
Surface Simplification using Intrinsic Error Metrics
HSUEH-TI DEREK LIU, Roblox & University of Toronto, Canada
MARK GILLESPIE, Carnegie Mellon University, USA
BENJAMIN CHISLETT, University of Toronto, Canada
NICHOLAS SHARP, University of Toronto & NVIDIA, USA
ALEC JACOBSON, University of Toronto & Adobe Research, Canada
KEENAN CRANE, Carnegie Mellon University, USA

Fig. 1. Whereas traditional extrinsic simplification (bottom row) must simultaneously juggle element quality and approximation error, triangles produced by
our intrinsic scheme (top row) can wrap around the original surface—nicely approximating the underlying function space without changing the geometry.
Coarse meshes or hierarchies produced by this scheme can be used in “black box” fashion to accelerate solvers without changing user inputs/outputs.

This paper describes a method for fast simplification of surface meshes.

Whereas past methods focus on visual appearance, our goal is to solve

equations on the surface. Hence, rather than approximate the extrinsic

geometry, we construct a coarse intrinsic triangulation of the input domain.

In the spirit of the quadric error metric (QEM), we perform greedy decimation

while agglomerating global information about approximation error. In lieu of

extrinsic quadrics, however, we store intrinsic tangent vectors that track how

far curvature “drifts” during simplification. This process also yields a bijective

map between the fine and coarse mesh, and prolongation operators for both

scalar- and vector-valued data. Moreover, we obtain hard guarantees on

element quality via intrinsic retriangulation—a feature unique to the intrinsic

setting. The overall payoff is a “black box” approach to geometry processing,

which decouples mesh resolution from the size of matrices used to solve

equations. We show how our method benefits several fundamental tasks,

including geometric multigrid, all-pairs geodesic distance, mean curvature

flow, geodesic Voronoi diagrams, and the discrete exponential map.

Authors’ addresses: Hsueh-Ti Derek Liu, Roblox & University of Toronto, Canada,

hsuehtil@gmail.com; Mark Gillespie, Carnegie Mellon University, USA, mgillesp@cs.

cmu.edu; Benjamin Chislett, University of Toronto, Canada, chislett.ben@gmail.com;

Nicholas Sharp, University of Toronto & NVIDIA, USA, nmwsharp@gmail.com; Alec

Jacobson, University of Toronto & Adobe Research, Canada, jacobson@cs.toronto.edu;

Keenan Crane, Carnegie Mellon University, USA, kmcrane@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2023/8-ART $15.00

https://doi.org/10.1145/3592403

CCS Concepts: • Computing methodologies→Mesh geometry models.

Additional KeyWords and Phrases: geometry processing, mesh simplification

ACM Reference Format:
Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec

Jacobson, and Keenan Crane. 2023. Surface Simplification using Intrinsic

Error Metrics. ACM Trans. Graph. 42, 4 (August 2023), 16 pages. https://doi.
org/10.1145/3592403

1 INTRODUCTION
Algorithms for mesh simplification were originally motivated by the

need to maintain visual fidelity for rendering and display [Hoppe

1996]. Since image generation fundamentally depends on extrin-
sic quantities like vertex positions and surface normals, extrinsic

metrics (like the distance to the original surface) were a natural

choice [Garland and Heckbert 1997]. However, in a wide variety

of problems throughout computer graphics, geometry processing,

and scientific computing, the goal is to solve equations on surface

meshes, rather than display them on screen. Since functions on

surfaces have derivatives only in tangential directions, differential

operators appearing in these equations (such as the Laplacian) are

almost always intrinsic—even in cases where one solves for extrinsic

quantities [Finnendahl et al. 2023]. Hence, to develop fast, accurate

solvers for equations on surfaces, it is natural to seek error metrics

that focus on intrinsic geometry, i.e., quantities that depend only on

distances along the surface, rather than coordinates in space.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://doi.org/10.1145/3592403
https://doi.org/10.1145/3592403
https://doi.org/10.1145/3592403

2 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

...

extrinsic intrinsic

Fig. 2. In contrast to standard extrinsic meshes (left), where edges are
straight line segments in R𝑛 , intrinsic triangulations connect vertices along
arbitrary geodesic paths between vertices (right).

A principled approach to this problem is enabled by recent work

on flexible data structures for intrinsic triangulations [Fisher et al.
2006; Gillespie et al. 2021a; Sharp et al. 2019a]. Roughly speaking,

an intrinsic triangulation is one where edges need not be straight

line segments in space, but can instead be any geodesic arc along
the surface (Fig. 2). More generally, an intrinsic triangulation is an

assignment of positive lengths to edges—with no requirement that

there be vertex positions that realize these lengths. Not surprisingly,

this construction provides a vastly larger space of possibilities for

mesh processing, by de-coupling the elements used to approximate

the geometry from those used to approximate functions on the

surface. Moreover, standard objects like the Laplacian can still be

built directly from edge lengths, allowing many existing algorithms

to be run as-is. However, past work has not provided anymechanism

for coarsening intrinsic triangulations—as proposed in this paper.

1.1 Method Overview
In the extrinsic case, greedy iterative decimation has proven re-

markably effective, with a notable example being the quadric error
metric (QEM) of Garland and Heckbert [1997]. Despite being over a

quarter-century old, QEM remains the method of choice in many

modern systems [Karis et al. 2021]. The key insight of QEM is that

one obtains useful information about global approximation error

by aggregating the distortion induced by each local operation into

a constant-size record at each vertex. Our method, which we dub

the intrinsic curvature error (ICE) metric, adopts the same basic strat-

egy, but tracks intrinsic rather than extrinsic data. There are two

geometric perspectives on this metric, developed further in Sec. 5:

• Local Picture. Whereas extrinsic methods penalize deviation of

positions in space, we penalize changes in the intrinsic metric.

The local cost of removing a vertex is determined by the optimal
transport cost of redistributing its curvature to neighboring ver-

tices. More precisely, we compute an approximate 1-Wasserstein
distance between Gaussian curvature distributions before and

after flattening the removed vertex (Fig. 3, top left).
• Global Picture.One can also aggregate information about where

error comes from in order to make better greedy decisions. In

QEM, aggregation is achieved by summing quadrics, which ap-

proximate the squared distance to the ancestors of each vertex.

In contrast, the ICE metric tracks an approximate curvature-

weighted center of mass. More precisely, at each vertex 𝑖 we

track (i) the total accumulated curvature and (ii) a tangent vec-

tor t𝑖 such that the exponential map exp𝑖 (t𝑖) approximates the

curvature-weighted Karcher mean of all ancestors (Fig. 3, bottom).

i

mass

vertex

error vector

global: transport error
vectors to neighbors

(error vectors ti
point to center
of mass)

Fig. 3. Our method constructs a coarse triangulation over a fixed geometric
domain. In each local step we redistribute curvature or other quantities from
a removed vertex to its neighbors. From step to step we also agglomerate
global information about error via tangent vectors that point toward the
approximate center of mass of the decimated vertices.

By greedily applying decimation operations that keep these tangent

vectors small, we maintain a good approximation of the original

intrinsic geometry—for instance, curvature does not “drift” from

one place to another. Moreover, unlike the extrinsic setting, we can

freely change mesh connectivity without incurring any additional

geometric error—making it trivial to improve element quality via

tools like intrinsic Delaunay triangulation (Sec. 3.3.2).

2 RELATED WORK
Numerous tasks in geometry processing and simulation use coars-

ened or hierarchical representations of geometry [Garland 1999;

Guskov et al. 1999], including compression (e.g. using wavelets

[Peyré and Mallat 2005; Schröder 1996] or Laplacian bases [Karni

and Gotsman 2000]), surface modeling [Botsch and Kobbelt 2004;

Kobbelt et al. 1998; Zorin et al. 1997], physical simulation [Grin-

spun et al. 2002; Zhang et al. 2022], parameterization [Ray and Lévy

2003], and eigendecomposition [Nasikun et al. 2018; Nasikun and

Hildebrandt 2022]. Though the core computation in many of these

tasks is inherently intrinsic, the coarsening process itself has so far

been performed in the extrinsic domain. We briefly review work on

surface simplification and remeshing relevant to our approach; see

Botsch et al. [2010, Chapter 7] for a more detailed discussion.

2.1 Intrinsic Triangulations
As noted in Sec. 1, the machinery of intrinsic triangulations is cen-

tral to our approach Sharp et al. [2021]. Early work on intrinsic

triangulations explored the basic formulation [Regge 1961] and its

deep connection to Delaunay triangulations [Bobenko and Spring-

born 2007; Indermitte et al. 2001; Rivin 1994]. Subsequent work

on discrete uniformization [Gu et al. 2018; Luo 2004a; Springborn

et al. 2008] and an intrinsic Laplace operator [Bobenko and Spring-

born 2007] has recently stimulated broader applications in geometry

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Surface Simplification using Intrinsic Error Metrics • 3

processing [Finnendahl et al. 2023; Gillespie et al. 2021a,b; Sharp

and Crane 2020a,b; Sharp et al. 2019a; Takayama 2022]. Several

general-purpose data structures have been developed for intrin-

sic triangulations [Fisher et al. 2006], including those that support

refinement operations [Gillespie et al. 2021a; Sharp et al. 2019a].

However none support operations needed for intrinsic coarsening,

as proposed here.

2.2 Surface Simplification
2.2.1 Local Decimation. A large class of coarsening methods apply

incremental local decimation via vertex removal [Schroeder et al.

1992], vertex redistribution [Turk 1992], vertex clustering [Alexa

and Kyprianidis 2015; Low and Tan 1997; Rossignac and Borrel 1993],

face collapse [Gieng et al. 1997], and edge collapse strategies [Hoppe

1996], including QEM [Garland and Heckbert 1997]. Although meth-

ods based on global energy minimization can produce impressive

results [Cohen-Steiner et al. 2004; Hoppe et al. 1993], local deci-

mation schemes remain popular since they are easy to implement,

typically exhibit near-linear scaling (each decimation operation is

essentially 𝑂 (1)), and can easily meet an exact target vertex budget

(by stopping when the budget is reached). QEM-based simplification

in particular has endured because its cheap local heuristic yields
excellent global approximation when aggregated over many decima-

tion operations. Moreover, QEM is easily adapted to other attributes

such as color or texture [Garland and Heckbert 1998; Hoppe 1999].

In the intrinsic setting, we likewise favor a local decimation

approach because it yields fast execution times and near-linear

scaling (Sec. 8.2), and easily incorporates rich geometric criteria

(Sec. 8.6); as in QEM, aggregating information across local oper-

ations leads to high-quality global approximation (Sec. 5). Unlike

extrinsic, visualization-focused methods, the intrinsic setting also

furnishes quality guarantees valuable for simulation (Sec. 6.3).

2.2.2 Global Remeshing. In contrast to local decimation, which

incrementally mutates the given triangulation, global remeshing

methods seek only to approximate the given geometry, using an en-

tirely new triangulation (possibly a coarser one). Global remeshing

can be performed via, e.g., streamline tracing [Alliez et al. 2003] or

global parameterization [Alliez et al. 2005, 2002], with significant

emphasis in recent years on field-aligned methods [Bommes et al.

2013b]. However a high-quality global parameterization is notori-

ously difficult to compute—especially if a seamless grid is needed

for mesh generation [Bommes et al. 2013a]. Unlike our ICE met-

ric (which is based on transport cost), error metrics based on local

parametric distortion [Schmidt et al. 2019] or pointwise changes

in curvature [Ebke et al. 2016] can fail to account for global tan-

gential “drift” across the surface. Moreover, parameterization-based

methods do not take advantage of the flexibility of intrinsic trian-

gulations, requiring at all times an explicit embedding into the 2D

plane. A key exception are methods based on modification of edge

lengths [Capouellez and Zorin 2022], most notably the conformal
equivalence of triangle meshes (CETM) algorithm of Springborn et al.

