

Discrete Conformal Structures and Hyperbolic Geometry

Conformal Maps

Conformal Maps

- Conformal maps preserve angles

Conformal Maps

- Conformal maps preserve angles

Conformal Maps

- Conformal maps are specified by conformal scale factors $u: M \rightarrow \mathbb{R}$

$$
e^{2 u(p)} g_{p}=\tilde{g}_{p}
$$

Conformal Maps

- Infinitesimally, conformal maps look like rotations and isotropic scalings

$$
d f(X)=s R X \text { for some rotation matrix } R \text { and scalar } s
$$

Discrete Conformal Maps (Definition I)

- Specify a scale factor at each vertex
- Rescale edge lengths by

$$
\tilde{\ell}_{i j}=e^{\left(u_{i}+u_{j}\right) / 2} \ell_{i j}
$$

Aside: Regge Calculus

- Lays out a lot of discrete differential geometry
- Gaussian curvature as angle defect
- Gauss-Bonnet
- Cone metrics

A Conformal Flattening Algorithm

I. Specify a target curvature \tilde{K}_{i} at each vertex
2. Iteratively update the lengths using conformal scale factors

$$
u_{i}=\tilde{K}_{i}-K_{i}
$$

A Conformal Flattening Algorithm

- Problem: sometimes this rescaling breaks your mesh

(f One can show that the product of two conformal transformations (40) such that each separately preserves these constraints is a transformation which in general will violate the constraints. Therefore, globally the group property is violated. Furthermore, no' subset of the transformations (40) forms a group".

Möbius Transformations

Möbius Transformations

- Complex functions of the form $f(z)=\frac{a z+b}{c z+d}$
- Note that if $a d=b c$, then

$$
f(z)=\frac{a z+b}{c z+d}=\frac{c(a z+b)}{c(c z+d)}=\frac{c a z+a d}{c c z+c d}=\frac{a}{c}
$$

- We disallow this
- Remark: we can scale all coefficients

Möbius Transformations are Projective

$$
\binom{a z+b}{c z+d}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z}{1}
$$

- Homogeneous coordinates

Complex Projective Space

- Just like real projective space

$$
\left[z_{1}, z_{2}\right] \sim\left[\lambda z_{1}, \lambda z_{2}\right]
$$

- What shape is it?
- Let's look at $\mathbb{R} P^{1}$ first: $\left[x_{1}, x_{2}\right] \sim\left[s x_{1}, s x_{2}\right]$
- Every vector has a canonical form [$x, 1$]
- Except [1,0] - point at infinity

Complex Projective Space

- Similarly, complex vectors look like $[z, 1]$

Aside: Bloch Sphere

- $\mathbb{C} P^{1}$ is also the state space of a qbit
- qbits live in 2 -state quantum systems, i.e. \mathbb{C}^{2}
- But we normalize and ignore phase
- qbits evolve in time by Möbius transformations!

Möbius Transformations

$$
f(z)=\frac{a z+b}{c z+d} \quad a d \neq b c
$$

- 4 complex degrees of freedom, I complex constraint
- Determined by 3 points

Complex Cross Ratios

- Consider 4 points $a, b, c, d, \in \mathbb{C}$
- Pick $\varphi_{\text {so }}$ that

$$
\varphi(a)=\infty, \varphi(b)=1, \varphi(c)=0
$$

- We define $[a, b ; c, d]_{\mathbb{C}}:=\varphi(d)$

Length Cross Ratios

- Some computation reveals that

$$
[a, b ; c, d]_{\mathbb{C}}=\frac{(b-a)(d-c)}{(b-c)(d-a)}
$$

- We define the length cross ratio by

$$
[a, b ; c, d]=\left|\frac{(b-a)(d-c)}{(b-c)(d-a)}\right|
$$

Length Cross Ratios

- Some computation reveals that

$$
[a, b ; c, d]_{\mathbb{C}}=\frac{(b-a)(d-c)}{(b-c)(d-a)}
$$

- We define the length cross ratio by

$$
[a, b ; c, d]=\left|\frac{(b-a)(d-c)}{(b-c)(d-a)}\right|
$$

Length Cross Ratios

- A map is conformal if and only if its derivative preserves length cross ratios
- Easy direction: the derivative of a conformal map is a rotation and scaling - these preserve length cross ratios

Discrete Conformal Maps (Definition 2)

- We can associate length cross ratios with the edges of a triangle mesh

$$
\mathfrak{c}_{i j}:=\frac{l_{i m}}{l_{m j}} \frac{l_{j k}}{l_{k i}}
$$

- Discrete conformal equivalence means having the same cross ratios

Hyperbolic Geometry

The Hyperbolic Plane

- The hyperbolic plane is a 2D surface, but it is so big that you can't fit it into \mathbb{R}^{3} !
- We study it through "models"

The Hyperbolic Plane

- Characterization: Gaussian curvature - I everywhere
- What is Gaussian curvature?

