𝑖𝑙 ) − 𝑠𝑖𝑗 |

s.t. 0 ≤ ((𝜎𝑖𝑗𝑘 − 𝜎 𝑗𝑖𝑙 ) − 𝑠𝑖𝑗 )/Γ𝑖𝑗 ≤ 1, ∀𝑖 𝑗 ∈ Γ.

(11)

The final corner values are then recovered via 𝑣
𝑗𝑘
𝑖

= 𝑣
𝑗𝑘
𝑖
+ 𝜎𝑖𝑗𝑘 .

As usual, Equation 11 can be transformed into a linear program in

standard form by introducing slack variables. In the nonmanifold

case, we require that there be no jumps across edges 𝑖 𝑗 incident

on a nonmanifold vertex 𝑖 , which can be imposed as additional

linear constraints 𝜎𝑖𝑗𝑘 −𝜎 𝑗𝑖𝑙 = 𝑠𝑖 𝑗 . This step is the bottleneck in our

method; Section 6 discusses a possible way to significantly reduce

its size.

3.5 Winding Number Function
Finally, we filter out the influence of nonbounding loops from 𝑢,

using the residual function 𝑣 (Figure 8). If Γ is unbroken, we can

simply subtract 𝑣 from 𝑢 to get 𝑤 . In general, however, a simple

subtraction will introduce discontinuities, since 𝑣 may jump across

edges which are not part of Γ. Instead, to get𝑤 , we solve Equation 10,

but for edges 𝑖 𝑗 ∈ Γ now use jumps Λ𝑖𝑗 = Γ𝑖𝑗 − (J𝑣)𝑖𝑗 to define 𝑐

(hence 𝑏).

3.5.1 Integer Winding Numbers. To get an integer function𝑊 , we

round the real-valued function𝑤 . However, our Laplace equation

determines 𝑤 only up to a constant shift, which affects rounding.

To determine a reasonable shift, we compute an average shift over

edges in Γ, where the values of𝑤 are most reliable. More explicitly,

for each edge 𝑖 𝑗 positively oriented along Γ (i.e., Γ𝑖𝑗 > 0), let𝑤+
𝑖𝑗

:=

(𝑤𝑘𝑖
𝑗
+𝑤 𝑗𝑘

𝑖
)/2, i.e., the average value on one side of the curve. Our

global shift 𝜏 is then themean of the per-edge shifts round(𝑤+
𝑖𝑗
)−𝑤+

𝑖𝑗
,

where round gives the closest integer. Our final per-face region la-

bels are then𝑊𝑖𝑗𝑘 := round((𝑤 𝑗𝑘
𝑖
+𝑤𝑘𝑖

𝑗
+𝑤𝑖𝑗

𝑘
)/3+𝜏). See Section 6

for discussion of contouring beyond simple rounding.

Fig. 8. The residual function 𝑣 captures the nonbounding part of the input
curves Γ (top right). Simply subtracting 𝑣 from𝑢 introduces additional jump
discontinuities (bottom left), so we obtain our winding number function 𝑤

(bottom right) by solving a second jump Laplace equation (Section 3.5).

orientable curve nonorientable curve
GWN

Fig. 9. For a nonorientable surface like the Möbius strip, Γ is an orientable
curve if it can be assigned a consistent normal direction (top left), and is
otherwise a nonorientable curve (top center). Our algorithm works as ex-
pected for collections of orientable curves (bottom left). As with GWN (right)
we do not obtain meaningful region labeling for curves with inconsistent
orientation.

3.6 Curve Completion
Bounding Curves. The final output bounding curves are given by

the boundary 𝜕𝑊 of the integer winding number function, i.e., the
1-chain with values (J𝑊 )𝑖𝑗 at each edge 𝑖 𝑗 ∈ 𝐸, where each corner

is assigned the value of its corresponding face (e.g.,𝑊 𝑗𝑘
𝑖

=𝑊𝑖𝑗𝑘 ).

These curves are always closed, since they are region boundaries.

Nonbounding Curves. To extract nonbounding curves, we likewise
compute the jumps in 𝑣 . The resulting 1-chain 𝑔 := J𝑣 has no inte-

rior endpoints: around any interior vertex 𝑖 , we have a telescoping

sum

−(𝜕𝑔)𝑖 =
∑︁
𝑖𝑗∈𝐸

𝑔𝑖𝑗 =
∑︁
𝑖𝑗∈𝐸

𝑣
𝑗𝑘
𝑖
− 𝑣𝑙 𝑗

𝑖
=

∑︁
𝑖𝑗𝑘∈𝐹

𝑣
𝑗𝑘
𝑖
− 𝑣 𝑗𝑘

𝑖
= 0,

i.e., the value at the corner of each triangle containing 𝑖 appears

twice, with opposite signs. To get an integer version of this chain𝐺 ,

we simply let 𝐺𝑖𝑗 := round(𝑔𝑖𝑗 ) for all 𝑖 𝑗 .

3.7 Nonorientable Surfaces
Our algorithm works on nonorientable domains, and will filter out

nonbounding curves so long as they are orientable curves, i.e., can be

assigned a continuously-varying normal field (Figure 9). In practice,

we need only make one small change to the specification of the

input. Ordinarily, we assume that jumps increase in the direction

obtained by rotating the tangent 90 degrees counter-clockwise. On

a nonorientable surface, however, there is no consistent notion

of counter-clockwise—even though curves can still meaningfully

bound regions. Instead, we can represent the curve as a dual 1-
chain, i.e., a value Γ𝑖𝑗𝑘,𝑗𝑖𝑙 for each edge 𝑖 𝑗 ∈ 𝐸. For edges 𝑖 𝑗 in the

curve, the sign of this value determines the normal direction, or

equivalently, whether the jump goes from 𝑖 𝑗𝑘 to 𝑗𝑖𝑙 or vice-versa.

Away from the curve, Γ = 0. Note that since we already set Γ to

zero for nonmanifold edges (Section 2.2), we need not define jump

directions here.
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jump harmonic 
functions 1-forms1-chains

jump derivativedi�erentiate Darboux derivative

jump Laplace equationintegrate integration w/ jumps

Fig. 10. Top: The derivative of any jump harmonic function 𝑓 can be decom-
posed into a 1-chain Λ = J𝑓 describing discontinuous jumps, and a 1-form
𝜔 = D 𝑓 describing the continuous change in 𝑓 . In the other direction, we
can find a function 𝑓 that jumps by Λ by solving a Laplace equation, or
an 𝑓 that explains 𝜔 by solving an integration problem. Bottom: from this
perspective, our algorithm for extracting the nonbounding part 𝐺 of the
input Γ amounts to a round trip around this diagram.