[2008], which we apply locally to define our vertex removal oper-

ation (Sec. 4.1). A more global intrinsic coarsening strategy might

be to conformally map the whole surface to a high-quality cone
metric [Fang et al. 2021; Li et al. 2022; Soliman et al. 2018] then

planar

extrinsic
remesh (QEM)

developable

intrinsic
remesh (ICE)

Fig. 4. Just as extrinsic simplification pays no cost for removing vertices
from an initially flat region (left), our intrinsic method pays no cost for
removing vertices from an initially developable region (right).

remove all flat vertices; however, even just computing a good cone

configuration is already more expensive than our entire algorithm.

AA
BB DD

EE

FF
HH

AA
BB

CC
DD

EE

FF
GGHH

2.2.3 Tracking Correspondence. Many ap-

plications require not only a coarse mesh,

but also a way of mapping various attributes

between coarse and fine meshes [Kharevych

et al. 2009; Li et al. 2015; Liu et al. 2019]. Early

methods compose local 2D mappings (inset)

to obtain a so-called successive mapping [Co-
hen et al. 1997; Khodakovsky et al. 2003; Lee

et al. 1998], as more recently discussed by

Liu et al. [2020, 2021]. Alternatively, corre-

spondence can be defined via normal offsets

[Guskov et al. 2000], texture domain chart

boundaries [Sander et al. 2001], or bijective projection [Jiang et al.

2020, 2021], though methods based on extrinsic correspondence can

struggle in the presence of, e.g., mesh self-intersections (Fig. 20).

Since our method performs both simplification and mapping via

intrinsic triangulations, we can achieve lower-distortion mappings

than methods restricted to the smaller space of extrinsic mesh se-

quences (Figs. 18 and 19), in turn improving the numerical behavior

of many algorithms (Sec. 8).

2.3 Mesh Hierarchies
Coarsening and correspondence tracking are also key components of

multi-resolution methods. Whereas extrinsic coarsening is essential

for, e.g., adaptive visualization [Hoppe 1996], intrinsic coarsening

is well-suited to multiresolution solvers such as geometric multi-

grid [Liu et al. 2021]. Here, coarse-to-fine schemes, e.g. based on

subdivision surfaces [Zorin et al. 2000], yield regular connectivity

and principled prolongation operators based on subdivision basis

functions [de Goes et al. 2016; Shoham et al. 2019]. However, without

careful preprocessing [Eck et al. 1995; Hu et al. 2022] subdivision be-

haves poorly on coarse, low-quality meshes encountered in the wild

[Zhou and Jacobson 2016]. We instead adopt a robust fine-to-coarse
strategy, via repeated decimation (Sec. 8.7). Though extensively stud-

ied for extrinsic meshes, both for adaptive rendering [Hoppe 1996,

1997; Popovic and Hoppe 1997] and modeling/simulation [Aksoylu

et al. 2005; Liu et al. 2021; Manson and Schaefer 2011], a fine-to-

coarse hierarchy based on intrinsic triangulations enables geometric

multigrid to succeed on extremely low-quality meshes where past

methods fail (Sec. 8.7).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

(intrinsically flat)

Gaussian curvature geodesic curvature

Fig. 5. Gaussian curvature 𝐾 and geodesic curvature 𝜅 depend only on
corner angles𝜃 , which in turn depend only on edge lengths ℓ . Hence, surfaces
that appear bent in R3 may in fact have zero intrinsic curvature (right).

3 BACKGROUND
An intrinsic mesh encodes geometry via edge lengths rather than

vertex positions; this data is in turn sufficient to support a wide

variety of surface processing and simulation tasks. Here we give a

brief review—see Sharp et al. [2021] for an in-depth introduction.

3.1 Connectivity

earear
boundaryboundary

interior interior
We consider a manifold, orientable triangle mesh

𝑀 = (𝑉, 𝐸, 𝐹) with vertices 𝑖 ∈ 𝑉 , edges

𝑖𝑗 ∈ 𝐸, and faces 𝑖 𝑗𝑘 ∈ 𝐹 . Likewise, we write

𝑀 = (𝑉, 𝐸, 𝐹) for any modification of 𝑀 . We

use degree(𝑖) to denote the (face) degree, i.e., the
number of faces containing 𝑖 . A degree-1 boundary vertex is called

an ear; otherwise it is a regular boundary vertex. We use 𝑢𝑖 , 𝑢𝑖 𝑗 ,

𝑢𝑖 𝑗𝑘 to denote a value at a vertex, edge, and face, respectively, and

𝑢𝑖
𝑗𝑘

for a quantity at corner 𝑖 of triangle 𝑖 𝑗𝑘 . Sometimes we also

consider values 𝑢𝑖𝑗 on oriented edges, where 𝑢𝑖𝑗 ≠ 𝑢 𝑗𝑖 .

To represent the full space of intrinsic triangula-

tions (which furnishes important algorithmic guar-

antees [Bobenko and Springborn 2007]), we assume

that𝑀 is a Δ-complex [Hatcher 2002, §2.1]. Unlike

a simplicial complex, elements in a Δ-complex are

not uniquely determined by their vertices. For in-

stance, two edges of the same face may be glued

together to form a cone (see inset). Hence, we write

𝑖 𝑗𝑘 ∈ 𝐹 we refer to only one of possibly several

faces with vertices 𝑖 , 𝑗 , and 𝑘—which themselves

need not be distinct. Likewise, an edge 𝑖𝑗 may connect a vertex to

itself (𝑖 = 𝑗); we refer to such edges as self-edges. Throughout we let
N𝑖 := { 𝑗 ∈ 𝑉 |𝑖𝑗 ∈ 𝐸} be the neighbors of vertex 𝑖 , excluding 𝑖 itself
in the case of a self-edge 𝑖𝑖 . The connectivity of a Δ-complex can be

encoded via an edge gluing matrix [Sharp and Crane 2020a, §4.1] or

a halfedge mesh [Botsch et al. 2010, Chapter 2].

3.2 Geometry
Any set of positive edge lengths ℓ : 𝐸 → R>0 that satisfy the

triangle inequality ℓ𝑖 𝑗 + ℓ𝑗𝑘 > ℓ𝑘𝑖 at each triangle corner determines

a valid intrinsic metric, i.e., a Euclidean geometry for each triangle.

We typically obtain initial edge lengths ℓ𝑖 𝑗 = ∥𝑝𝑖 − 𝑝 𝑗 ∥ from input

vertex positions 𝑝 : 𝑉 → R3, but in principle could start with any

abstract metric (e.g., coming from a cone flattening [Soliman et al.

2018]). Interior angles 𝜃𝑖
𝑗𝑘
∈ (0, 𝜋) at corners can be determined

Fig. 6. Notation and conventions for tangent vectors (left), parallel transport
(center), and the logarithmic/exponential maps (right).

from the edge lengths, via the law of cosines. We use ∥v∥ to denote

the Euclidean norm of any vector v ∈ R𝑛 .

3.2.1 Curvature. Intrinsically, the curvature of a surface is com-

pletely described by its Gaussian and geodesic curvature—though

an intrinsically flat surface can still be extrinsically bent like a crum-

pled sheet of paper (Fig. 5). On a triangle mesh, letΘ𝑖 =
∑
𝑖𝑗𝑘∈N𝑖

𝜃𝑖
𝑗𝑘

be the angle sum around vertex 𝑖 . The discrete Gaussian curvature
at interior vertex 𝑖 is then given by the angle defect

𝐾𝑖 := 2𝜋 − Θ𝑖 , (1)

measuring deviation from the angle sum 2𝜋 of the flat plane. Like-

wise, the discrete geodesic curvature at boundary vertex 𝑖 is

𝜅 𝑗 := 𝜋 − Θ𝑗 , (2)

measuring deviation from a straight line.

3.2.2 Tangent Vectors. In a small neighborhood of any vertex 𝑖 ,

the intrinsic metric looks like a cone of total angle Θ𝑖 ; we use T𝑖𝑀
to denote the set of tangent vectors at 𝑖 (Fig. 6, left). Following
Knöppel et al. [2013, §6], we express the direction of any tangent

vector t ∈ T𝑖𝑀 as a normalized angle 𝜙 := 2𝜋𝜃/Θ ∈ [0, 2𝜋), where 𝜃
is the angle of t relative to an arbitrary but fixed reference edge 𝑖 𝑗0.

The vector itself is then encoded as a complex number ∥t∥𝑒𝚤𝜙 ∈ C,
where 𝚤 is the imaginary unit. In particular, the angular coordinate
𝜙𝑖𝑗 ∈ [0, 2𝜋) encodes the outgoing direction of an oriented edge

𝑖𝑗 ; we use e𝑖𝑗 ∈ T𝑖𝑀 to denote the vector with direction 𝜙𝑖 𝑗 and

magnitude ℓ𝑖 𝑗 . The corresponding direction at vertex 𝑗 is given by

𝜙 𝑗𝑖 + 𝜋 . Hence, we can parallel transport vectors from T𝑖𝑀 to T𝑗𝑀
(Fig. 6, center) via a rotation by R𝑖 𝑗 := 𝑒𝚤 ((𝜙 𝑗𝑖+𝜋)−𝜙𝑖𝑗)

(encoded by

a unit complex number). See Sharp et al. [2019b, §3.3 and §5.2] for

further discussion.

3.2.3 Exponential and LogarithmicMap. The exponential map exp𝑖 (t)
of a tangent vector t at vertex 𝑖 computes the point 𝑝 reached by

starting at vertex 𝑖 and walking straight (i.e., along a geodesic) with

initial direction t for a distance ∥t∥ (Fig. 6, right). In particular, for

any oriented edge 𝑖 𝑗 we have exp𝑖 (e𝑖 𝑗) = 𝑗 . For a given point 𝑝 ∈ 𝑀 ,

the logarithmic map log𝑖 (𝑝) gives the smallest tangent vector t at 𝑖
such that exp𝑖 (t) = 𝑝 . Note that, in general, log𝑖 (𝑗) may not yield

the edge vector e𝑖 𝑗 , since there may be a shorter path from 𝑖 to 𝑗 .

3.3 Retriangulation
3.3.1 Intrinsic Edge Flip. Consider an edge 𝑖 𝑗 contained in triangles

𝑖 𝑗𝑘, 𝑗𝑖𝑙 . An intrinsic edge flip replaces 𝑖 𝑗 with a geodesic arc along

the opposite diagonal 𝑘𝑙 , where the length of the new edge 𝑘𝑙 is

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Surface Simplification using Intrinsic Error Metrics • 5

�ipmeasure

(2D layout)

Fig. 7. An intrinsic flip of edge 𝑖𝑗 measures the length ℓ𝑘𝑙 of the opposite
diagonal in a 2D layout, then updates connectivity. Greedily flipping until
𝜃𝑘
𝑖𝑗
+ 𝜃𝑙

𝑗𝑖
≤ 𝜋 at all edges 𝑖𝑗 yields an intrinsic Delaunay triangulation.

determined via a planar unfolding (Fig. 7). Hence, an intrinsic flip

exactly preserves the original geometry—in particular, the discrete

curvature is unchanged. An edge 𝑖 𝑗 is flippable if and only if (i)

degree(𝑖), degree(𝑗) ≥ 2 and (ii) triangles 𝑖 𝑗𝑘, 𝑗𝑖𝑙 form a convex

quadrilateral, i.e., if both 𝜃𝑖
𝑗𝑘
+𝜃𝑖

𝑙 𝑗
and 𝜃

𝑗

𝑘𝑖
+𝜃 𝑗

𝑖𝑙
are less than 𝜋 [Sharp

and Crane 2020b, §3.1.3]. Note that these conditions are considerably

easier to check than in the extrinsic case [Liu et al. 2020, App. C].

