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Harmonic functions
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special kind of function 

well-understood mathematically 



harmonic Greens’ function 

Harmonic functions

3

singularity



harmonic Greens’ function 

Harmonic functions
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Intersecting a ray with a level set
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level set

level set

rayray



Riemann surfaces

[ Riemann 1851 ]

hyperspherical harmonics

[ Fock 1935 ] 

input
curves

curve networks

[ de Goes et al. 2011 ]

nonplanar polygons

[ Maxwell 1873 ] 

shell structures in architectural 
geometry [  Adiels et al. 2022 ] 

space-filling surfaces for 
digital fabrication

generalized winding numbers

[  Jacobson et al. 2013 ]

Level sets of harmonic functions 
show up everywhere
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Poisson surface reconstruction

[  Kazhdan et al. 2006 ]



… but, they’re hard to render with 
existing techniques
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ours ray marching

(with fixed step size)  

sphere tracing
  (with purported Lipschitz constant)  

may have singularities 

decreasing 
step size 

increasing

( purported ) 

Lipschitz 
constant 



… but, they’re hard to render with 
existing techniques
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may have boundaries 

ours Newton’s

method 

interval

arithmetic 

bisection

search 



… but, they’re hard to render with 
existing techniques
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ours marching

cubes

Mathematica

(ContourPlot3D)

may have boundaries 



compute intersections for signed distance functions (SDFs)compute intersections for signed distance functions (SDFs)

Sphere tracing
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f(x) = distance to curve[ Hart 1996 ]



Sphere tracing
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[ Hart 1996 ]

compute intersections for signed distance functions (SDFs)compute intersections for signed distance functions (SDFs)



Sphere tracing: beyond SDFs

• Easy to generalize to 
Lipschitz functions:


( essentially,  )


• Important fact:




• provides a conservative 
bound on distance

|∇f | ≤ L

| f(x) − f(y) | ≤ L |x − y |

12

[ Hart 1996 ]

[ Inigo Quilez 2015 ]



Problem: many harmonic functions 
are not Lipschitz
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θ(x, y) = atan2(y, x)

–π

+π

0

(x,y)

θ
0



–π

+π

0
θ = 0

θ = π
4

Problem: many harmonic functions 
are not Lipschitz
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θ(x, y) = atan2(y, x)



–π

+π

0
θ = 0
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4

Problem: many harmonic functions 
are not Lipschitz
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θ(x, y) = atan2(y, x)
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No matter how close 
points get, function 
values never get closer

–π

+π

0
θ = 0

θ = π
4

no distance bound 
for sphere tracing 

Problem: many harmonic functions 
are not Lipschitz

θ(x, y) = atan2(y, x)



Main idea: get distance bounds 
from Harnack’s inequality
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1 − r/R
(1 + r/R)2 f(x) ≤ f(y) ≤

1 + r/R
(1 − r/R)2 f(x)

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x)

1 + r/R
(1 − r/R)2 f(x)

x
R

yr

R
2

a + 2 − a2 + 8a ,

always safe to take step of size

where a =
f(x)
f*

Let  be a positive harmonic function on a ball:f We can use the fact that 
 is harmonic to obtain a 

distance bound
f



2D example
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Outline
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I. HARNACK’S INEQUALITY III. EXAMPLES IV. FUTURE WORKII. HARNACK TRACING

? ? ?
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I. Harnack’s Inequality



Harnack’s Inequality
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(in ℝd)
1 − r/R

(1 + r/R)2 f(x) ≤ f(y) ≤
1 + r/R

(1 − r/R)2 f(x)

lower bound upper bound

1 − r/R
(1 + r/R)d−1 f(x)

1 + r/R
(1 − r/R)d−1 f(x)

x
R

yr

f(y)

f(x)



22*technically speaking, positive aff

Prelude: Bounding Positive Linear Functions

a linear function can 
change arbitrarily fast  

f(0) = 1
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25*technically speaking, positive aff

Prelude: Bounding Positive Linear Functions

a linear function can 
change arbitrarily fast  

f(0) = 1but if it changes too 
fast, it does not stay 

positive  



26*technically speaking, positive aff

Prelude: Bounding Positive Linear Functions

a linear function can 
change arbitrarily fast  

f(0) = 1but if it changes too 
fast, it does not stay 

positive  

positive linear functions 
must stay between the 

upper and lower bounds 



The Mean Value Property
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R
x

Sd−1(x, R)

(in ℝd)



The Mean Value Property
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f(x) =
1

vol(S) ∫S
f(z) dz

x
R

mean value property 

Sd−1(x, R)

(in ℝd)
high

low



The Poisson Kernel

29

R

y

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

x
r

Sd−1(x, R)

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

weighted average 

(in ℝd)
high

low



The Poisson Kernel
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R

y

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

x
r

z

|y
− z |

R − r ≤ |y − z | ≤ R + r

Sd−1(x, R)

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

(in ℝd)
high

low



The Poisson Kernel
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R

y

x
r

z

|y
− z |

R2 − r2

R2−d(R + r)d

1
vol(S) ∫S

f(z) dz ≤ f(y) ≤
1

vol(S) ∫S

R2 − r2

R2−d(R − r)d
f(z) dz

Sd−1(x, R)

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

(in ℝd)
high

low



The Poisson Kernel
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R

y

x
r

z

|y
− z |

R2 − r2

R2−d(R + r)d

1
vol(S) ∫S

f(z) dz ≤ f(y) ≤
1

vol(S) ∫S

R2 − r2

R2−d(R − r)d
f(z) dz

Sd−1(x, R)