4 DISCUSSION
Jump harmonic functions provide a natural “bridge” between curves

and 1-forms (or in the language of differential topology: between

homology and de Rham cohomology). This perspective, detailed

below, makes it easy to understand and motivate the algorithm in

Section 3. In particular, our strategy for extracting the nonbounding

part 𝑔 of the input Γ amounts to a round trip around the diagram in

Figure 10, top, as illustrated in Figure 10, bottom.

From Functions to Derivatives. A key observation is that the de-

rivative of any jump harmonic function can be decomposed into

a continuous part, and a “jump part.” A useful didactic analogy is

piecewise smooth periodic functions 𝑓 on the interval [0, 1]. The
distributional derivative of any such function can be expressed as

𝑓 ′ (𝑥) = 𝜔 (𝑥) +
∑︁
𝑖

Λ𝑖𝛿𝑥𝑖

1 1
00

where 𝜔 is a periodic piecewise

smooth function, and Λ𝑖 is the size

of the jump at 𝑥𝑖 (Figure 11). Like-

wise, we decompose the change in

a jump harmonic function 𝑓 into a 1-form describing continuous

change in 𝑓 , given by the Darboux derivative 𝜔 := D 𝑓 , and a 1-

chain describing discontinuous jumps, given by the jump derivative

Λ := J𝑓 . Just as 𝜔 (𝑥) “forgets” about the jumps in a 1D piecewise

linear function (see inset), D 𝑓 forgets about jumps across region

boundaries on a surface.

From Derivatives to Functions. We can also try to go the other

direction. For instance, given a set of jumps Λ𝑖𝛿𝑥𝑖 on the periodic

interval [0, 1], what is a piecewise smooth function that exhibits

these jumps? There are many possibilities; a canonical choice is

perhaps a piecewise linear function with constant slope. Likewise,

the jump Laplace equation in Section 3.2 provides a canonical way to

construct a function 𝑓 on𝑀 that represents any 1-chain Λ. Similarly,

given a periodic function 𝜔 on [0, 1], we can try to find a piecewise

0 1

1 1
0 0

Fig. 11. The derivative of any piecewise smooth function 𝑓 (𝑥 ) on a periodic
interval (center) can be decomposed into a piecewise smooth function𝜔 (𝑥 )
(right) plus a sum of delta functions (left). The former captures continuous
changes in 𝑓 while the latter captures jumps in 𝑓 .

11
0 0

differentiable function 𝑓 such that

the continuous part of 𝑓 ′ equals
𝜔 . Ordinarily this function would

be determined (up to a constant)

via standard integration, but for a periodic function there may be

no continuous solution—e.g., if 𝜔 is strictly positive. Instead, we

must decide where 𝑓 should jump. Likewise, the linear program in

Section 3.4 constructs a harmonic function 𝑓 on𝑀 that represents

any harmonic 1-form 𝜔 , while choosing a sparse set of jump curves.

Algorithm Interpretation. Our algorithm can now be understood

from this perspective. Starting with step 1 of Figure 10 we solve

a Laplace equation for a harmonic function 𝑢 that jumps across

Γ. This function does not yet meaningfully label regions, since it

encodes both bounding and nonbounding components of Γ. The
Darboux derivative𝜔 = D𝑢 in step 2 forgets the bounding compo-

nents, retaining information only about the nonbounding part. Since

any harmonic 1-form describes unbroken curves, step 3 finds the

harmonic 1-form 𝛾 that best explains 𝜔 , via Helmholtz-Hodge de-

composition. To recover explicit nonbounding curves, step 4 looks

for another jump harmonic function 𝑣 that integrates 𝛾 . Since this

function is not unique, and could jump across many possible curves,

this step uses the input chain Γ to constrain the search for the new

jumps, along with an objective which encourages this curve to be as

short as possible. Finally, step 5 extracts the jumps 𝑔 = J𝑣 to yield
the nonbounding part 𝑔 of the input Γ. As suggested by the diagram,

extracting the nonbounding part 𝑔 of a 1-chain Γ parallels extraction

of the harmonic part 𝛾 from a 1-form 𝜔 . The key difference is that

in the former case we use an 𝐿1
-norm rather than an 𝐿2

-norm to

find a solution concentrated on a low-dimensional subset, rather

than a smooth function supported on the entire domain.

5 EVALUATION AND RESULTS
Incomplete oriented curves arise in many settings, ranging from

curves projected onto noisy surfaces (Section 5.4), to strokes painted

on a noisy mesh (Section 5.3), to imperfect user selections (Sec-

tion 5.5). Here we apply our method, abbreviated as surface winding
numbers (SWN) to several such tasks, and evaluate its robustness

(Section 5.1) and performance on a large benchmark (Section 5.2).

We visualize the shifted function𝑤 +𝜏 (Section 3.5.1), but for brevity

label it as𝑤 . Except for Figure 27, all examples (including the bench-

mark) involve broken curves, nonmanifold or nonorientable sur-

faces, and/or curves that terminate on the boundary, and hence

cannot be handled by past methods such as Riso et al. [2022].
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Fig. 12. Even on meshes with low element quality, SWN can produce reason-
able region labels (center). Since our formulation is intrinsic, any remaining
artifacts can be eliminated via intrinsic Delaunay refinement (right).

region 
labels

nonbounding 
curves

Fig. 13. Even on highly non-manifold meshes, SWN can produce an effective
region labeling and completions of nonbounding curves.

5.1 Robustness and Uncertainty
Like PSR and GWN (Section 1.1), SWN is robust to defects in the

input curves (e.g., Figures 1, 20 and 23). Especially if gaps are reason-
ably small, we generally recover the same regions as for equivalent

closed curves (Figure 14). In practice our method is also robust to

low-quality geometry (Figure 19), meshes with low-quality elements

(Figure 12), and highly nonmanifold connectivity (Figure 13), ow-

ing to the strong regularity of elliptic problems. Since it is purely

intrinsic, surface self-intersections do not result in region misclassi-

fication. Moreover, an intrinsic formulation also enables us to use

robust methods for intrinsic retriangulation if the mesh is particu-

larly bad [Sharp et al. 2019b; Gillespie et al. 2021; Sharp et al. 2021],

as illustrated in Figure 12.

As with GWN and PSR, the real-valued function𝑤 provides rough

information about uncertainty—e.g., the gradient norm |∇𝑤 | will
tend to be nonzero (yet finite) near gaps in a curve; see Sellán

and Jacobson [2022] for an in-depth discussion in the PSR context.

Likewise, the magnitude of J𝑤 and 𝑔, resp. roughly captures the

confidence that a piece of the curve comes from a bounding or non-

bounding curve (resp.) in the original, uncorrupted input (Figure 1,

bottom-left); see for instance Figure 14, bottom. One might also try

using jump sizes to decompose the nonbounding component into

distinct loops, though we do not pursue that idea here.