3.3.2 Intrinsic Delaunay Triangulation. A triangulation is intrinsic
Delaunay if it satisfies the angle sum condition 𝜃𝑘

𝑖𝑗
+ 𝜃𝑙

𝑗𝑖
< 𝜋 at all

interior edges 𝑖𝑗 ∈ 𝐸 (Fig. 7). Such triangulations extend many useful

properties of 2D Delaunay triangulations to surface meshes—[Sharp

et al. 2021, §4.1.1] gives a detailed list. A triangulation can be made

intrinsic Delaunay via a simple greedy algorithm: flip non-Delaunay

edges until none remain [Bobenko and Springborn 2007].

4 VERTEX REMOVAL

extrinsic

intrinsic

Extrinsic simplification methods reduce vertex count by

making local changes to connectivity [Garland andHeck-

bert 1997; Hoppe 1996; Schroeder et al. 1992]. We extend

local simplification to the setting of intrinsic triangu-

lations, using vertex removal as our atomic operation.

Intrinsic simplification provides strictly more possibil-

ities than its extrinsic counterpart (see inset), since any

extrinsic operation can be represented intrinsically.

Our method removes a vertex 𝑖 in three steps, illus-

trated in Fig. 8:

(1) Intrinsically flatten 𝑖 (Sec. 4.1).

(2) Remove 𝑖 from the triangulation (Sec. 4.2).

(3) Flip to an intrinsic Delaunay triangulation (Sec. 3.3.2).

The vertex removal step extends the scheme from [Gillespie et al.

2021a, §3.5] to boundary vertices. Note that all changes to the ge-

ometry occur in the first step, redistributing the curvature at 𝑖 to

neighboring vertices 𝑗 ∈ N𝑖 . The second step merely retriangulates

a flat region, and the third step performs only intrinsic edge flips.

Hence, our error metric in Sec. 5 will need only consider the first

(flattening) step to prioritize vertex removals. Maintaining a Delau-

nay triangulation at each step helps ensure numerical robustness

throughout simplification.

Special cases. To remove an ear vertex 𝑖 ,

it is tempting to simply remove the triangle

𝑖 𝑗𝑘 containing 𝑖 . However, doing so leaves

points on the fine mesh that do not map to

flip

removeflatten

flip

Fig. 8. We decimate an interior vertex by intrinsically flattening it, flipping
to degree 3, removing it from the mesh, then flipping back to an intrinsic
Delaunay triangulation. (For boundary vertices, we instead flip to degree 2.)

any point on the coarse mesh. Instead, we transform any ear into a

regular boundary vertex by first flipping the opposite edge 𝑗𝑘 .

self-face

i i

boundary
self-edge

We cannot remove vertices 𝑖 incident

on a boundary self-edge, since every

boundary loop must contain at least

one vertex. Likewise, vertices 𝑖 of self-

faces (i.e., triangles with only a single

distinct vertex) can cause trouble for

flipping, and are skipped.

4.1 Vertex Flattening
We first eliminate all curvature at vertex 𝑖 . For this operation to

remain local and valid we must bijectively flatten the neighborhood

N𝑖 , while keeping edge lengths along the boundary of this region

fixed. Extrinsic flattening schemes can fix boundary vertices [Floater

1997; Weber and Zorin 2014], but it is unclear how to construct the

least-distorting boundary polygon with prescribed lengths. In con-

trast, the CETM algorithm of Springborn et al. [2008] supports edge

length constraints, and operates directly on an intrinsic triangula-

tion. Moreover, using a conformal map will simplify the tangent

vector prolongation scheme in Sec. 7.3.

Following Luo [2004b], two sets of edge lengths ℓ and ℓ̃ are con-
formally equivalent if there exist values 𝑢 : 𝑉 → R such that

ℓ̃𝑖𝑗 = 𝑒
(𝑢𝑖+𝑢 𝑗)/2ℓ𝑖𝑗 , ∀𝑖 𝑗 ∈ 𝐸. (3)

Given initial lengths ℓ , CETM finds conformally equivalent edge

lengths ℓ̃ with prescribed angle sums Θ̂𝑖 by minimizing a convex

energy E(𝑢).
In our case, we need only determine a single scale factor 𝑢𝑖 at the

removed vertex 𝑖 . We let Θ̂𝑖 = 2𝜋 for interior vertices (zero Gaussian

curvature), and Θ̂𝑖 = 𝜋 at regular boundary vertices (zero geodesic

curvature). Setting 𝑢 𝑗 = 0 for all other vertices 𝑗 ∈ N𝑖 ensures
that the boundary lengths are unchanged—in fact, Springborn et al.

[2008, Appendix E] show that these boundary conditions also induce

minimal area distortion. Using the expressions for the gradient and

Hessian of E from [Springborn et al. 2008, Equations 9 and 10], we

solve the 1D root finding problem ∇E(𝑢𝑖) = 0 via Newton’s method:

𝑢𝑖 ← 𝑢𝑖 −
Θ̂𝑖 −

∑
𝑖𝑗𝑘∈N𝑖

𝜃𝑖
𝑗𝑘

1

2

∑
𝑖𝑗𝑘∈N𝑖

cot𝜃𝑘
𝑖𝑗
+ cot𝜃 𝑗

𝑘𝑖

. (4)

Notice that we express this formula as a sum over faces, so that

it applies to both interior and boundary vertices. In practice, this

scheme converges in about five iterations. Occasionally, the new

edge lengths ℓ̃ (computed via Eq. (3)) fail to satisfy the triangle

inequality. In this case we try performing edge flips, à la Springborn

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

et al. [2008, §3.2]. If these flips still fail to resolve the issue, we skip

this vertex and revisit it in future coarsening iterations.

4.2 Flat Vertex Removal
To remove a flattened vertex 𝑖 , we

flip it to a degree-3 vertex and re-

place the three triangles 𝑖𝑎𝑏, 𝑖𝑏𝑐, 𝑖𝑐𝑎

incident on 𝑖 with the single trian-

gle 𝑎𝑏𝑐 (inset, left). Since the vertex

neighborhood is already flat, these

operations preserve the geometry.

Gillespie et al. [2021a, Appendix D.1]

show that iteratively flipping any re-

maining flippable edge 𝑖 𝑗 incident on

𝑖 will yield a degree-3 vertex, so long

as the neighborhoodN𝑖 remains sim-

plicial. Hence, at each step we first

flip any self-edges (𝑖 = 𝑗); if there are

none, we flip the edge 𝑖 𝑗 with largest

angle sum 𝜃𝑘
𝑖 𝑗
+ 𝜃𝑙

𝑗𝑖
(since only convex triangle pairs can be flipped).

In the rare case where degree(𝑖) > 3 and no flippable edges remain,

we skip this vertex removal and revert the mesh to its previous state.

If 𝑖 is a boundary vertex, we perform edge flips until degree(𝑖) = 2

and replace the two resulting triangles 𝑖𝑎𝑏, 𝑖𝑐𝑎 with the single trian-

gle 𝑎𝑏𝑐 (inset, right). Here again the geometry is unchanged, since 𝑖

has no geodesic curvature. When 𝑖 is an ear vertex we need only

flip the opposite edge to give 𝑖 degree-2, while for regular boundary

vertices we use the same procedure as for interior vertices.

After removal, we must also update the angles 𝜙 𝑗𝑘 and corre-

sponding edge vectors e𝑗𝑘 for each edge 𝑗𝑘 with endpoints in N𝑖
(Sec. 3.2.2). We then flip the mesh to an intrinsic Delaunay triangu-

lation, à la Sec. 3.3.2.

5 ERROR METRIC
To prioritize vertex removals, we must define a notion of cost. Stan-

dard extrinsic metrics, such as QEM, are not appropriate: even if

they could somehow be evaluated using intrinsic data, they would

attempt to preserve aspects of the geometry that are not relevant

for intrinsic problems (as discussed in Sec. 1). Our method is how-

ever inspired by the remarkable effectiveness of greedy local error

accumulation in QEM. Likewise, metrics that focus on finite ele-

ment equality (à la [Shewchuk 2002]) are not appropriate, since at

intermediate steps of coarsening the triangulation used to encode

the intrinsic geometry is transient and subject to change. Standard

considerations from finite element theory do however provide good

justification for flipping the final triangulation to Delaunay.

Our ICEmetric is instead based on two intrinsic and triangulation-

independent concepts: optimal transport [Peyré et al. 2019], and the

Karcher mean [Karcher 2014]. Optimal transport helps quantify

the effort of redistributing mass, providing the local cost for our

“memoryless” metric (Sec. 5.1). Karcher means encode the center of

mass of all fine vertices contributing to a coarse vertex 𝑖 , providing

the basis for our “memory-based” metric (Sec. 5.2). These two pieces

fit together in a natural way: after a single vertex removal, the

mass-weighted norm of all error vectors t𝑖 encoding Karcher means

is exactly equal to the optimal transport cost. Hence, after many

vertex removals this norm approximates the cost of transporting

the initial fine mass distribution to the coarsened vertices. Vertex

removals that keep cost small should hence be prioritized, since

they better preserve the initial mass distribution. Just as in QEM,

this information is captured by a fixed-size representation (masses

and tangent vectors at each vertex) that is easily agglomerated

during coarsening. To get a good geometric approximation, we use

curvature as our basic notion of “mass”, but can also use other

attributes such as area (Sec. 5.4).

memoryless memory-basedFor clarity of exposition we first

define error metrics in 2D, before

generalizing to surfaces (Sec. 5.3),

and incorporating data like curva-

ture or other attributes (Sec. 5.4).

Note that we view the memoryless

error metric only as an intermediate step to explain the memory-

based version, and use the memory-based metric for all results

and experiments. As suggested by the inset example, the memory-

less metric tends to keep vertices at highly-curved points, whereas

the memory-based version better distributes vertices proportional

to nearby curvature. However, there may be application contexts

where the memoryless version is preferable (e.g., [Hoppe 1999]).

5.1 2D Error Metric (Memoryless)
Consider a mass distribution𝑚 : 𝑉 → R≥0 at mesh vertices, repre-

senting any nonnegative user-defined quantity (signed quantities

will be addressed in Sec. 5.4). Suppose we remove vertex 𝑖 , redis-

tributing its mass𝑚𝑖 to its immediate neighbors 𝑗 ∈ N𝑖 . In partic-

ular, let 𝛼𝑖 𝑗 ∈ [0, 1] be the fraction of 𝑚𝑖 sent to vertex 𝑗 (hence∑
𝑗∈N𝑖

𝛼𝑖 𝑗 = 1), so that the new mass at 𝑗 is

𝑚 𝑗 =𝑚 𝑗 + 𝛼𝑖 𝑗𝑚𝑖 . (5)

5.1.1 Error Vectors. Suppose we want to track not only the mass

distribution, but also where mass came from. Then at each vertex 𝑖

we can store an error vector t𝑖 (initially set to zero) pointing to the

center of mass c𝑖 of all vertices that contributed to the current value
of𝑚𝑖 . Explicitly, after removing 𝑖 , the center of mass at vertex 𝑗 is

c̃𝑗 =
𝛼𝑖 𝑗𝑚𝑖x𝑖 +𝑚 𝑗x𝑗
𝛼𝑖 𝑗𝑚𝑖 +𝑚 𝑗

,

mass before removal mass a�er removal error vectors

Fig. 9. The local cost of removing any vertex 𝑖 is the optimal transport cost
of transporting its mass𝑚𝑖 to its neighbors 𝑗 ∈ N𝑖 . We can also calculate
this cost as the sum of new masses𝑚 𝑗 times the length of error vectors �̃� 𝑗 ,
which point to the new centers of mass c̃𝑗 .