$K<0$

$K=0$

The Hyperbolic Plane

- Curvature - $=>$ wrinkly

Poincaré Disk

- Hyperbolic plane squished into unit disk

$$
d s^{2}=\frac{4\|d \mathbf{x}\|^{2}}{\left(1-\|x\|^{2}\right)^{2}}
$$

Poincaré Disk

- Rigid transformations - Möbius transformations which take the disk to itself!

$$
f(z)=\lambda \frac{z-a}{\bar{a} z-1}
$$

Ideal Hyperbolic Triangles

- Ideal points - points on boundary
- Infinite perimeter, finite area
- All congruent!

The Halfspace Model

- There is a conformal map from the disk to the upper half-plane

The Halfspace Model

- There is a conformal map from the disk to the upper half-plane

Horizontal slices look Euclidean

Ideal Triangles in the Halfspace Model

- Ideal points - points on boundary
- Infinite perimeter, finite area
- All congruent!

The Klein Model

- Straight lines are straight lines
- Angles are wonky

The Klein Model

-What are the rigid transformations of the Klein model?

- They must map straight lines to straight lines
- (Real) projective transformations
- They must preserve the unit circle
- Circle-preserving projective maps

The Klein Model

- Any Euclidean triangle is also a triangle in the Klein model
- But their sides are infinitely long!

The Klein Model

- There's a unique rigid motion between any 2 Klein triangles
- It must be a projective map
- The coefficients are the conformal scale factors!

Ideal Hyperbolic Polyhedra

- We can glue ideal triangles together into ideal polyhedra
- There's more than one way to glue a pair of triangles

Ideal Hyperbolic Polyhedra

- 4 points cocircular: real cross ratio
- Equals length cross ratio (up to sign)
- 4th point determined by cross ratio

Ideal Hyperbolic Polyhedra

- An ideal hyperbolic polyhedron is specified by a length cross ratio per edge
- Rigid transformations of hyperbolic polyhedra preserve the length cross ratios at edges

Hyperbolic Edge Lengths

- Edge lengths are convenient
- By cutting off the infinite ends of the lines, we obtain finite lengths
- "Decorated" ideal triangle
- What happens if we pick a different horocycle?

Hyperbolic Edge Lengths

- Horocycles around infinity are horizontal (Euclidean) planes
- Picking a different horocycle shifts the plane - changes lengths by a constant

Hyperbolic Edge Lengths

- Changing horocycles doesn't change $\lambda_{i j}-\lambda_{j k}+\lambda_{k \ell}-\lambda_{i \ell}$
- This is twice the (log of the) length cross ratio!

$$
\mathfrak{c r}=\frac{e^{\lambda_{i j} / 2} e^{\lambda_{k e} / 2}}{e^{\lambda_{j k} / 2} e^{\lambda_{i \ell} / 2}}
$$

Hyperbolic Edge Lengths

- Given a mesh, set hyperbolic lengths

$$
\lambda_{i j}=2 \log \ell_{i j}
$$

- Then a conformal rescaling
- $\tilde{\ell}_{i j}=e^{\left(u_{i}+u_{j}\right) / 2} \ell_{i j} \quad$ looks like

$$
\tilde{\lambda}_{i j}=\lambda_{i j}+u_{i}+u_{j}
$$

- This is just changing your horocycles!

Hyperbolic Edge Lengths

$$
\lambda_{i j}=2 \log \ell_{i j}
$$

Halfspace
Poincaré Disk

$\ell_{1}: 1.00 \quad \ell_{2}: 1.00 \quad \ell_{3}: 1.00$

Discrete Conformal Equivalence

- Two triangle meshes are discretely conformally equivalent if they have the same hyperbolic metric
- This is equivalent to both earlier definitions!

Discrete Uniformization

Conformal Rescaling Can Break Meshes

f Furthermore, no subset of the [discrete conformal] transformations forms a group".
M. Roček, R.M. Williams,
"The Quantization of Regge Calculus" (1984)

Hyperbolic Edge Flips

- "Degenerate" meshes still define hyperbolic polyhedra
- We can fix degenerate meshes by performing hyperbolic edge flips
- Still conformal

Hyperbolic Edge Flips

- Fact:We can always flip to valid

Euclidean edge lengths

- Hyperbolic Delaunay triangulation

Texture Interpolation with Hyperbolic Maps

- Flattening gives us more than just vertex data
- There's a hyperbolic isometry between the plane and our surface
- Better interpolation

What Do Hyperbolic Edge Flips Look Like?

- An edge is a straight line between vertices
- They can be weird and bendy

Uniformization with Hyperbolic Edge Flips*

Embedding Hyperbolic Polyhedra

- The polyhedra are given intrinsically
- How do you put them in \mathbb{H}^{3} ?
- Conformal flattening!