5.2 Benchmark
5.2.1 Data Set. To measure the success rate of our algorithm, we

constructed a synthetic dataset of models with ground truth regions

w

W

g

Fig. 14. As Γ becomes less broken, 𝑤 approaches the expected winding
number function, and the coefficients on nonbounding loops 𝑔 approach
1. Throughout, the rounded winding number𝑊 yields the correct inside-
outside classification, filtering out nonbounding components even for very
broken inputs.

Fig. 15. Here we show four of the 934 test cases in our synthetic benchmark
(Section 5.2). Each model is assigned ground truth region labels (indicated
by colors), along with broken boundaries for those regions (black), and
additional broken nonbounding loops (red).

and nonbounding loops (Figure 15).We startedwith themeshes from

Myles et al. [2014], remeshed them to resolutions between 10k and

90k vertices, and generated random regions by taking sublevelsets

of low-frequency Laplacian eigenfunctions. To obtain nonbounding

loops, we computed a greedy homology basis [Erickson and Whit-

tlesey 2005], picked a random subset of the loops, and straightened

them slightly using FlipOut [Sharp and Crane 2020b] before snap-

ping them back to mesh edges. We then deleted random segments

from these curves. In total, we obtained 934 test cases of which

451 were defined on nonsimply-connected surfaces (i.e., those with
nontrivial topology).

5.2.2 Performance and Accuracy. We implemented SWN in C++,

using geometry-central for mesh processing [Sharp et al. 2019a],

CHOLMOD for linear systems [Chen et al. 2008] and Gurobi [Gurobi

Optimization, LLC 2023] (via CoMISo [Bommes et al. 2012]) for

linear programs. Timings were measured on an Intel i9-9980XE

with 32 GB of RAM. For each test case, we quantify error as the

percentage of surface area mislabeled by our method.
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Success rate on nontrivial surfaces
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Fig. 16. Error rates for SWN (top) compared to naïve rounding of 𝑢 à la
GWN (bottom). Error is quantified as percentage of mislabeled surface area.
The two highlighted examples show how naïve rounding can fail to filter
out nonbounding loops (in red) which are correctly identified by SWN.
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Fig. 17. Top: on topologically trivial surfaces, our method boils down to a
quick linear solve. Bottom: on surfaces with nontrivial topology we must
also solve a linear program, which becomes the computational bottleneck.

On simply-connected surfaces our method typically takes less

than two seconds (see Figure 17, top), and achieves a mean/max

error of only 0.14%/5%. On nonsimply-connected surfaces, there was

occasionally fundamental ambiguity in the input, yielding results

quite different from the ground truth (Figure 18), but in general our

method remains quite accurate, achieving errors under 0.5% on 80%

of models. More importantly, SWN performs much better than naïve

rounding of the function 𝑢 à la GWN, which can create phantom

curves (Figure 3) which significantly degrade the accuracy of the

final labels (Figure 16). The linear program takes much longer than

the single linear solve, but still runs in a matter of minutes (Fig-

ure 17, bottom); see Section 6 for discussion of possible acceleration

strategies.

ground truth regions SWN

Fig. 18. Since SWN always extracts the shortest collection of nonbounding
curves (Figure 7), it may not always reproduce the ground truth—but still
gives a reasonable segmentation.

input SWN

Fig. 19. We can robustly identify regions even on geometry with severe
noise, intersections, and fold-over. Here, several strokes quickly painted in
screen space are used to color regions on the surface.

5.3 Sketching on Surfaces
Recent methods enable manipulation of perfect closed curves on

surfaces, making them appropriate for surface-based analogies of

classic vector graphics [Mancinelli et al. 2021; Riso et al. 2022]. In

contrast, SWN robustly handles imperfect broken curves, making

it more appropriate for tasks like surface sketching and painting,

where user input is far less precise. For instance, in Figure 19 a

user sketches very reasonable yet broken curves; SWN yields a

nice coloring of the sketched regions, which can be further refined

by the user. Figure 20 demonstrates the utility of SWN even in 2D,

where a user draws rough strokes to segment a complex shape. Here,

GWN yields undesirable results—despite being a 2D method—since

the influence of open strokes leaks across the domain boundary,

whether or not the boundary itself is included in Γ. Likewise, GWN

may not produce the expected result for 2D regions with holes—for

instance, directly rounding the function 𝑢 in Figure 21 would yield

the same kind of phantom curves seen in Figure 3.

5.4 Stamping and Booleans
We can also perform robust boolean operations on surfaces, even for

defective domains and/or curves. To get initial shapes, we can for

instance “stamp” existing vector graphics onto the surface (Figures

23 and 24). Rather than worry about numerically robust intersection,

we can lean on SWN to ensure we obtain well-defined regions.

Boolean operations are then trivially computed via element-wise

logical operations (Figure 22). Unlike BoolSurf [Riso et al. 2022],

we can perform these operations for imperfect, broken curves—

albeit at larger computational cost. Note also that unlike extrinsic

mesh booleans [Zhou et al. 2016], we need not worry about self-

intersections of the surface itself.
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input
strokes

GWN w/ boundary curve
[Jacobson et al 2013]

GWN w/out boundary
[Jacobson et al 2013]

round

round

round

SWN
(ours)

1

0

2

1

Fig. 20. Left: a user makes rough strokes to select regions of a 2D shape.
Top right: GWN produces the wrong result, since the influence of strokes
“leaks” across the domain boundary.Middle right: including the boundary
curve just shifts GWN’s solution by +1. Bottom right: SWN produces the
desired result, robustly handling gaps, misclicks, and intersecting strokes.

Fig. 21. Even for planar regions, one must think carefully about how curves
do (or do not) bound regions. Here, SWN correctly filters out the influence
of a nonbounding curve connecting two boundary components.

Fig. 22. Unlike previous methods, we can compute boolean operations on
regions defined by imperfect, broken curves on surfaces.

SWN

source image

projected curves

Fig. 23. A complicated shape is projected onto a ziggurat with sharp over-
hangs, creating broken curves; SWN nicely fills in the bounded regions.

Fig. 24. A recycling logo is projected onto a noisy 3D scan of a trash can
from [Choi et al. 2016], creating a highly broken curve. Despite large holes
in the scan, SWN produces a reasonable region labeling.

Fig. 25. A common frustration with screen-space selection is that distant
edges are often selected unintentionally. SWN filters out spurious parts of
the selection, and completes loops to yield the expected segmentation.

5.5 Region Selection
Selection of regions on geometrically or topologically complex 3D

models is a challenging user interface design problem. SWN is a

valuable component for building such tools. For instance, Figure 25

highlights a common frustration when selecting mesh edges in

screen space; here SWN automatically filters out misselected edges,

capturing the user intent. Similarly, Figure 26 shows how SWN can

be used to repair loops that are not easily chosen via edge-based

selection tools common to 3Dmodelers. Other tools provide facilities
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incomplete edge 
loop selection

Fig. 26. Many 3D modeling tools provide edge loop selection tools, but are
easily tripped up by irregular connectivity such as this mixed quad-triangle
mesh (left). By reasoning about functions rather than edges, we robustly
infer user intent (right), even on this topologically complex model.