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Surface Simplification using Intrinsic Error Metrics • 7

where x𝑖 ∈ R2 denotes the location of vertex 𝑖 . Hence, the vector

pointing from x𝑗 to c̃𝑗 is

t̃𝑗 = c̃𝑗 − x𝑗 =
𝛼𝑖 𝑗𝑚𝑖e𝑗𝑖
𝛼𝑖 𝑗𝑚𝑖 +𝑚 𝑗

,

where e𝑗𝑖 = x𝑖 − x𝑗 is the vector along edge 𝑗𝑖 . The total cost of

removing 𝑖 can then bemeasured by summing up the mass-weighted

norms of these vectors. Noting that ∥e𝑗𝑖 ∥ = ℓ𝑖 𝑗 , we get a cost

𝐶𝑖 =
∑︁
𝑗∈N𝑖

𝑚 𝑗 ∥̃t𝑗 ∥ =
∑︁
𝑗∈N𝑖

𝛼𝑖𝑗𝑚𝑖 ℓ𝑖𝑗 . (6)

This cost also coincides with the so-called 1-Wasserstein distance be-
tween the old and new mass distribution [Peyré et al. 2019, Chapter

2]. Intuitively, this distance measures the total “effort” of moving

mass from 𝑖 to neighbors 𝑗 , penalizing not only the amount of mass

moved, but also the distance traveled.

5.2 2D Error Metric (Memory-Based)
Rather than assign a cost to each vertex removal in isolation, we

can accumulate information about how mass has been redistributed

across all prior removals. At each step, we still update the mass

distribution via Eq. (5), but now update vectors encoding the centers

of mass via

t̃𝑗 =
𝛼𝑖𝑗𝑚𝑖 (t𝑖 + e𝑗𝑖) +𝑚 𝑗 t𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗
. (7)

In other words, we re-express t𝑖 rela-
tive to x𝑗 by adding the edge vector e𝑗𝑖 ,
then take the mass-weighted average

of the old error vector t𝑗 with this new

vector. The overall cost is still evalu-

ated via Eq. (6), but now approximates

the effort of moving the initial mass distribution to the current

one—rather than just penalizing the most recent change. This cost

is only approximate since the 1-Wasserstein distance to the center

of mass is not in general equal to the distance to the original fine

distribution—but it is usually quite close. Thus, our error metric

favors decimation sequences which keep each coarse vertex close

to the center of all fine vertices that contribute to its mass.

5.3 Surface Error Metric (Memory-Based)

i j

To extend this scheme to surfaces,

we must address the fact that tan-

gent vectors from different tangent

spaces cannot be added directly. In

particular, we cannot re-express the

error vector t𝑖 at a neighboring ver-
tex 𝑗 by simply adding the edge vec-

tor e𝑗𝑖 . If c := exp𝑖 (t𝑖) is the center
of mass encoded by t𝑖 , then ideally

we would just compute the vector

log𝑗 (c) pointing from 𝑗 to c (see in-
set). Although there are algorithms for computing the log map (e.g.,
[Sharp et al. 2019b, §8.2] and [Sharp and Crane 2020b, §6.5]), they

are far too expensive to apply for each vertex removal. Instead, we

approximate this vector by parallel transporting t𝑖 from 𝑖 to 𝑗 (à
la Sec. 3.2.2) and offsetting by e𝑗𝑖 as in 2D, yielding a new vector

curvature
before removal

fla�en vertex i

curvature
a�er removal

Fig. 10. Flattening a vertex 𝑖 changes the angle sums Θ at neighboring
vertices 𝑗 , effectively redistributing the discrete curvature 𝐾 = 2𝜋 − Θ. We
use the change in curvature from 𝐾 to 𝐾 to guide simplification.

t̂𝑗 := R𝑖𝑗 t𝑖 + e𝑗𝑖 . The final error vector t̃𝑗 stored at 𝑗 is then given

by a weighted average, just as in Sec. 5.2:

t̃𝑗 =
𝛼𝑖𝑗𝑚𝑖 (R𝑖𝑗 t𝑖 + e𝑗𝑖) +𝑚 𝑗 t𝑗

𝛼𝑖𝑗𝑚𝑖 +𝑚 𝑗
. (8)

The mass is updated as in Eq. (5), and the overall cost is again

given by Eq. (6). Note, then, that on curved surfaces the vector t̃𝑖
merely approximates the center of mass of the fine mass distribution

corresponding to coarse vertex 𝑖 . Yet since this approximation is

reasonably accurate and cheap to compute, it provides an efficient

error metric akin to QEM.

5.4 Intrinsic Curvature Error Metric
Due to the Gauss-Bonnet theorem, flattening a vertex 𝑖 (à la Sec. 4.1)
conservatively redistributes curvature to neighboring vertices 𝑗 ,

making curvature a natural “mass” distribution to guide simplifica-

tion. A challenge here is that the old and new curvatures 𝐾 and 𝐾

are not in general positive quantities. One possibility might be to

use a transport cost for signed measures such as [Mainini 2012], but

doing so would require us to solve a small optimal transport problem

for each vertex removal. We instead adopt a cheap alternative. In

particular, we define convex weights

𝛼𝑖𝑗 :=
|𝐾𝑗 − 𝐾𝑗 |∑

𝑙∈N𝑖
|𝐾𝑙 − 𝐾𝑙 |

. (9)

For boundary vertices we use the same formula, but replace Gaussian

curvature 𝐾 with geodesic curvature 𝜅. If vertex 𝑖 is already flat

prior to removal, then there is no change in curvature and we simply

distribute mass equally to all neighbors. We then split the initial

fine curvature function 𝐾 (or 𝜅) into two positive mass functions

𝐾+
𝑖
:= max(𝐾𝑖 , 0) and 𝐾−𝑖 := −min(𝐾𝑖 , 0). Each of these quantities

is tracked throughout simplification exactly like𝑚𝑖 in Sec. 5.3, using

two separate vectors t+
𝑖
and t−

𝑖
(resp.), and weights 𝛼 from Eq. (9).

The overall error, which defines the ICE metric, is then the sum of

the errors in the two curvature functions (à la Eq. (6)). Note that if a
vertex 𝑖 cannot be flattened or removed, we assign it an infinite cost

(which may later get updated to a finite value when its neighbors

are removed—see Alg. 1).

5.4.1 Auxiliary Data. Similar to [Garland and Heckbert 1998], other

quantities at vertices (areas, colors, etc.) can be used to drive simpli-

fication in an analogous fashion: each signed quantity is split into

two positive mass functions, and a list of all “channels”𝑚0, . . . ,𝑚𝑘

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

is tracked along with associated tangent vectors t0, . . . , t𝑘 . The cost
is then given by

𝐶𝑖 =
∑︁
𝑗∈N𝑖

𝑘∑︁
𝑝=0

𝑤𝑝𝑚
𝑝

𝑖
∥t𝑝
𝑗
∥,

where a choice of weights𝑤1, . . . ,𝑤𝑘 ∈ R≥0 puts an emphasis on

different features. For instance, Fig. 11 shows the impact of different

weightings on curvature versus area.

6 SIMPLIFICATION
We now have all the ingredients to perform intrinsic simplification.

Just as in QEM, we first initialize a priority queue by evaluating

the ICE metric at all vertices (Sec. 6.1), then greedily remove the

lowest-cost vertex from this queue until we reach a target vertex

count 𝑛 (Sec. 6.2), or until no more vertices can be removed. Alg. 1

provides pseudocode; a full reference implementation can be found

at https://github.com/HTDerekLiu/intrinsic-simplification.

6.1 Initialization
For each vertex 𝑖 ∈ 𝑉 we compute the initial masses𝑚𝑖 (e.g., the
curvature functions 𝐾+ and 𝐾− from Sec. 5.4) and an initial error

vector t𝑖 = 0. To compute the cost of removing 𝑖 we perform a

tentative flattening à la Sec. 4.1 and use the resulting weights 𝛼𝑖 𝑗
from Eq. (9) to evaluate the cost 𝐶𝑖 via the second sum in Eq. (6). If

flattening yields invalid edge lengths, or vertex 𝑖 cannot be flipped

to degree 3 (or 2 on the boundary), we let 𝐶𝑖 = ∞. After evaluating
the cost function, we “undo” the tentative removal, i.e., we restore
the previous connectivity and revert any changes to edge lengths.

6.2 Coarsening
At each iteration, we pick the vertex 𝑖 with the minimum cost 𝐶𝑖
from our priority queue. If 𝐶𝑖 = ∞, then no more vertices can

be removed and we terminate. Otherwise, we apply the removal

procedure from Sec. 4. The resulting weights 𝛼𝑖𝑗 (Eq. (9)) are used

to compute new masses𝑚 𝑗 (Eq. (5)) and updated transport vectors

t̃𝑗 (Eq. (8)) for each neighbor 𝑗 ∈ N . We then flip the mesh back to

intrinsic Delaunay à la Sec. 3.3.2—note that to initialize the greedy

flipping algorithm we need only enqueue edges in N𝑖 , since the

mesh was already Delaunay prior to removing vertex 𝑖 . Finally, we

must also update the priority queue with new costs𝐶 𝑗 by tentatively

flattening each neighbor 𝑗 , and evaluating the first sum in Eq. (6)

(this time over neighbors 𝑘 ∈ N𝑗). Here, finite costs may become

infinite (or vice versa), since vertices that were previously removable

may no longer be removable.

6.3 Intrinsic Retriangulation
Though our overall goal is to coarsen the input, carefully adding
vertices to the mesh via intrinsic Delaunay refinement [Sharp et al.

2019a, Section 4.2] can be quite valuable in two distinct ways. On

typical models, this pre- or post-processing adds only a fraction of

a second to overall execution time [Sharp et al. 2019a, Section 6].

Pre-refinement. As stated, our coarsening algorithm (Alg. 1) can

produce only meshes whose vertices 𝑉 are a subset of the input

vertices𝑉 . However, we can often obtain a smaller or more accurate

Algorithm 1: Intrinsic Coarsening
Input : 𝑀, ℓ, 𝑛 ⊲ mesh, edge lengths, target vertex count

Output : 𝑀, ℓ̃ ⊲ coarsened mesh & edge lengths

1. ⊲ initialization

2. 𝑄 ← EmptyPriorityQueue()
3. 𝑀, ℓ ← FlipToDelaunay(𝑀, ℓ) ⊲ Sec. 3.3

4. foreach vertex 𝑖 ∈ 𝑉 do
5. (𝑚𝑖 , t𝑖) ← ((𝐾−𝑖 , 𝐾

+
𝑖
), 0) ⊲ initial mass & error

𝑐 ← IntrinsicCurvatureError(𝑀, ℓ, 𝑖) ⊲ Sec. 5.4

6. Enqeue(𝑄, 𝑖, 𝑐)
7. ⊲ coarsening

8. while VertexCount(𝑀) > 𝑛 and !Empty(𝑄) do
9. 𝑖 ← Pop(𝑄) ⊲ extract minimum-cost vertex

10. ℓ ← Flatten(𝑀, ℓ, 𝑖) ⊲ Sec. 4.1

11. 𝑀, ℓ,𝑚, t← RemoveVertex(𝑀, ℓ, 𝑖) ⊲ Sec. 4.2, 5.3

12. 𝑀, ℓ ← FlipToDelaunay(𝑀, ℓ, 𝑖)
13. foreach vertex 𝑗 ∈ N𝑖 do
14. 𝑐 ← IntrinsicCurvatureError(𝑀, ℓ, 𝑗)
15. 𝑄 ← UpdatePriority(𝑄, 𝑗, 𝑐)

16. return (𝑀, ℓ)

representation of the original metric by first inserting a larger set

of candidate vertices, prior to simplification. For instance, in Fig. 12

we run Delaunay refinement on the input until all corner angles

𝜃𝑖
𝑗𝑘

are no smaller than 25
◦
. As a result, it becomes much easier to

construct high-quality coarse triangles in regions with few input

vertices (e.g., on the rocket model). Fig. 13 shows how this strategy

can even improve quality on coarse input models, where we do not

seek to reduce the vertex count.

