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Fla�ening a vertex i changes the angle sums Θ at neighboring vertices j, e�ectively 
redistributing the discrete curvature K = 2π − Θ. We use the change in curvature to 
guide simplification.

Our method constructs a coarse triangulation over a fixed geometric domain. In each 
local step we redistribute curvature or other quantities from a removed vertex to its 
neighbors. From step to step we also accumulate global information about error via 
tangent vectors pointing to the approximate center of mass of the decimated vertices.
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Using Other Transport Costs
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Whereas traditional extrinsic simplification (bo�om row) must simultaneously juggle element quality and approximation 
error, triangles produced by our intrinsic scheme (top row) can wrap around the original surface—nicely approximating the 
underlying function space without changing the geometry.  Coarse meshes or hierarchies produced by this scheme can 
be used in “black box” fashion to accelerate solvers without changing user inputs/outputs
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Robust Mesh Hierarchies
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Intrinsic Vertex Removal
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We decimate an interior vertex by intrinsically fla�ening it, flipping to degree 3, 
removing it from the mesh, then flipping back to an intrinsic Delaunay triangula-
tion.
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Pointwise Mapping

To map any point p on the fine mesh 
to a point p’ on the coarse mesh, we 
track its barycentric coordinates 
through local coarsening operations 
(namely: edge flips, vertex fla�en-
ings, and vertex removals).
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