Fig. 27. In some scenarios, directly contouring the function 𝑢 can yield
useful results. Here for instance a user avoids the misery of selecting every
small loop in a complex model. We also obtain a similar segmentation
whether working with a solid (right) or shell-like model (left).

for directly selecting regions rather than curves, e.g., using a lasso or
“fat” paintbrush. Here, however, one encounters the same problem: a

region selected in screen spacemight inadvertently highlight distant,

unintentional pieces of the surface. One could likewise use SWN

to filter the boundary of such a selection. Finally, Figure 27 shows

an example where one might not want to filter out nonbounding

loops. Here, rather than process the function 𝑢, we simply apply

the contouring procedure from Section 3.5.1, yielding loops that

did not belong to the input, yet automatically complete the implied

segmentation.

6 LIMITATIONS & FUTURE WORK
Our method shares the same basic limitations as GWN: input curves

must be (mostly) consistently oriented, and we make no effort to

classify curves as open vs. closed. Any open segments in the input

are interpreted as subsets of (unknown) closed loops. As with GWN,

a significant challenge is dealing with ambiguity in the input, and

one must acknowledge that for many inputs (e.g., a random subset

of edges) there is no objectively “correct” solution. However, as

long as Γ comes from some collection of closed loops, we recover a

meaningful decomposition as the size of gaps goes to zero.

Fig. 28. Because we use a shortest completion, 𝑣 jumps across the thinnest
part of the front leg rather than across the input curve, but SWN still
accurately corrects for loops around the other two handles (right).

Performance and Discretization. In contrast to GWN, which can

independently evaluate the solution at any point without discretiz-

ing the domain, our method must triangulate the surface and solve

a global PDE. Notably, however, GWN considers exclusively flat,

Euclidean domains; the use of discretization seems inevitable to

account for the geometry of general curved surfaces. An obvious

performance bottleneck is the need to solve an LP for surfaces with

nontrivial topology (Section 5.2). We made no attempt to optimize

this step, and there are some obvious strategies to try. For instance,

we could apply a change of variables 𝑣̃𝑖𝑗 := 𝑣𝑘𝑖
𝑗
− 𝑣 𝑗𝑘

𝑖
to transform

our LP into a simpler bounds-constrained ℓ1 minimization problem.

Alternatively, rather than rely on a sparsity-inducing norm for curve

completion, we could use a much simpler shortest path heuristic

(via Dijkstra), and compute only one shift 𝜎 per edge-connected set

of faces in Equation 11—dramatically reducing the size of our LP.

Curve Completion. Some inputs are inherently ambiguous—e.g.,
our method may not yield the expected result if large pieces of

the input are missing. Consider, for example, an input loop Γ with

large gaps on a surface with a strongly tapered handle (like a Dupin
cyclide). If the circumference of this handle is less than the total gap

length, SWNmay prefer to place jumps around the handle (Figure 28

shows a similar example). Importantly, however, our method will

still yield the correct result as gaps become smaller (Figure 14).

Contouring. The question of how to best contour fractional wind-

ing numbers is unclear, even for GWN and PSR. For instance, Jacob-

son et al. [2013, Section 5] suggest a graph cut algorithm, though this

heuristic is not used in the reference implementation for GWN [Ja-

cobson et al. 2018]. Likewise, for PSR Kazhdan et al. [2020] show that

better contouring can be achieved by adding envelope constraints
based on visibility, though this approach is not meaningful in the

surface case.We likewise find that the heuristic given in Section 3.5.1

sometimes fails to detect contours that are “obvious” to the eye—see

for example Figure 29. Better contouring strategies for GWN, PSR,

and SWN is hence an interesting question for future work.

Nonmanifold and Nonorientable Surfaces. Our algorithm runs on

nonorientable surfaces so long as Γ is consistently oriented (Sec-

tion 3.7); dealing with nonorientable components of Γ requires

further thought. Likewise, our method empirically works well for

nonmanifold meshes, but several steps (such as Helmholtz-Hodge

decomposition) are not given a rigorous justification. However, non-

manifold treatments of fundamental objects like the Laplacian have
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PSR/GWN SWN

Fig. 29. Although SWN generally does better than naïvely rounding 𝑢 (left),
there are still cases where it may not agree with human intuition about
the bounded regions (right). In such cases the real-valued function 𝑤 still
appears to capture the right information—suggesting that more work is
needed on contouring strategies.

recently been explored [Sharp and Crane 2020a], and might be

extended to the objects needed for our algorithm.

Uncertainty. For broken curves, non-integer values in the winding
number function𝑤 give qualitative information about confidence: a

small value of |∇𝑤 | on a point of the reconstructed curve indicates

uncertainty about the exact position of this curve. However, as

discussed by Sellán and Jacobson [2022], such values do not provide

quantitative probabilities—extending their framework to surfaces is

an interesting future direction.

Higher Dimensional Winding Numbers. Region identification in

nontrivial three-manifolds also arise naturally in some scenarios—

e.g., noisy periodic surfaces acquired from X-ray crystallography of

material structures [Yuan et al. 2022]. Moreover, just as one might

need to segment flat 2D regions with boundary (Figure 20), a 3D

extension of SWN might prove useful for cutting up solid models

with complex geometry and topology. Our “cohomology processing”

approach should in principle extend to tetrahedral meshes, where

the duality between 1-forms and curves becomes an analogous

duality between 1-forms and surfaces.
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A HODGE DECOMPOSITION FOR BROKEN CURVES

Fig. 30. At endpoints of Γ, the harmonic function 𝑢 locally behaves like the
angle function 𝜃 (𝑥 ) (left). Intuitively, the derivative 𝜔 := D𝑢 is divergence-
free, but has singular curl, analogous to 𝑑𝜃 (right). More precisely, 𝛿𝜔 = 0,
but 𝑑𝜔 ≠ 0.

Consider the Hodge decomposition 𝜔 = 𝑑𝛼 + 𝛿𝛽 + 𝛾 , where 𝜔 is

the Darboux derivative of the harmonic function 𝑢 from Section 3.2.

In this appendix we will show that if Γ is broken, then 𝑑𝛼 is still zero

everywhere, but 𝛿𝛽 is nonzero due to the endpoints of Γ—motivating

our need to perform a Hodge decomposition.