Post-refinement. Since coarsening maintains an intrinsic Delau-

nay triangulation, the final mesh is already guaranteed to exhibit

properties valuable for applications—such as positive edge weights

for the discrete Laplacian [Bobenko and Springborn 2007]. As an

optional post-process, we can also provide hard guarantees on ele-

ment quality: as recently proven by Gillespie et al. [2021a], intrinsic

Delaunay refinement yields a triangulation where the smallest cor-

ner angle 𝜃
𝑗𝑘
𝑖

is no smaller than 30
◦
(hence no greater than 120

◦
), so

long as (i)𝑀 is closed and (ii) Θ𝑖 ≥ 60
◦
for all input vertices 𝑖 ∈ 𝑉 .

In practical terms, this guarantee ensures that even very low-quality

input meshes can be used successfully in numerical algorithms such

as those explored in Sec. 8. This feature is unique to the intrinsic set-

ting: extrinsic surface meshing algorithms like restricted Delaunay
refinement provide guarantees on global geometry and topology,

but not on element quality [Cheng et al. 2012, Chapter 13], nor even

positive weights for the Laplacian. The only danger is that the final

triangulation is no longer guaranteed to be coarser than the input

mesh, though in practice this situation is unlikely to occur unless

the input is already quite coarse.

6.4 Numerics
As in any mesh processing algorithm, near-degenerate triangles

(whether in the input or constructed during simplification) can

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://github.com/HTDerekLiu/intrinsic-simplification

Surface Simplification using Intrinsic Error Metrics • 9

input 100/0 80/20 60/40 40/60 20/80 0/100
% curvature/% area

Fig. 11. We can mix and match different quantities to guide coarsening. Here, for instance, strongly weighting Gaussian curvature emphasizes preservation of
intrinsic geometry, whereas strongly weighting area prioritizes uniform triangle size.

Fig. 12. Adding vertices to the mesh prior to coarsening provides more
options for simplification and remeshing, since coarse vertices𝑉 no longer
need be a subset of fine vertices𝑉 .

co

rn
er

s

corner angle corner angle
0o 60o 120o

input
(same vertex count)
ours

0o 60o 120o

Fig. 13. Even for an identical vertex count, refining then coarsening yields
higher quality elements, as quantified by histograms of corner angles 𝜃𝑖

𝑗𝑘
.

cause numerical issues due to floating point error. We hence follow

best practices wherever possible [Shewchuk 1999], e.g., to determine

if a point 𝑝 is inside a triangle during pointwise mapping (Sec. 7.1)

we compute the sign of det(𝑝 − 𝑥𝑖 , 𝑝 − 𝑥 𝑗) for each triangle edge

𝑖 𝑗 , rather than directly computing barycentric coordinates (thereby

avoiding division by area).

7 MAPPING AND PROLONGATION
For some tasks (say, computing Laplacian eigenvalues) the coarsened

triangulation can be used directly; more broadly we need some way

of evaluating correspondence between the coarse and fine mesh.

Here we consider two basic viewpoints: correspondence of points
(Sec. 7.1) and correspondence of functions (Sec. 7.2).

7.1 Pointwise Mapping
To map any point 𝑝 on the fine mesh to a point ′̃ on the coarse mesh,

we track its barycentric coordinates through local coarsening oper-

ations (namely: edge flips, vertex flattenings, and vertex removals).

This map is trivially bijective, since at each step we simply re-write

the given barycentric coordinates with respect to a different triangu-

lation of the same planar region. The only way to violate bijectivity

would be to perform a non-bijective vertex flattening—which we ex-

plicitly forbid (see Sec. 4.1). In the applications we consider (Sec. 8),

all points 𝑝 that must be tracked are known ahead of time, and can

be tracked during simplification. To evaluate this map on demand,

one could record the list of local operations, and “re-play” these

operations for each new query point, as in [Liu et al. 2020].

�ip

p

p p

p
Edge flips. To track a point 𝑝 through an

intrinsic flip of edge 𝑖 𝑗 , we unfold the two tri-

angles 𝑖 𝑗𝑘, 𝑗𝑖𝑙 into the plane (e.g., using for-

mulas from Sharp et al. [2021, Section 2.3.7]),

and compute the barycentric coordinates of

𝑝 in the new triangle (see inset).

Vertex flattening. We must also compute new barycentric coor-

dinates 𝑏 after each vertex flattening (Sec. 4.1). Here we use the

projective interpolation scheme of Springborn et al. [2008, §3.4].

Since edge lengths satisfy Eq. (3), this scheme defines a continuous

(𝐶0
) bijective map. Let 𝑏𝑖 , 𝑏 𝑗 , 𝑏𝑘 be barycentric coordinates for a

point in face 𝑖 𝑗𝑘 , and let 𝑢𝑖 be the scale factor at 𝑖 . Then

(𝑏𝑖 , 𝑏 𝑗 , 𝑏𝑘) =
(𝑒𝑢𝑖𝑏𝑖 , 𝑏 𝑗 , 𝑏𝑘)
𝑒𝑢𝑖𝑏𝑖 + 𝑏 𝑗 + 𝑏𝑘

, (10)

where the denominator ensures our updated values still sum to 1.

remove

i

i

i

i

Vertex removal. Once vertex 𝑖 is flattened and
flipped to degree three, its neighborhood can

be laid out in the plane without distortion (see

inset). Here we apply standard formulas to com-

pute barycentric coordinates for vertex 𝑖 in the

new triangle, along with coordinates for any

points located in the three removed triangles.

7.2 Prolongation
Algorithms such as multigrid (Sec. 8.7) often require not only point-

wise correspondences, but also prolongation operatorswhich transfer
functions from a coarse mesh to a finer one. We define a prolon-

gation operator via an approach similar to Lee et al. [1998] and

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

fine mesh vector field
on coarse mesh

prolongation
to fine mesh

|V |=15,746 |V |=1000

Fig. 14. We significantly reduce the cost of computing smooth vector fields
on a fine mesh (left) by solving on a coarse mesh (center) and applying vector
prolongation (right).

Liu et al. [2021]. In particular, we track the barycentric coordinates

of all fine vertices à la Sec. 7.1. A function on the coarse mesh is

then mapped to the fine mesh via barycentric linear interpolation.

Explicitly, suppose each fine vertex 𝑖 ∈ 𝑉 has barycentric coordi-

nates 𝑏1, 𝑏2, 𝑏3 in coarse triangle 𝑛1𝑛2𝑛3 ∈ 𝐹 . We then build a sparse

matrix P ∈ R |𝑉 |× |𝑉 | where row 𝑖 has three nonzeros P𝑖,𝑛 𝑗
= 𝑏𝑛 𝑗

, for

𝑗 = 1, 2, 3. Prolongation then amounts to a matrix-vector product

𝑓 = P𝑓 , where 𝑓 ∈ R |𝑉 | is a function on the coarse mesh.

7.3 Vector Field Prolongation
We can also transfer vector fields from coarse to fine (Fig. 14). This

process has two steps (detailed below): first interpolate vectors over

the coarse mesh, then sample the interpolated vector field onto the

vertices of the fine mesh. Both steps are again represented by a

single prolongation matrix Pvec ∈ C |𝑉 |× |𝑉 | , this time with com-

plex entries. However, since we store tangent vectors in a different

normalized coordinate system at each vertex (Sec. 3.2.2), we must

compute unnormalized vectors before performing interpolation. In

particular, let u0
𝑖
∈ C be the angle-normalized vectors stored at

vertices, and let 𝜙𝑖 := arg(u0
𝑖
) be the corresponding angles. Then

u𝑖 := ∥u0𝑖 ∥𝑒
𝚤Θ𝑖𝜙𝑖/2𝜋

are the corresponding unnormalized vectors,

and prolongation amounts to a matrix-vector multiply Pvecu. Note
that this same prolongation scheme can be applied as-is to sym-

metric direction fields (line fields, cross fields, etc.), via the complex

encoding introduced by Knöppel et al. [2013].

i
j

k7.3.1 Coarse Interpolation. In each tri-

angle 𝑖 𝑗𝑘 , we adopt a coordinate system

where oriented edge 𝑖𝑗 points in the𝜙 = 0

direction. Let w𝑖𝑗 := (e𝑖𝑗/ℓ𝑖𝑗)Θ𝑖/2𝜋
be the

unit vectors along each oriented edge 𝑖 𝑗 ,

in unnormalized coordinates at 𝑖 , and let

𝛽𝑖𝑗 := 0, 𝛽 𝑗𝑘 := (𝜋 − 𝜃 𝑗
𝑘𝑖
), and 𝛽𝑘𝑖 := (𝜋 − 𝜃

𝑗

𝑘𝑖
) + (𝜋 − 𝜃𝑘𝑖 𝑗)

be the angles of these unit vectors with respect to the coordinate

system of the triangle. Then z𝑖 := 𝑒𝚤𝛽𝑖𝑗 /w𝑖𝑗 is a rotation taking u𝑖 to
the corresponding vector in the triangle’s coordinate system, and we

can express the interpolated vector at any point p with barycentric

coordinates 𝑏 (p) as

u(p) := 𝑏𝑖 (p)z𝑖u𝑖 + 𝑏 𝑗 (p)z𝑗u𝑗 + 𝑏𝑘 (p)z𝑘u𝑘 .

Note that the resulting field is not continuous across edges, but is

sufficiently regular for prolongation; if desired, better continuity

can be achieved via the scheme of Liu et al. [2016, Section 4.3].

7.3.2 Fine Sampling. Consider a fine ver-
tex 𝑖 ∈ 𝑉 mapped to a point x𝑖 in coarse

triangle 𝑛1𝑛2𝑛3 ∈ 𝐹 (expressed in a 2D

layout, via the tracked barycentric coor-

dinates). To map the interpolated vector

u(x𝑖) back to the vertex coordinate sys-

tem, we must then compute a change of

coordinates from triangle 𝑛1𝑛2𝑛3 to the

tangent space T𝑖𝑀 . Since we change the geometry via conformal

flattening (Sec. 4.1), this change of coordinates is well-described by

measuring the rotation and scaling of a single tangent vector. In par-

ticular, for any 𝑗 ∈ N𝑖 such that x𝑗 is contained in the same triangle,

we let w𝑖 𝑗 := e𝑖 𝑗/∥e𝑖𝑗 ∥ be the unit vector along the fine edge, and
compute the corresponding unit vector w̃𝑖 𝑗 := (p𝑗 − p𝑖)/∥p𝑗 − p𝑖 ∥
on the coarse triangle (approximating the tangent map). The rota-

tion and scaling between coordinate systems is then captured by

the complex number𝜓𝑖 := w𝑖𝑗/w̃𝑖𝑗 , and the final interpolated value

in the normalized coordinate system at 𝑖 is given by 𝜓𝑖u𝑖 (x𝑖). In
the rare case where no neighboring x𝑗 sits in the same triangle,

we simply take the average of known interpolated values. Overall,

then, row 𝑖 of the vector prolongation matrix Pvec has three nonzero
entries 𝑏 𝑗𝜓𝑖z𝑗 , corresponding to the three columns 𝑛 𝑗 , 𝑗 = 1, 2, 3.

8 EVALUATION & RESULTS
Here we evaluate the performance, robustness, and quality of our

method (Sec. 8.2 and 8.3), compare it to extrinsic alternatives (Sec. 8.4),

and explore its effectiveness in the context of several fundamental

algorithms (Sec. 8.5, 8.6, and 8.7). We also describe the strategy used

to visualize results throughout the paper (Sec. 8.1). Note that all

experiments were run on a 4.1GHz Intel i7-8750H with 16GB RAM.

8.1 Visualization
Traditionally, intrinsic triangulations are visualized via a common
subdivision [Fisher et al. 2006; Gillespie et al. 2021a; Sharp et al.

