
Angle-Valued
Functions

We introduce a ray tracing algorithm for a novel class of surfaces defined by level 
sets of harmonic functions.  Here we directly visualize a nonplanar polygon 
which has no well-defined inside or outside—and hence cannot be represented by 
an ordinary implicit function or SDF.  Isolines depict a 2D slice of the harmonic 
function; spheres show conservative Harnack bounds along a ray.  Note the 
smooth reflection lines, even near edges where the function is highly singular.

Given an oriented point cloud (le�), we can 
directly visualize an interpolating surface 
(right). This procedure e�ectively shows the 
result of running the Poisson surface 
reconstruction algorithm of Kazhdan et al. 
[2006], without requiring any volumetric 
meshing or linear solves.

Harmonic polynomials provide an 
elementary example of harmonic 
functions. When restricted to the 
sphere, these polynomials describe 
the spherical harmonics. We visualize 
each spherical harmonic by restrict-
ing the level sets of the associated 
polynomial to the unit ball.
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Safe Step Size (in 3D)

If we take a step of size ρ starting from x0 we will never 
step past the f* level set:

Let f be a positive harmonic function on a ball of radius R:

where

Termination Condition

Algorithm
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If f(x) is a signed distance function, then terminating intersection queries when 
|f(x) - f*| < ε ensures that x is within ε of the chosen level set. But, when f(x) is a 
general function, this condition loses its geometric meaning and produces an 
uneven profile along the target surface (le�). We can obtain a more meaningful 
stopping condition using the gradient to relate changes in function value to 
changes in position (right).
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Harmonic functions can be angle-valued 
and exhibit singularities.  The function 
θ(x,y) = atan2(y, x) is a model example: 
it jumps by 2π at y=0, and is singular at 
x=y=0.  Using angle-valued functions 
allows us to represent implicit surfaces 
with boundary

Discontinuous Function Continuous Lift

Although angle-valued functions appear 
discontinuous when plo�ed in the range 
[0, 2π), they can always be li�ed to a 
continuous harmonic function on any 
simply-connected domain. Importantly, 
we never find this li� explicitly: its mere 
existence ensures that the bound holds.
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The only challenge is determining ball radii 
R and lower bounds c.  The largest step size 
will be achieved by using (i) the tightest 
lower bound c on f and (ii) the largest 
radius R: the step size ρ approaches the 
maximum step size R as c approaches         , 
and simultaneously, the step size grows in 
proportion to the ball radius R.  However, 
for harmonic functions (which are 
saddle-like everywhere) larger balls inevita-
bly contain more negative values. To 
achieve e�icient computation, one must 
hence balance the choice of R and c.

We use the formulas above to find a safe 
step size ρ. Since these inequalities apply 
only to positive functions, we “shi�” f 
within a local ball to get a safe step size.
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Surface Exoskeletons Beyond
Harmonic Functions

Given a sparse “exoskeleton” approximating 
a surface (top le�) we can directly ray trace 
an interpolating surface (top right). The 
result is both higher-quality than the naïve 
triangulation used by most mesh viewers 
(bo�om le�), and simpler to compute than 
optimizing a mesh-based minimal surface, as 
done by de Goes et al. [2011].

Riemann Surfaces

Given a surface mesh with imperfections 
such as holes (le�), we can directly visualize 
the repaired surface defined via the general-
ized winding number (right), reproducing the 
example from Jacobson et al. [2013, Figure 1].

Riemann surfaces are central objects of study 
in complex analysis. We can use Harnack 
tracing to render the surfaces associated to 
several standard complex functions, showing 
both the intersection with the unit ball (top), 
and a camera view of the surface (bo�om).

One can define the geometry of a nonplanar polygon to be a level set of its solid angle 
function, which is harmonic. This definition provides well-behaved geometry even when 
the boundary is highly nonplanar, and varies smoothly as the boundary changes (top le�). 
By taking di�erent level sets, one can adjust the convexity/concavity of the interpolating 
geometry (bo�om le�). The definition even automatically applies to di�icult cases like 
polygons with holes or kno�ed boundaries (right).

Here we use Harnack tracing to directly visualize 
a special class of grid shells used in architecture, 
reproducing examples from Adiels et al. [2022] 
figures 11, 12, and 22 (resp.).

To compare the convergence rates of Harnack tracing and sphere tracing, we 
measured the cost of sphere tracing a mesh of the 2π level set of solid angle for a 
sample curve (top right), as well as the cost of Harnack tracing the level set. The plots 
show the rate at which the function value approaches the target value (le�), as well as 
the rate at which the time approaches the optimal time (right). Empirically, both 
methods appear to converge faster than the theoretically-guaranteed linear rate, 
though sphere tracing still requires significantly fewer iterations than Harnack 
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General-purpose root finders may fail to find the closest 
intersection, yielding incorrect occlusions or even gaps if 
they converge to intersections outside of the visible area.

(140 seconds)
Running marching cubes “out of the box” on many 
of our example problems yields unsightly artifacts, 
especially around singularities (bo�om le�). More 
sophisticated adaptive methods, like Mathematica’s 
ContourPlot3D, surrer from similar artifacts (top 
le�). One can a�empt to filter out the extraneous 
faces, e.g. by evaluating f at the barycenter of each 
face, but doing so still leaves behind a noisy surface, 
especially near singularities (right).
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Ray marching is a simple ray tracing technique, but 
the algorithm can leave gaps by “tunneling” 
through the surface, especially near singularities.
We can also run sphere tracing using any purported 
Lipschitz bound. However, when no valid Lipschitz 
bound exists, we obtain artifacts near singularities
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The gyroid surface, commonly used in 
3D manufacturing, is neither a signed 
distance function nor a harmonic 
function. However, it can easily be 
extended to a harmonic function in 
4D. By ray tracing a “3D slice” of this 
function, we can directly visualize it 
via Harnack tracing.
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