Recall that in Section 2.4.2 we define 𝜔𝑖𝑗 :=

0 for all edges 𝑖 𝑗 incident on an interior end-

point 𝑖 ∈ 𝑉 \ 𝑉 ∗ (see inset). Hence, for any
singular vertex 𝑖 , we have (𝛿𝜔)𝑖 = 0, since the

operator 𝛿 uses only edges 𝑖 𝑗 incident on 𝑖 . For

all other vertices 𝑖 ∈ 𝑉 ∗, one can easily verify

that 𝛿𝜔 = 0 by comparing the expressions

for (𝛿𝜔)𝑖 and the jump Laplacian (𝐿𝐽𝑢)𝑖 (noting again that 𝜔 = 0

for edges connected to interior endpoints). In turn, since 𝛿𝜔 = 0

everywhere, 𝑑𝛼 must also be zero (Equation 9). However, 𝑑𝜔 is not

zero everywhere—in particular, for any triangle 𝑖 𝑗𝑘 incident on an

interior endpoint 𝑖 we have (𝑑𝜔)𝑖𝑗𝑘 =��*
0

𝜔𝑖𝑗 + 𝜔 𝑗𝑘 +��* 0

𝜔𝑘𝑖 . Moreover,

at least one of the 𝜔 𝑗𝑘 around 𝑖 must be nonzero, since (due to the

jump) the value of 𝑢 has to increase by a total value (𝜕Γ)𝑖 ≠ 0.

Hence, again due to Equation 9, we know 𝛿𝛽 cannot be zero—and

must be solved for in order to carry out the Hodge decomposition.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://dl.acm.org/doi/10.1145/2601097.2601154
https://dl.acm.org/doi/10.1145/2601097.2601154
https://www.sciencedirect.com/science/article/pii/S0955799709001386
https://www.sciencedirect.com/science/article/pii/S0955799709001386
https://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2016-poelke_polthier-pc_vector_fields_on_simplicial_surfaces-preprint-comp.pdf
https://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2016-poelke_polthier-pc_vector_fields_on_simplicial_surfaces-preprint-comp.pdf
https://pellacini.di.uniroma1.it/publications/boolsurf22/boolsurf22-paper.pdf
https://arxiv.org/pdf/1704.06873.pdf
https://doi.org/10.1145/3132705
https://arxiv.org/pdf/2206.15236.pdf
https://www.cs.cmu.edu/~kmcrane/Projects/NonmanifoldLaplace/NonmanifoldLaplace.pdf
https://www.cs.cmu.edu/~kmcrane/Projects/NonmanifoldLaplace/NonmanifoldLaplace.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/FlipOut/FlipOut.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/FlipOut/FlipOut.pdf
https://geometry-central.net/
https://geometry-central.net/
https://geometry-central.net/
https://geometry-central.net/
https://nmwsharp.com/media/papers/int-tri-course/int_tri_course.pdf
https://nmwsharp.com/media/papers/int-tri-course/int_tri_course.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NavigatingIntrinsicTriangulations/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NavigatingIntrinsicTriangulations/paper.pdf
https://dl.acm.org/doi/10.1145/368637.368653
https://doi.org/10.1145/368637.368653
https://dl.acm.org/doi/10.1145/2185520.2185570
https://dl.acm.org/doi/10.1145/2185520.2185570
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://dl.acm.org/doi/10.1145/218380.218498
https://dl.acm.org/doi/10.1145/218380.218498
https://cseweb.ucsd.edu/~alchern/projects/MinimalCurrent/MinimalCurrent.pdf
https://cseweb.ucsd.edu/~alchern/projects/MinimalCurrent/MinimalCurrent.pdf
https://doi.org/10.1145/3450626.3459781
https://doi.org/10.1145/3450626.3459781
https://www.physics.ucla.edu/research/imaging/Publications/pdf/2022_NatMater.pdf
https://www.physics.ucla.edu/research/imaging/Publications/pdf/2022_NatMater.pdf
https://www.cs.columbia.edu/cg/mesh-arrangements/mesh-arrangements-for-solid-geometry-siggraph-2016-zhou-et-al.pdf
https://www.cs.columbia.edu/cg/mesh-arrangements/mesh-arrangements-for-solid-geometry-siggraph-2016-zhou-et-al.pdf
https://doi.org/10.1145/2897824.2925901


Winding Numbers on Discrete Surfaces • 1:15

WindingNumbers onDiscrete Surfaces

(Supplemental Material)

This supplement provides detailed pseudocode (Section A) for the

surface winding number (SWN) method of Feng et al. 2023, and
discusses the homological perspective on this method (Section B).

A PSEUDOCODE
Our pseudocode is expressed via a halfedge mesh data structure

encoding a triangle mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ), and use
⇀
𝑖 𝑗 to denote the

halfedge from 𝑖 to 𝑗 . Subroutines not defined here are described in

the list below; many correspond to standard libraries/data structures.

• IsManifold(𝑀, 𝑖) — returns true if 𝑖 is a manifold vertex of𝑀 .

• IsBoundary(𝑀, 𝑖 𝑗 ) — returns true if 𝑖 𝑗 is a boundary edge of𝑀 .

• Orientation(𝑀,
⇀
𝑖 𝑗 ) — returns true if the orientation of halfedge

⇀
𝑖 𝑗 matches the canonical orientation of edge 𝑖 𝑗 in 𝑀 , and false

otherwise.

• Twin(𝑀,
⇀
𝑖 𝑗 ) — returns the twin of halfedge

⇀
𝑖 𝑗 in𝑀 .

• Prev(𝑀,
⇀
𝑖 𝑗 ) — returns the previous halfedge in the face contain-

ing halfedge
⇀
𝑖 𝑗 of𝑀 .

• OppositeVertex(𝑀,
⇀
𝑖 𝑗 ) — returns the vertex 𝑘 opposite

⇀
𝑖 𝑗 in

face 𝑖 𝑗𝑘 of𝑀 .

• CornersOf(𝑀, 𝑖) — returns the set of corners
𝑗𝑘
𝑖
incident on ver-

tex 𝑖 of𝑀 .

• EndpointsOf(𝑀, Γ) — returns the set 𝑉 \𝑉 ∗ of vertices compris-

ing the interior endpoints of a discrete 1-chain Γ on𝑀 .

• InteriorVertices(𝑀, Γ) — returns the set of vertices which are

not interior endpoints of the discrete 1-chain Γ on𝑀 .

• OutgoingHalfedgeOnCurve(𝑀, 𝑖, Γ) — for a vertex 𝑖 in 𝑀 , re-

turns an arbitrary halfedge
⇀
𝑖 𝑗 whose tail is 𝑖 , such that Γ𝑖𝑗 ≠ 0. If 𝑖

is a boundary vertex, instead return the most clockwise halfedge.

• SolvePositiveSemidefinite(A, b) — solves a sparse positive semi-

definite linear systemAx = b, returning x (and picking an arbitrary
shift if A has constants in its null space).

• SolveLinearProgram(𝑀, ℓ, Γ, 𝜀, 𝑠) — solves the linear program in

Equation 11, for a mesh𝑀 with edge lengths ℓ , curve Γ, parameter

𝜀 and shifts 𝑠 .