2019a], i.e., the input mesh is split along geodesic arcs correspond-

ing to intrinsic edges. However, since coarsening does not exactly

preserve intrinsic geometry, edges may no longer be geodesics. We

instead use a texture mapping approach (Fig. 15). Given initial tex-

ture coordinates (computed via [Sawhney and Crane 2018]), we

compute barycentric coordinates for each texel covered by a fine

triangle. These coordinates are then tracked through the coarsening

process, à la Sec. 7.1. Following Sharp et al. [2019a] we assign a

greedy coloring to the coarse triangles; texels adopt the color of

their associated triangle. This visualization may not exactly depict

coarse lengths or areas, but faithfully represents the bijective map.

A possible alternative is to construct an explicit topological sub-
division, where edges need not be geodesics [Schmidt et al. 2020;

Takayama 2022], but which may enable more sophisticated attribute

transfer [Gillespie et al. 2021a, §4.3].

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Surface Simplification using Intrinsic Error Metrics • 11

sample track texture

texture
domain
texture
domain

Fig. 15. To visualize a coarse intrinsic triangulation on a mesh with texture
coordinates (left), we track the barycentric coordinates of each texel (center
left) through the simplification process (center right), and use coarse triangle
IDs to color the final texels (right).

8.2 Benchmark
We evaluated our method on about 6k manifold meshes from the

Thingi10k dataset [Zhou and Jacobson 2016]. For robustness exper-

iments we preprocess meshes via intrinsic Delaunay refinement

[Sharp et al. 2019a, §4.2] with a lower angle bound of 25
◦
, pro-

viding more candidate locations for coarse vertices. Since some

meshes contain thousands of connected components, we normalize

input/output vertex counts by the number of components.

Performance. Fig. 16 plots the total cost of our method, includ-

ing decimation, maintaining a bijective map, and constructing the

prolongation operator P. Since each vertex removal is an 𝑂 (1) op-
eration, we achieve near-linear scaling with respect to input size,

though for very large meshes the 𝑂 (𝑛 log𝑛) cost of maintaining

a priority queue will ultimately dominate. In absolute terms, our

method decimates about 10,000 vertices per second.

Robustness. Our method fails only if no remaining vertex can be

removed, i.e., if (i) flattening would violate the triangle inequality or

(ii) flipping to degree-3 is not possible (Sec. 4). We hence quantify

robustness by coarsening as much as possible, then measuring the

ratio |𝑉 |/|𝑉 |. In Fig. 17 we successfully reduce 98% and 84% of

models down to 10% and 1% (resp.) of the input resolution, prior
to Delaunay refinement. Large ratios occur only for high-genus

models that cannot be significantly coarsened without modifying

global topology. On about 0.1% of meshes vertex removal failed due

to floating-point error; integer coordinates [Gillespie et al. 2021a]
may help to further improve robustness.

8.3 Measuring Distortion
To evaluate our method, we measure the para-

metric distortion of the bijective map 𝜑 : 𝑀 →
𝑀 between the fine and coarse mesh—which

is distinct from the ICE metric used for coars-

ening. For each fine edge 𝑖𝑗 we first find an ap-

proximation ℓ̂𝑖𝑗 of its length under 𝜑 . Since all

fine edges are minimal geodesics in the extrin-

sic mesh, we assume this property is preserved

input vertices percent reduction

time (s) time (s)

103

10-1

100

101

102

104 105 106 0% 20% 40% 60% 80% 100%
0

20

40

60

80

100

O(n)

Fig. 16. Since we use only greedy local operations, total cost is roughly
linear in both mesh size and percent reduction (including the cost to build
P). Left: increasingly fine subdivisions are coarsened to 1% of their initial size.
Right: a subdivision with 750k vertices is coarsened to various resolutions.

input vertices high genus outliers

103

102

101

106105104103102101

output vertices

Fig. 17. Our method can coarsen even difficult meshes down to a small
number of vertices. Here, 98% of Thingi10k meshes are coarsened to less
than 10% of their input size (left). The exception are very high-genus meshes,
which cannot be coarsened without changing the global topology (right).

under 𝜑 and compute the minimal geodesic distance between p𝑖
and p𝑗 If both endpoints sit in the same coarse triangle 𝑎𝑏𝑐 , we

can simply measure the distance between image points p𝑖 := 𝜑 (𝑖)
and p𝑗 := 𝜑 (𝑗) in a local layout of 𝑎𝑏𝑐 , computed via barycentric

coordinates. Otherwise, we compute geodesic distance using the

method of Mitchell et al. [1987]. Finally, for each fine triangle 𝑖 𝑗𝑘 we

use lengths ℓ̂𝑖𝑗 , ℓ̂𝑗𝑘 , ℓ̂𝑘𝑖 to construct representative vertex positions

p𝑖 , p𝑗 , p𝑘 ∈ R2, via Sharp et al. [2021, §2.3.7]. Distortion relative to

input vertices p0
𝑖
, p0
𝑗
, p0
𝑘
can then be quantified using any standard

per-triangle measure—we use the anisotropic distortion and area
distortion as defined by Khodakovsky et al. [2003, §2].

8.4 Comparison with Extrinsic Methods
Relative to past methods, the flexibility gained by working in the

larger space of intrinsic triangulations leads to smaller geometric

distortion on meshes of equivalent size. For instance, in Fig. 18

we coarsen a 28k bunny mesh down to 200 vertices with both the

method of Liu et al. [2021] and our method. Even on this highly

regular geometry we observe a modest reduction of both area dis-

tortion and anisotropic distortion. For more difficult triangulations,

or surfaces with lower intrinsic curvature (e.g., Fig. 1), we observe
more significant gains. As an extreme case, Fig. 19 coarsens a devel-

opable surface from [Rabinovich et al. 2018; Verhoeven et al. 2022]

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

12 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

anisotropic distortion area distortion (log)

0

0

max max

min

Liu et al. 2021
(mean error: 9.6%)

ICE
(mean error 8.1%)

Liu et al. 2021
(mean error: 1.19)

ICE
(mean error: 1.12)

Fig. 18. Even on an extremely nice triangulation of a highly regular surface
we see a reduction in distortion relative to past methods—owing to the
much larger space of intrinsic triangulations.

input

% error

QEM

ICE

0% 0.1% 9.5% 81.7%

0% 0.1% 0.2% 3.4%

Fig. 19. On surfaces with small intrinsic curvature, such as a developable
surface obtained from [Rabinovich et al. 2018], we achieve dramatically
lower error in surface area compared to extrinsic methods like QEM.

input

bijective shell
IC

E (ours)

(failed)

50% reduction 99% reduction

Fig. 20. Methods that rely on extrinsic information to construct a mapping
during coarsening can fail in the presence of self-intersections. Here, the
bijective shell method, which relies on extrinsic ray casting [Jiang et al. 2020,
§3.2], fails to coarsen below 50% of the input size. In contrast, our intrinsic
approach easily obtains an extremely coarse decimation.

via both QEM and ICE. Since coarse extrinsic edges are shortest

paths in R𝑛 , they underestimate intrinsic distances (hence areas);

in contrast, intrinsic edges are essentially embedded in the original

surface, providing better approximation of the original geometry.

input QEM

[Liu et al 2021]

ICE

ground
truth

di�erencedi�erence di�erencedi�erence

Fig. 21. For the same vertex budget as extrinsic methods like QEM, ICE
provides more accurate solutions for basic problems like solving a Pois-
son equation—seen here via smoother isolines that better approximate the
ground truth.

Lee et al. 1998 ICEground truth

di
st

an
ce

er
ro

r
m

es
h

0

max

Fig. 22. Since geodesic distance is an intrinsic quantity, it is more accurately
approximated via intrinsic coarsening—here providing a 4x reduction in
relative error.

8.5 Geometric Algorithms
8.5.1 Partial Differential Equations. Better domain approximation

in turn improves the quality of solutions computed on coarsemeshes.

For example, in Fig. 21 we coarsen a cloth simulation mesh down to

500 vertices with an extrinsic method ([Liu et al. 2021] using QEM

simplification) and our intrinsic method. We then solve a Poisson

problem on the coarse meshes and apply prolongation, yielding

more accurate results in the intrinsic case.

8.5.2 Single-Source Geodesic Distance. Geodesic distance is an in-

trinsic quantity, making it a natural fit for intrinsic coarsening. In

Fig. 22 we compare ICE to the extrinsic method of Lee et al. [1998]

by measuring the difference between the exact distance on the fine

input, and prolongated distances from the coarse meshes (both com-

puted via [Mitchell et al. 1987]); here ICE achieves a roughly 4x

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Surface Simplification using Intrinsic Error Metrics • 13

speedup/error:
ground
truth
ground
truth

3x / 2x10-4% 76x / 0.01% 840x / 0.2% 4880x / 1.5%

|V |=20k 50% 5% 0.5% 0.05%

Fig. 23. Intrinsic coarsening offers an attractive approach to approximating
single-source geodesic distance, here providing a three orders of magnitude
speedup for a fraction of a percent relative error.

gr
ou

nd
 t

ru
th

co
ar

se
ne

d

660.2 s

0.4 s
(1650x)

…

…

Fig. 24. For a mesh with 6k vertices we obtain an all-pairs geodesic distance
matrix 1650x faster, while incurring only 1.4% relative error.

reduction in relative error. Fig. 23 illustrates the speed-accuracy

trade off of using ICE, here reducing cost by three orders of magni-

tude while introducing only ∼1% relative approximation error.

8.5.3 All-Pairs Geodesic Distance. The benefits of an accurate in-

trinsic approximation become even more pronounced when approx-

imating the dense matrix D ∈ R |𝑉 |× |𝑉 | of all pairs of geodesic
distances—a shape descriptor often used in correspondence and

learning methods [Shamai and Kimmel 2017]. We can compute a

low-rank approximation of D via

D̂ := PD̃P⊤,

where D̃ is the coarse all-pairs matrix (computed again via [Mitchell

et al. 1987]). See for instance Fig. 24—here again we achieve several

orders of magnitude speedup, with only 1.4% relative error.

reference coarsened

8.5.4 Riemannian Computational
Geometry. More broadly, standard

geometric quantities computed on

the coarse mesh provide excellent

approximations of the fine solu-

tion. For instance, in Fig. 25 we use

Mitchell et al. [1987] to compute a

geodesic Voronoi diagram on the

coarse mesh, yielding a near-perfect approximation at a tiny fraction

of the cost—such diagrams in turn provide the starting point for

remeshing and other applications [Ye et al. 2019]. Likewise, we can

dramatically reduce the cost of evaluating the discrete exponential

ground truth coarse approximation

7207.4 ms 3.2 ms (2252x)

Fig. 25. Fast computation of geodesic distance in turn yields fast compu-
tation of other quantities—here we compute geodesic Voronoi diagrams
three orders of magnitude faster (2252x) than on the original mesh, while
misclassifying only 1% of fine vertices.

input adaptive coarsening heat kernel

x

|V |=99,037 |V |=1000

Fig. 26. By coarsening more aggressively away from the point x, we better
resolve the exponential falloff in a heat kernel centered at x.

map over long distances (à la [Sharp et al. 2021, §2.4.2]), replac-

ing many small steps through fine triangles with a small handful

of ray-edge intersections, while arriving at nearly identical points

(see inset). Other classic algorithms, such as Steiner tree approxi-
mation [Sharp et al. 2019a, §5.1] could likewise be accelerated by

simply swapping out our coarse intrinsic mesh for the fine one.

8.6 Adaptive Coarsening
The local nature of our scheme makes it easy to adaptively coarsen

(or preserve) the mesh according to various geometric criteria. Here

we expand on the basic weighting strategy from Sec. 5.4.1.

8.6.1 Spatial Adaptivity. We can emphasize a region of interest by

prescribing spatially-varying masses𝑚𝑖 on the fine vertices 𝑖 ∈ 𝑉 ;
regions where𝑚𝑖 is small are then coarsened less aggressively. For

instance, Fig. 26 uses masses𝑚𝑖 := 1/𝑑2x (𝑖) (where 𝑑x is the distance
to 𝑥) to adapt the coarse mesh to the heat kernel centered at x.