Algorithm 1 SurfaceWindingNumber(𝑀, ℓ, 𝜃, Γ, 𝜀)
Input: A 1-chain Γ ∈ Z |𝐸 | , on a mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ) with edge

lengths ℓ , corner angles 𝜃 , and a parameter 𝜀 for the linear

program.

Output: The winding number function 𝑤 defined on corners of 𝑀

(Section 3.5).

1: 𝑐 ← ComputeReducedCoordinates(𝑀, Γ) ⊲§2.3.1
2: 𝑢 ← SolveJumpEqation(𝑀,𝜃, Γ, 𝑐) ⊲§2.4.3, §3.2
3: 𝜔 ← DarbouxDerivative(𝑀, Γ, 𝑢) ⊲§2.4.2
4: 𝛾 ← HarmonicPart(𝑀,𝜃, 𝜔) ⊲§3.3
5: 𝑣 ← IntegrateLocally(𝑀,𝛾)
6: 𝑠 ← ComputeRelativeJumps(𝑀, 𝑣)
7: 𝜎 ← SolveLinearProgram(𝑀, ℓ, Γ, 𝜀, 𝑠) ⊲§3.4
8: 𝑣 ← RecoverSolution(𝑀, 𝑣, 𝜎)
9: 𝑐 ← SubtractJumpDerivative(𝑀, Γ, 𝑣, 𝑐) ⊲§2.4.1
10: 𝑤 ← SolveJumpEqation(𝑀,𝜃, Γ, 𝑐) ⊲§3.5
11: return𝑤

Algorithm 2 ComputeReducedCoordinates(𝑀, Γ)
Input: A 1-chain Γ ∈ Z |𝐸 | on a mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: A function 𝑐 ∈ Z |𝐶 | expressing values at corners relative to

some reference value (Section 2.3.1).

1: 𝑐 ← 0
|𝐶 |

2: for 𝑖 ∈ InteriorVertices(𝑀, Γ) do
3: if IsManifold(𝑀, 𝑖) = False then continue
4:

⇀
𝑖 𝑗0 ← OutgoingHalfedgeOnCurve(𝑀, 𝑖, Γ)

5:

⇀
𝑖 𝑗 ← ⇀

𝑖 𝑗0
6: sum← 0

7: do
8: if IsBoundary(𝑀, 𝑖 𝑗) = False then
9: 𝑘 ← OppositeVertex(𝑀,

⇀
𝑖 𝑗 )

10: jump← Orientation(𝑀,
⇀
𝑖 𝑗 ) ? Γ𝑖 𝑗 : −Γ𝑖 𝑗

11: sum += jump
12: 𝑐

𝑗𝑘
𝑖
← sum

13:

⇀
𝑖 𝑗 ← Twin(𝑀, Prev(𝑀,

⇀
𝑖 𝑗 )) ⊲next outgoing halfedge

14: while ⇀𝑖 𝑗 ≠
⇀
𝑖 𝑗0

15: return 𝑐

Algorithm 3 SolveJumpEqation(𝑀,𝜃, Γ, 𝑐)
Input: A 1-chain Γ ∈ Z |𝐸 | on a mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ) with corner

angles 𝜃 , and reduced coordinates 𝑐 ∈ R |𝐶 | .
Output: A function𝑢 ∈ R |𝐶 | defined on corners of𝑀 , where𝑢 solves

Equation 10. Values at corners adjacent to endpoints of Γ
are left undefined, to be interpolated using Equation 4.

1: 𝐿 ← BuildLaplacian(𝑀,𝜃, Γ)
2: 𝑏 ← BuildJumpLaplaceRHS(𝑀,𝜃, Γ, 𝑐)
3: 𝑢0 ← SolvePositiveSemidefinite(𝐿,𝑏)
4: 𝑢 ← 0 ∈ R |𝐶 | ⊲Apply shifts to recover 𝑢 (Section 3.2).
5: for 𝑗𝑘

𝑖
∈ 𝐶 do 𝑢 𝑗𝑘

𝑖
← 𝑢0 + 𝑐 𝑗𝑘𝑖

6: return 𝑢

Algorithm 4 DarbouxDerivative(𝑀, Γ, 𝑢)
Input: A 1-chain Γ ∈ Z |𝐸 | , and a function 𝑢 ∈ R |𝐶 | with integer

jumps across edges of a mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: The Darboux derivative 𝜔 ∈ R |𝐸 | of 𝑢, as a discrete 1-form

on edges of𝑀 (Section 2.4.2).

1: 𝜔 ← 0 ∈ R |𝐸 |
2: for 𝑖 𝑗 ∈ 𝐸 do
3: if 𝑖 ∈ EndpointsOf(𝑀, Γ) or 𝑗 ∈ EndpointsOf(𝑀, Γ)

then
4: continue

5: 𝑘 ← OppositeVertex(𝑀,
⇀
𝑖 𝑗 )

6: 𝜔𝑖𝑗 ← 𝑢𝑘𝑖
𝑗
− 𝑢 𝑗𝑘

𝑖

7: return 𝜔

Algorithm 5 BuildLaplacian(𝑀,𝜃, Γ)
Input: A 1-chain Γ ∈ Z |𝐸 | on a mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ) with corner

angles 𝜃 .

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:16 • Feng, Gillespie, Crane

Output: The operator 𝐿 ∈ R |𝑉 ∗ |× |𝑉 ∗ | of Equation 10.

1: 𝐿 ← 0 ∈ R |𝑉 ∗ |× |𝑉 ∗ | ⊲initialize empty sparse matrix
2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: for 𝑖 𝑗𝑘 ∈ C(𝑝𝑞𝑟 ) do ⊲C: circular shifts
4: if 𝑖 ∈ EndpointsOf(𝑀, Γ) or 𝑗 ∈ EndpointsOf(𝑀, Γ)

then
5: continue

6: 𝐿𝑖𝑖 , 𝐿𝑗 𝑗 += 1

2
cot(𝜃𝑖𝑗

𝑘
)

7: 𝐿𝑖𝑗 , 𝐿𝑗𝑖 −= 1

2
cot(𝜃𝑖𝑗

𝑘
)

8: return 𝐿

Algorithm 6 BuildJumpLaplaceRHS(𝑀,𝜃, Γ, 𝑐)
Input: A 1-chain Γ ∈ Z |𝐸 | on a mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ) with corner

angles 𝜃 , and reduced coordinates 𝑐 ∈ R |𝐶 | (Section 2.3.1).

Output: The vector 𝑏 ∈ R |𝑉 ∗ | in Equation 10.