8.6.2 Anisotropic Coarsening. Alternatively, we can emphasize im-

portant directions by non-uniformly scaling the input edge lengths

along directions of interest—such meshes are better suited to, e.g.,
solving PDEs with anisotropic coefficients. More explicitly, given

vectors u𝑖 at vertices, we scale each length ℓ𝑖𝑗 by a factor (1 − 𝜏) +
𝜏
2
((u𝑖 · ê𝑖𝑗)2 + (u𝑗 · ê𝑗𝑖)2), where ê𝑖𝑗 := e𝑖𝑗/∥e𝑖𝑗 ∥ ∈ T𝑖𝑀 is the unit

tangent vector along edge 𝑖𝑗 , and the parameter 𝜏 ∈ [0, 1] controls
the strength of anisotropy. For instance, in Fig. 27 the vectors u𝑖 are
the (max or min) principal curvature directions, computed via the

method of Panozzo et al. [2010]. A challenge here, noted by Campen

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

14 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

input anisotropic coarsening
(max principal direction)

anisotropic coarsening
(min principal direction)

Fig. 27. Anisotropic coarsening can be achieved by applying nonuniform
scaling to input edge lengths, here using principal curvature directions.

input constrained coarsening Poisson solve

constraintsconstraints

Fig. 28. Fixing vertices during coarsening enables us to exactly preserve
boundary conditions and constraint curves when solving PDEs on surfaces.

et al. [2013, Section 4.1], is that a simple rescaling can violate the tri-

angle inequality, which in practice limits the strength of anisotropy.

How to robustly express anisotropic changes to the discrete metric

is an interesting question for future work.

8.6.3 Boundary Preservation. Finally, we can fix a user-specified set
of vertices in order to, e.g., exactly preserve boundary conditions for
a PDE. For instance, in Fig. 28 we fix vertices that encode Dirichlet

boundary conditions for a Poisson problem, accurately preserving

both the boundary data and the constraint curve.

8.7 Intrinsic Mesh Hierarchies
Mesh hierarchies are used throughout visual, geometric, and scien-

tific computing to accelerate solvers via, e.g., Cholesky precondi-

tioners [Chen et al. 2021], multigrid methods [Aksoylu et al. 2005;

Liu et al. 2021], or GPU acceleration Mahmoud et al. [2021] further

demonstrate the possibility of parallelizing geometry processing

with mesh hierarchies. Despite the fact that many of these appli-

cations need only intrinsic operators, these methods do not take

full advantage of the intrinsic setting. Our method can be used to

construct an intrinsic mesh hierarchy by simplifying the input to a

sequence of progressively coarser meshes—Fig. 29 shows one such

example. Using the prolongation matrices P between consecutive

levels, we can then build a surface multigrid method à la Liu et al.

[2021]. This intrinsic multigrid method is well-suited to algorithms

expressed in terms of discrete differential operators—even if they

involve extrinsic data—such as the modified mean curvature flow of

Kazhdan et al. [2012] (Fig. 30). In general, the additional flexibility

of working with intrinsic triangulations yields greater robustness

than previous, extrinsic methods, especially on low-quality input.

For instance, in Fig. 31 the method of Liu et al. [2021] fails to build

a valid mesh hierarchy; extrinsically refining the input via [Cignoni

|V |=1,009,118

input

|V|=72k|V|=72k |V|=4k|V|=4k |V|=282|V|=282

|V |=288k|V |=288k |V |=18k|V |=18k |V |=1k|V |=1k

Fig. 29. We can build an intrinsic multigrid mesh hierarchy via repeated
coarsening, here reducing the vertex count by a factor 1/4 at each level.

extrinsic curvature flow

Fig. 30. Here we use our intrinsic multigrid scheme to accelerate the extrin-
sic curvature flow of Kazhdan et al. [2012], achieving a 20x speedup.

et al. 2008] preserves the geometry, but the solver now fails due to

low-quality triangles; global extrinsic remeshing enables the solver

to succeed, but yields a solution on a different domain than the

input. Our intrinsic approach easily succeeds on this example, since

(as noted in Fig. 1) it does not have to simultaneously juggle mesh

quality and element quality, and can rely on hard guarantees about

triangulation quality, as discussed in Sec. 6.3.

9 LIMITATIONS & FUTURE WORK
In order to keep computation cheap and lo-

cal, the ICE metric makes three basic approx-

imations. First, we approximate the mass

distribution of all “ancestor” vertices by con-

centrating their sum at their center of mass

(Sec. 5.1). This approximation is very much in the spirit of QEM,

which approximates the extrinsic distribution of all ancestors via

a single quadratic function. Second, when re-assigning mass to a

neighboring vertex, we approximate computation of the logarithmic

map via parallel transport along an edge (Sec. 5.3). This approxima-

tion has no analogue in QEM, and in the future it may be worth

considering other approximations—or at least performing an abla-

tion (relative to the exact log map) to better understand the impact of

this approximation on overall performance. Third, we approximate

the cost of redistributing curvature from a removed vertex 𝑖 to its

neighbors 𝑗 via the change in curvature at each vertex 𝑗 (Eq. (9)). As

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Surface Simplification using Intrinsic Error Metrics • 15
in

pu
t

m
es

h

extrinsic
coarsening

extrinsic
refinement
+coarsening

intrinsic
(ours)

extrinsic
remeshing

+coarsening

m
es

h
hi

er
ar

ch
y

PD
E

so
lu

ti
on

failed

did not
convergeN/A

Fig. 31. Obtaining a reliable surface mesh hierarchy for geometric multigrid
can be surprisingly challenging—often requiring global remeshing of the
geometry to obtain acceptable results. Our intrinsic scheme builds on estab-
lished guarantees, ensuring success even on extremely low-quality inputs.

noted in Sec. 5.4 a more principled (but also more expensive) alter-

native might be to directly compute the transport cost for a signed

measure, which still involves only the local vertex neighborhood.

Other aspects of the method could also be improved or gener-

alized. One significant question, noted in Sec. 7.1, is how to more

easily compute point correspondences without replaying (or re-

versing) coarsening operations. Techniques such as integer coordi-

nates [Gillespie et al. 2021a] might improve floating point robustness

on extremely poor-quality inputs (inset). Likewise, Ptolemy edge
flips [Gillespie et al. 2021b] might further improve robustness to

rare violation of the triangle inequality during flattening. Extending

prolongation to discrete differential forms [Desbrun et al. 2006] could

help accelerate a wider variety of geometry processing tasks [Crane

et al. 2013]. Similarly, it may prove valuable to consider how to

best perform simplification in a dynamic context—especially since

many natural deformations are near-isometric. Finally, a more care-

ful treatment of memory management and parallel data structures

might help bring performance closer to highly-optimized libraries

for extrinsic simplification [Kapoulkine 2019].

ACKNOWLEDGMENTS
The authors thank Minchen Li, Silvia Sellán, and Jiayi Eris Zhang

for providing example data. This work was funded in part by an NSF

CAREER Award (IIS 1943123), NSF Award IIS 2212290, a Packard

Fellowship, NSERC Discovery (RGPIN–2022–04680), the Ontario

Early Research Award program, the Canada Research Chairs Pro-

gram, a Sloan Research Fellowship, the DSI Catalyst Grant program,

the Fields Institute for Mathematics, the Vector Institute for AI, and

gifts from the Tides Foundation, Adobe Inc., Facebook Reality Labs,

and Google, Inc.

REFERENCES
Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder. 2005. Multilevel Solvers for

Unstructured Surface Meshes. SIAM J. Sci. Comput. 26, 4 (2005).
Marc Alexa and Jan Eric Kyprianidis. 2015. Error diffusion on meshes. Computers &

Graphics 46 (2015).
Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun.

2003. Anisotropic polygonal remeshing. In ACM SIGGRAPH 2003 Papers.
Pierre Alliez, Éric Colin de Verdière, Olivier Devillers, and Martin Isenburg. 2005.

Centroidal Voronoi diagrams for isotropic surface remeshing. Graph. Mod. (2005).
Pierre Alliez, Mark Meyer, and Mathieu Desbrun. 2002. Interactive geometry remeshing.

ACM Trans. Graph. 21, 3 (2002).
Alexander I Bobenko and Boris A Springborn. 2007. A discrete Laplace–Beltrami

operator for simplicial surfaces. Discrete & Computational Geometry 38, 4 (2007).

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013a. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4 (2013).
David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,

and Denis Zorin. 2013b. Quad-mesh generation and processing: A survey. In Com-
puter graphics forum, Vol. 32. 51–76.

Mario Botsch and Leif Kobbelt. 2004. A Remeshing Approach to Multiresolution

Modeling. In Eurographics Symp. Geom. Proc., Vol. 71.
Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon

Mesh Processing. CRC press.

Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical anisotropic

geodesy. In Computer Graphics Forum, Vol. 32.

Ryan Capouellez and Denis Zorin. 2022. Metric Optimization in Penner Coordinates.

arXiv preprint arXiv:2206.11456 (2022).
Jiong Chen, Florian Schäfer, Jin Huang, andMathieu Desbrun. 2021. Multiscale cholesky

preconditioning for ill-conditioned problems. ACM Trans. Graph. 40, 4 (2021).
Siu-Wing Cheng, Tamal K Dey, and Jonathan Shewchuk. 2012. Delaunay mesh genera-

tion. CRC Press.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-

elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.

In Eurographics Italian Chapter Conference 2008, Salerno, Italy, 2008. Eurographics.
Jonathan D. Cohen, Dinesh Manocha, and Marc Olano. 1997. Simplifying polygonal

models using successive mappings. In Proc. IEEE Vis. Conf.
David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational shape

approximation. ACM Trans. Graph. 23, 3 (2004).
Keenan Crane, Fernando De Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital

geometry processing with discrete exterior calculus. In ACM SIGGRAPH Courses.
Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision

exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016).
Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2006. Discrete differential forms for

computational modeling. In ACM SIGGRAPH 2006 Courses.
Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Interac-

tively controlled quad remeshing of high resolution 3D models. ACM Trans. Graph.
35, 6 (2016).

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and

Werner Stuetzle. 1995. Multiresolution analysis of arbitrary meshes. In SIGGRAPH.
Qing Fang, Wenqing Ouyang, Mo Li, Ligang Liu, and Xiao-Ming Fu. 2021. Computing

sparse cones with bounded distortion for conformal parameterizations. ACM Trans.
Graph. 40, 6 (2021), 1–9.

Ugo Finnendahl, Matthias Schwartz, andMarc Alexa. 2023. ARAP Revisited Discretizing

the Elastic Energy using Intrinsic Voronoi Cells. In Computer Graphics Forum.

Matthew Fisher, Boris Springborn, Alexander I Bobenko, and Peter Schröder. 2006. An

algorithm for the construction of intrinsic Delaunay triangulations with applications

to digital geometry processing. In ACM SIGGRAPH 2006.
Michael S Floater. 1997. Parametrization and smooth approximation of surface triangu-

lations. Computer aided geometric design 14, 3 (1997).

Michael Garland. 1999. Multiresolution Modeling: Survey and Future Opportunities. In

Eurographics 1999 - STARs. Eurographics Association.
Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric error

metrics. In SIGGRAPH 1997. ACM.

Michael Garland and Paul S. Heckbert. 1998. Simplifying surfaces with color and texture

using quadric error metrics. In Proceedings Visualization ’98. IEEE and ACM.

Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gregory L. Schussman, and Issac J. Trotts.