1: 𝑏 ← 0 ∈ R |𝑉 ∗ |
2: for 𝑖 ∈ InteriorVertices(𝑀, Γ) do
3: for 𝑗𝑘

𝑖
∈ CornersOf(𝑀, 𝑖) and 𝑗, 𝑘 ∉ EndpointsOf(𝑀, Γ)

do
4: 𝑏𝑖 −= 1

2
cot(𝜃𝑖𝑗

𝑘
) · 𝑐 𝑗𝑘

𝑖

5: 𝑏 𝑗 += 1

2
cot(𝜃𝑖𝑗

𝑘
) · 𝑐 𝑗𝑘

𝑖

6: 𝑏𝑖 −= 1

2
cot(𝜃𝑘𝑖

𝑗
) · 𝑐 𝑗𝑘

𝑖

7: 𝑏𝑘 += 1

2
cot(𝜃𝑘𝑖

𝑗
) · 𝑐 𝑗𝑘

𝑖

8: return 𝑏

Algorithm 7 HarmonicComponent(𝑀,𝜃, 𝜔)
Input: A co-closed 1-form 𝜔 ∈ R |𝐸 | on a mesh𝑀 = (𝑉 , 𝐸, 𝐹 ) with

corner angles 𝜃 .

Output: A harmonic 1-form 𝛾 ∈ R |𝐸 | .
1: 𝑑1 ← BuildOneFormExteriorDerivative(𝑀)
2: ∗1 ← BuildOneFormHodgeStar(𝑀,𝜃 )
3: 𝛽 ← SolvePositiveSemidefinite(𝑑1 ∗−1

1
𝑑𝑇

1
, 𝑑1𝜔)

4: 𝛿𝛽 ← ∗−1

1
𝑑𝑇

1
𝛽

5: 𝛾 ← 𝜔 − 𝛿𝛽
6: return 𝛾

Algorithm 8 SubtractJumpDerivative(𝑀, Γ, 𝑣, 𝑐)
Input: A 1-chain Γ ∈ Z |𝐸 | on a mesh𝑀 = (𝑉 , 𝐸, 𝐹 ), residual func-

tion 𝑣 ∈ R |𝐶 | , and reduced coordinates 𝑐 ∈ R |𝐶 | associated
with Γ.

Output: Updated reduced coordinates 𝑐 encoding new jump con-

straints for the jump Laplace equation (Section 3.5).

1: for 𝑖 ∈ InteriorVertices(𝑀, Γ) do
2: if IsManifold(𝑀, 𝑖) = False then continue

3: for 𝑗𝑘
𝑖
∈ CornersOf(𝑀, 𝑖) and 𝑗, 𝑘 ∉ EndpointsOf(𝑀, Γ)

do
4: if IsBoundary(𝑀, 𝑖 𝑗) then continue

5: ℓ ← OppositeVertex(𝑀,Twin(𝑀,
⇀
𝑖 𝑗 ))

6: 𝑐
𝑗𝑘
𝑖

= 𝑐
𝑗𝑘
𝑖
− (𝑣 𝑗𝑘

𝑖
− 𝑣ℓ 𝑗

𝑖
)

7: return 𝑐

Algorithm 9 BuildOneFormExteriorDerivative(𝑀)
Input: A mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: A sparse matrix 𝑑1 ∈ Z |𝐹 |× |𝐸 | representing the discrete

exterior derivative on 1-forms.

1: 𝑑1 ← 0 ∈ Z |𝐹 |× |𝐸 | ⊲initialize empty sparse matrix
2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: for 𝑖 𝑗𝑘 ∈ C(𝑝𝑞𝑟 ) do ⊲C: circular shifts
4: (𝑑1)𝑝𝑞𝑟,𝑖𝑗 ← Orientation(𝑀,

⇀
𝑖 𝑗 ) ? 1 : −1

5: return 𝑑1

Algorithm 10 BuildOneFormHodgeStar(𝑀,𝜃 )
Input: A mesh𝑀 = (𝑉 , 𝐸, 𝐹 ) with corner angles 𝜃 .

Output: A sparse diagonal matrix ∗1 ∈ Z |𝐹 |× |𝐸 | representing the

Hodge star acting on discrete 1-forms.

1: ∗1 ← 0 ∈ Z |𝐸 |× |𝐸 | ⊲initialize empty sparse matrix
2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: for 𝑖 𝑗𝑘 ∈ C(𝑝𝑞𝑟 ) do ⊲C: circular shifts
4: (∗1)𝑖𝑗,𝑖 𝑗 += 1

2
cot𝜃

𝑖𝑗

𝑘

5: return ∗1

Algorithm 11 IntegrateLocally(𝑀,𝛾)
Input: A harmonic 1-form 𝛾 ∈ R |𝐸 | on a mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: Corner values 𝑣

𝑗𝑘
𝑖

integrating 𝛾 in each triangle of𝑀 .

1: for 𝑖 𝑗𝑘 ∈ 𝐹 do
2: 𝑔⇀

𝑖 𝑗 ← Orientation(𝑀,
⇀
𝑖 𝑗 ) ? 𝛾𝑖 𝑗 : −𝛾𝑖 𝑗

3: 𝑔⇀
𝑗𝑘 ← Orientation(𝑀,

⇀
𝑗𝑘) ? 𝛾 𝑗𝑘 : −𝛾 𝑗𝑘

4: 𝑣
𝑗𝑘
𝑖
← 0

5: 𝑣𝑘𝑖
𝑗
← 𝑔⇀

𝑖 𝑗

6: 𝑣
𝑖 𝑗

𝑘
← 𝑔⇀

𝑖 𝑗 + 𝑔⇀
𝑗𝑘

7: return 𝑣

Algorithm 12 ComputeRelativeJumps(𝑀, 𝑣)
Input: A value 𝑣

𝑗𝑘
𝑖

per corner of a mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: Values 𝑠 ∈ R |𝐸 | that give the jump between locally inte-

grated values across each edge of𝑀 .

1: 𝑠 ← 0 ∈ R |𝐸 | ⊲initialize zero vector
2: for 𝑖 𝑗 ∈ 𝐸 and IsBoundary(𝑀, 𝑖 𝑗) = False do
3: 𝑠𝑖 𝑗 ← 𝑣

𝑗𝑘
𝑖
− 𝑣𝑙 𝑗

𝑖

4: return 𝑠

Algorithm 13 RecoverSolution(𝑀, 𝑣, 𝜎)
Input: A value 𝑣

𝑗𝑘
𝑖

per corner of a mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ), and per-

triangle shifts 𝜎 ∈ R |𝐹 | .
Output: A value 𝑣

𝑗𝑘
𝑖

per corner describing the residual function.

1: for 𝑗𝑘
𝑖
∈ 𝐶 do 𝑣

𝑗𝑘
𝑖
← 𝑣

𝑗𝑘
𝑖
+ 𝜎𝑖 𝑗𝑘

2: return 𝑣
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B HOMOLOGICAL PERSPECTIVE
Here we discuss the homological perspective on SWN, starting

with the case of closed, oriented surfaces (B.1) before proceeding to

surfaces with boundary (B.2) and nonorientable surfaces (B.3). The

basic tools are the first homology group 𝐻1 (𝑀) and cohomology

group 𝐻1 (𝑀) of the surface 𝑀 , which provide dual descriptions

of its topology. Throughout we assume that 𝑀 is manifold: while

we find that SWN works on nonmanifold meshes in practice, the

duality theorems formally apply only to manifolds.