1997. Smooth hierarchical surface triangulations. In Proc. IEEE Vis.
Mark Gillespie, Nicholas Sharp, and Keenan Crane. 2021a. Integer coordinates for

intrinsic geometry processing. ACM Trans. Graph. 40, 6 (2021).
Mark Gillespie, Boris Springborn, and Keenan Crane. 2021b. Discrete conformal equiv-

alence of polyhedral surfaces. ACM Trans. Graph. 40, 4 (2021).
Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: a simple framework

for adaptive simulation. ACM Trans. Graph. 21, 3 (2002).
Xianfeng David Gu, Feng Luo, Jian Sun, and TianqiWu. 2018. A Discrete Uniformization

Theorem for Polyhedral Surfaces. Journal of Differential Geometry 109, 2 (2018).

Igor Guskov, Wim Sweldens, and Peter Schröder. 1999. Multiresolution Signal Process-

ing for Meshes. In SIGGRAPH 1999. ACM.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

http://www.pmp-book.org/
http://www.pmp-book.org/
https://page.math.tu-berlin.de/~bobenko/papers/InDel.pdf
https://page.math.tu-berlin.de/~bobenko/papers/InDel.pdf
https://page.math.tu-berlin.de/~bobenko/papers/InDel.pdf

16 • Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane

Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter Schröder. 2000. Normal meshes.

In SIGGRAPH 2000. ACM.

Allen Hatcher. 2002. Algebraic Topology. Cambridge University Press.

Hugues Hoppe. 1996. Progressive Meshes. In SIGGRAPH 1996. ACM.

Hugues Hoppe. 1997. View-dependent refinement of progressive meshes. In SIGGRAPH
1997. ACM.

Hugues Hoppe. 1999. New Quadric Metric for Simplifying Meshes with Appearance

Attributes. In Proc. IEEE Vis. Conf.
Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

1993. Mesh Optimization. In Proc. SIGGRAPH.
Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Junxiong Cai, Jiahui Huang, Tai-Jiang

Mu, and Ralph R. Martin. 2022. Subdivision-based Mesh Convolution Networks.

ACM Trans. Graph. 41, 3 (2022).
Claude Indermitte, Thomas M. Liebling, Marc Troyanov, and Heinz Clémençon. 2001.

Voronoi Diagrams on Piecewise Flat Surfaces and an Application to Biological

Growth. Theoretical Computer Science 263 (2001).
Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective

projection in a shell. ACM Trans. Graph. 39, 6 (2020).
Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele

Panozzo. 2021. Bijective and coarse high-order tetrahedral meshes. ACM Trans.
Graph. 40, 4 (2021).

Arseny Kapoulkine. 2019. meshoptimizer. https://github.com/zeux/meshoptimizer

Hermann Karcher. 2014. Riemannian center of mass and so called Karcher mean. arXiv
preprint arXiv:1407.2087 (2014).

Brian Karis, Rune Stubbe, and Graham Wihlidal. 2021. A Deep Dive into Nanite

Virtualized Geometry. In ACM SIGGRAPH 2021 Courses.
Zachi Karni and Craig Gotsman. 2000. Spectral compression of mesh geometry. In

SIGGRAPH 2000. ACM.

Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can Mean-Curvature

Flow be Modified to be Non-singular? Comput. Graph. Forum 31, 5 (2012).

Liliya Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Nu-

merical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3
(2009).

Andrei Khodakovsky, Nathan Litke, and Peter Schröder. 2003. Globally smooth param-

eterizations with low distortion. ACM Trans. Graph. 22, 3 (2003).
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal

direction fields. ACM Trans. Graph. 32, 4 (2013).
Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. Interactive

Multi-Resolution Modeling on Arbitrary Meshes. In SIGGRAPH 1998. ACM.

Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence C. Cowsar, and David P.

Dobkin. 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. In

SIGGRAPH 1998. ACM.

Dingzeyu Li, Yun (Raymond) Fei, and Changxi Zheng. 2015. Interactive Acoustic

Transfer Approximation for Modal Sound. ACM Trans. Graph. 35, 1 (2015).
Mo Li, Qing Fang, Wenqing Ouyang, Ligang Liu, and Xiao-Ming Fu. 2022. Computing

sparse integer-constrained cones for conformal parameterizations. ACM Trans.
Graph. 41, 4 (2022), 1–13.

Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete

connection and covariant derivative for vector field analysis and design. ACM Trans.
Graph. 35, 3 (2016).

Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov. 2019. Spectral coarsening

of geometric operators. ACM Trans. Graph. 38, 4 (2019).
Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and

Alec Jacobson. 2020. Neural subdivision. ACM Trans. Graph. 39, 4 (2020).
Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021.

Surface multigrid via intrinsic prolongation. ACM Trans. Graph. 40, 4 (2021).
Kok-Lim Low and Tiow Seng Tan. 1997. Model Simplification Using Vertex-Clustering.

In Proceedings of the 1997 Symposium on Interactive 3D Graphics. ACM.

Feng Luo. 2004a. Combinatorial Yamabe Flow on Surfaces. Communications in Con-
temporary Mathematics 6, 05 (2004).

Feng Luo. 2004b. Combinatorial Yamabe Flow on Surfaces. Communications in Con-
temporary Mathematics 6, 5 (2004).

Ahmed H. Mahmoud, Serban D. Porumbescu, and John D. Owens. 2021. RXMesh: a

GPU mesh data structure. ACM Trans. Graph. 40, 4 (2021).
Edoardo Mainini. 2012. A description of transport cost for signed measures. Journal of

Mathematical Sciences 181 (2012).
Josiah Manson and Scott Schaefer. 2011. Hierarchical Deformation of Locally Rigid

Meshes. Comput. Graph. Forum 30, 8 (2011).

Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete

geodesic problem. SIAM J. Comput. 16, 4 (1987).
Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation

of Laplace-Beltrami Eigenproblems. Comput. Graph. Forum 37, 5 (2018).

Ahmad Nasikun and Klaus Hildebrandt. 2022. The Hierarchical Subspace Iteration

Method for Laplace-Beltrami Eigenproblems. ACM Trans. Graph. 41, 2 (2022).
Daniele Panozzo, Enrico Puppo, and Luigi Rocca. 2010. Efficient multi-scale curvature

and crease estimation. Proc. of Comp. Graph., Comp. Vis. and Math. 1, 6 (2010).

Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport: With

applications to data science. Found. Trend. Mach. Learn. 11, 5-6 (2019).
Gabriel Peyré and StéphaneMallat. 2005. Surface compression with geometric bandelets.

In ACM Trans. Graph., Vol. 24. ACM.

Jovan Popovic andHuguesHoppe. 1997. Progressive simplicial complexes. In SIGGRAPH
1997. ACM.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018. The Shape

Space of Discrete Orthogonal Geodesic Nets. ACM Trans. Graph. 37, 6, Article 228
(dec 2018), 17 pages.

Nicolas Ray and Bruno Lévy. 2003. Hierarchical Least Squares Conformal Map. In Pac.
Conf. Comp. Graph. and App.

Tullio Regge. 1961. General Relativity without Coordinates. Il Nuovo Cimento (1955-
1965) 19, 3 (1961).

Igor Rivin. 1994. Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume.

Annals of mathematics 139, 3 (1994).
Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for render-

ing complex scenes. In Modeling in Computer Graphics. Springer.
Pedro V. Sander, John M. Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture

mapping progressive meshes. In SIGGRAPH 2001. ACM.

Rohan Sawhney and Keenan Crane. 2018. Boundary First Flattening. ACM Trans. Graph.
37, 1 (2018).

Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. 2019. Distortion-

minimizing injective maps between surfaces. ACM Trans. Graph. 38, 6 (2019).
Patrick Schmidt, Marcel Campen, Janis Born, and Leif Kobbelt. 2020. Inter-surface

maps via constant-curvature metrics. ACM Trans. Graph. 39, 4 (2020).
Peter Schröder. 1996. Wavelets in computer graphics. Proc. IEEE 84, 4 (1996).

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. 1992. Decimation of

triangle meshes. In SIGGRAPH 1992. ACM.

Gil Shamai and Ron Kimmel. 2017. Geodesic distance descriptors. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Nicholas Sharp and Keenan Crane. 2020a. A laplacian for nonmanifold triangle meshes.

In Computer Graphics Forum, Vol. 39.

Nicholas Sharp and Keenan Crane. 2020b. You Can Find Geodesic Paths in Triangle

Meshes by Just Flipping Edges. ACM Trans. Graph. 39, 6 (2020).
Nicholas Sharp, Mark Gillespie, and Keenan Crane. 2021. Geometry Processing with

Intrinsic Triangulations. In ACM SIGGRAPH 2021 courses. ACM.

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019a. Navigating intrinsic trian-

gulations. ACM Trans. Graph. 38, 4 (2019).
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019b. The Vector Heat Method.

ACM Trans. Graph. 38, 3 (2019).
Jonathan Richard Shewchuk. 1999. Lecture notes on geometric robustness. Eleventh

International Meshing Roundtable (1999).
Jonathan Richard Shewchuk. 2002. What Is a Good Linear Finite Element? Interpolation,

Conditioning, Anisotropy, and Quality Measures.

Meged Shoham, Amir Vaxman, and Mirela Ben-Chen. 2019. Hierarchical Functional

Maps between Subdivision Surfaces. Comput. Graph. Forum 38, 5 (2019).

Yousuf Soliman, Dejan Slepčev, and Keenan Crane. 2018. Optimal Cone Singularities

for Conformal Flattening. ACM Trans. Graph. 37, 4 (2018).
Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal equivalence of

triangle meshes. ACM Trans. Graph. 27, 3 (2008).
Kenshi Takayama. 2022. Compatible intrinsic triangulations. ACM Trans. Graph. 41, 4

(2022).

Greg Turk. 1992. Re-tiling polygonal surfaces. In SIGGRAPH 1992. ACM.

Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. 2022.

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces. ACM Trans.
Graph. 41, 3 (2022).

Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary

Fixed Boundaries. ACM Trans. Graph. 33, 4 (2014).
Zipeng Ye, Ran Yi, Minjing Yu, Yong-Jin Liu, and Ying He. 2019. Geodesic cen-

troidal voronoi tessellations: Theories, algorithms and applications. arXiv preprint
arXiv:1907.00523 (2019).

Jiayi Eris Zhang, Jèrèmie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James,

and Danny M. Kaufman. 2022. Progressive Simulation for Cloth Quasistatics. ACM
Trans. Graph. 41, 6, Article 218 (2022).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

Denis Zorin, Peter Schröder, T De Rose, L Kobbelt, A Levin, and W Sweldens. 2000.

Subdivision for modeling and animation. SIGGRAPH Course Notes (2000).
Denis Zorin, Peter Schröder, and Wim Sweldens. 1997. Interactive multiresolution

mesh editing. In SIGGRAPH 1997. ACM.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

http://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://github.com/zeux/meshoptimizer

	Abstract
	1 Introduction
	1.1 Method Overview

	2 Related Work
	2.1 Intrinsic Triangulations
	2.2 Surface Simplification
	2.3 Mesh Hierarchies

	3 Background
	3.1 Connectivity
	3.2 Geometry
	3.3 Retriangulation

	4 Vertex Removal
	4.1 Vertex Flattening
	4.2 Flat Vertex Removal

	5 Error Metric
	5.1 2D Error Metric (Memoryless)
	5.2 2D Error Metric (Memory-Based)
	5.3 Surface Error Metric (Memory-Based)
	5.4 Intrinsic Curvature Error Metric

	6 Simplification
	6.1 Initialization
	6.2 Coarsening
	6.3 Intrinsic Retriangulation
	6.4 Numerics

	7 Mapping and Prolongation
	7.1 Pointwise Mapping
	7.2 Prolongation
	7.3 Vector Field Prolongation

	8 Evaluation & Results
	8.1 Visualization
	8.2 Benchmark
	8.3 Measuring Distortion
	8.4 Comparison with Extrinsic Methods
	8.5 Geometric Algorithms
	8.6 Adaptive Coarsening
	8.7 Intrinsic Mesh Hierarchies

	9 Limitations & Future Work
	Acknowledgments
	References