B.1 Overview of the Homological Picture
Homology is the theory of boundaries. A closed curve Γ on a surface

𝑀 is said to be nullhomologous if Γ is the boundary of a region. Con-

versely, the homology group 𝐻1 (𝑀) describes loops which are not

region boundaries. Munkres [1984, Chapters 1 & 5] gives a detailed

introduction to homology and the dual theory of cohomology.

The connection to SWN is simplest when Γ is a closed curve

on a closed, oriented surface 𝑀 . In this case, the 1-form 𝛾 = D𝑢
computed in Section 3.3—known as the Poincaré dual of Γ—encodes
Γ’s homology class. Formally, Poincaré duality provides a canonical

isomorphism𝜑 : 𝐻1 (𝑀) → 𝐻1 (𝑀) [Munkres 1984, §65]. Concretely,

this map provides a harmonic 1-form 𝜑 (Γ) such that for any loop 𝜂,

the integral

∫
𝜂
𝛾 counts the signed number of intersections between

𝜂 and Γ [Griffiths and Harris 2014, p.56]. Two closed curves Γ1

and Γ2 map to the same harmonic 1-form if and only if the curves

are homologous. Hence, any jump harmonic function integrating

𝛾 = 𝜑 (Γ)—e.g. the function 𝑣 in Section 3.4—must jump across a

chain homologous to Γ. Consequently, the linear program used to

compute 𝑣 minimizes the ℓ1
norm of the jump 𝑔 = J𝑣 subject to

the constraint that 𝑔 is homologous to Γ. In this case, one could

avoid cohomology and directly solve an optimal homologous chain

problem à la Dey et al. [2010]. However, harmonic 1-forms are

essential in our generalization to broken curves.

When Γ is broken, it lacks a well-defined homology class. Con-

sequently, the 1-form D𝑢 is no longer harmonic for broken curves.

Nonetheless, we can take the harmonic component 𝛾 of D𝑢, which
we interpret as an “approximate homology class” for Γ. SWN then

searches for the optimal nonbounding loop 𝑔 = 𝐽𝑣 within this ho-

mology class. Among other things, the homology class constraint

ensures that 𝑔 is always a closed loop, even when Γ is broken.

B.2 Relative Homology for Surfaces with Boundary
To make sense of our algorithm on surfaces with

boundary—and in particular to justify Equation 12—

we need to extend the discussion of homology to

include relative homology. When𝑀 has no boundary,

nullhomologous curves are precisely the curves en-

closing regions, and nonbounding loops are characterized by the

usual absolute homology group 𝐻1 (𝑀). However, the situation is

more complicated if𝑀 has a boundary. For instance, an annulus has

a single homology generator: a loop Γ wrapping around the middle.

Though Γ separates the annulus into two components, it is not itself

the boundary of any region since each component’s boundary also

includes a circle from the annulus’ boundary.

Instead, nonbounding loops on a surface with

boundary are described by the relative homology

group 𝐻1 (𝑀, 𝜕𝑀). On an annulus, e.g., this group is

generated by a curve connecting the boundary cir-

cles. Formally, it is the first homology group of 𝑀

after collapsing 𝜕𝑀 to a point [Munkres 1984, §9].

E.g. collapsing the boundary of the annulus yields a

sphere with two points identified, whose homology

generator corresponds to the nonbounding curve on the annulus.

Relative Cohomology. Similarly, a surface with boundary has both

absolute and relative cohomology groups. The absolute group𝐻1 (𝑀)
consists of harmonic 1-forms tangent to the boundary, while the

relative group 𝐻1 (𝑀, 𝜕𝑀) consists of harmonic 1-forms normal to

the boundary [Poelke and Polthier 2016]. Lefschetz duality provides

a map between 𝐻1 (𝑀, 𝜕𝑀) and 𝐻1 (𝑀) [Munkres 1984, §70]. On

an annulus, e.g., the relative homology generator

maps to a 1-form circulating around the center. Since

nonbounding loops correspond to the relative homol-

ogy group, our dual harmonic 1-forms are members

of 𝐻1 (𝑀) and must thus lie tangent to 𝜕𝑀 .

Hodge Decomposition. On manifolds with boundary, one can de-

compose a 𝑘-form 𝜔 using the Hodge-Friedrichs-Morrey decompo-

sition [Schwarz 2006, Corollary 2.4.9]:

Ω𝑘 = 𝑑Ω𝑘−1

𝐷 ⊕ 𝛿Ω𝑘+1
𝑁 ⊕

(
H𝑘 ∩ 𝑑Ω𝑘−1

)
⊕ H𝑘

𝑁 (12)

= 𝑑Ω𝑘−1

𝐷 ⊕ 𝛿Ω𝑘+1
𝑁 ⊕

(
H𝑘 ∩ 𝛿Ω𝑘+1

)
⊕ H𝑘

𝐷 (13)

Here a subscript 𝐷 (for Dirichlet) denotes a space of forms with zero

tangential component on 𝜕𝑀 , a subscript 𝑁 (for Neumann) denotes

a space of forms with zero normal component on 𝜕𝑀 , andH denotes

the space of harmonic fields, (i.e. 𝑘-forms satisfying 𝑑𝛾 = 𝛿𝛾 = 0).

To extract a tangential harmonic 1-form, we apply the first de-

composition (Equation 12). Multiplying both sides by 𝑑 and 𝛿 yields

a pair of equations determining the tangential harmonic component

of a 1-form 𝜔 . A short calculation shows that these equations are

the standard equations solved to perform Hodge decomposition on

closed surfaces with zero-Neumann conditions on the boundary.

B.3 Local Coefficients for Nonorientable Surfaces
As discussed in Section 3.7, our algorithm also extends to nonori-

entable surfaces so long as one explicitly provides curve normals

which specify which direction the surface winding number should

jump across the curve. Such a choice of normals makes Γ into an

element of the first homology group with local coefficients in the

sense of Hatcher [2002, Section 3.H], which is Poincaré dual to the

ordinary first cohomology group [Hatcher 2002, Theorem 3H.6].

Hodge Decomposition. Our discussion of Hodge decomposition

used the codifferential 𝛿 := ∗𝑑∗, which may look ill-defined on

nonorientable surfaces: the definition uses ∗ which depends on the

orientation of 𝑀 . However, reversing orientation multiplies ∗ by
−1, so because 𝛿 uses ∗ twice the signs cancel and 𝛿 remains well-

defined on nonorientable surfaces. Hence, Hodge decomposition

still works via the usual linear systems.
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