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

(in ℝd)
high

low



The Poisson Kernel
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R

y

x
r

z

|y
− z |

R2 − r2

R2−d(R + r)d
f(x) ≤ f(y) ≤

R2 − r2

R2−d(R − r)d
f(x)

Sd−1(x, R)

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

(in ℝd)
high

low



Harnack’s Inequality

34

R

y

x
r

z

|y
− z |

R2 − r2

R2−d(R + r)d
f(x) ≤ f(y) ≤

R2 − r2

R2−d(R − r)d
f(x)

Sd−1(x, R)

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

Harnack’s inequality

(in ℝd)
high

low



Harnack’s Inequality
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R

y

x
r

z

|y
− z |

1 − r/R
(1 + r/R)d−1 f(x) ≤ f(y) ≤

1 + R/r
(1 − r/R)d−1 f(x)

Sd−1(x, R)

f(y) =
1

vol(S) ∫S

R2 − r2

R2−d |y − z |d f(z) dz

Poisson kernel

f(x) =
1

vol(S) ∫S
f(z) dz

mean value property 

Harnack’s inequality

(in ℝd)
high

low
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II. Harnack Tracing



Distance bounds from 
Harnack’s inequality
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1 − r/R
(1 + r/R)2 f(x) ≤ f(y) ≤

1 + r/R
(1 − r/R)2 f(x)

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x)

1 + r/R
(1 − r/R)2 f(x)

x
R

yr

R
2

a + 2 − a2 + 8a ,

always safe to take step of size

where a =
f(x)
f*

Let  be a positive harmonic function on a ball:f We can use the fact that 
 is harmonic to obtain a 

distance bound
f



1 − r/R
(1 + r/R)2 f(x) ≤ f(y) ≤

1 + r/R
(1 − r/R)2 f(x)

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x)

1 + r/R
(1 − r/R)2 f(x)

x
R

yr

r =
R
2

a + 2 − a2 + 8a ,

always safe to take step of size

where a =
f(x)
f*

Let  be a positive harmonic function on a ball:f We can use the fact that 
 is harmonic to obtain a 

distance bound
fWhat if  is not positive?f

Just add a constant to make 
it positive on the ball 

Distance bounds from 
Harnack’s inequality

38

All you need is a 
valid ball radius and 
a lower bound on f



Algorithm sketch

39

Harnack Tracing
Starting from point   in direction :x d

Pick ball radius

Shift  to be positive on ballf
Calculate safe step size

Repeat until  is sufficiently close to f f*
Take safe step in ray direction

xR

safe

step size 

d

0

0 x1



Invalid lower bounds
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to
p 

vi
ew

bo
!o

m
 v

ie
w

invalid lower bound



Balancing the radius and shift
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R = 1
c = -1.75

ρ

R = .5
c = -1.75

R = 1
c = -5

R = 1
c = -10

R = .25
c = -1.75



Balancing the radius and shift
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R R
lower bound

lower bound

smaller radius, larger shift larger radius, smaller shift 



Sphere tracing acceleration
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[ Keinert et al. 2014 ]: “over-stepping”

conservative steps 

valid oversteps 



Acceleration: gradient termination
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How do you decide when you have “hit” the surface?



Acceleration: gradient termination
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2ε

How do you decide when you have “hit” the surface?

2ε



Acceleration: gradient termination
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How do you decide when you have “hit” the surface?

iterations
iterations

1

2000

gradient terminationgradient terminationfunction value terminationfunction value termination



47

θ(x, y) = atan2(y, x)

–π

+π

0

(x,y)

θ
0

Angle-valued functions



Angle-valued functions
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θ(x, y) = atan2(y, x)

–π

+π

0

(x,y)

θ
0

–π

+π

0

(x,y)

θ
0

continuous when 
viewed modulo  2π



Angle-valued functions → continuous functions

49

we never compute 
this lift explicitly

DISCONTINUOUS FUNCTIONCONTINUOUS LIFT



In practice: look for level sets above and below

50

f(x)

f*

f* − 2π

f* + 2π

f* + 4π

distance to  f*

distance to 
lower level set 

distance to 
upper level set 
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θ(x, y) = atan2(y, x)

–π

+π

0

Angle-valued functions allow for boundaries

θ = π
4



Angle-valued functions allow for boundaries
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Simple to implement
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Sh
ad

er
To

y 
(W
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G

L 
sh
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er

s)
PBRT (CPU ray tracer)

B
lender (C

P
U

 ray tracer)



Sh
ad

er
To

y 
(W

eb
G

L 
sh

ad
er

s)

Simple to implement
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PBRT (CPU ray tracer)
B

lender (C
P

U
 ray tracer)
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PBRT (CPU ray tracer)
B

lender (C
P

U
 ray tracer)



Simple to implement
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Sh
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To

y 
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G

L 
sh
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er

s)
PBRT (CPU ray tracer)

B
lender (C

P
U

 ray tracer)
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III. Examples



Generalized winding number

58

a.k.a.  signed solid angle

input mesh 

repaired mesh 

[  Jacobson et al. 2013 ]

( directly ray traced )



Signed solid angle
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( directly ray traced )signed solid angle 



Signed solid angle
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less planar more planar

(2π level set)

2π level set 3π level set



General nonplanar polygons
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( directly ray traced )



Interpolating surfaces
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minimal
surface
minimal
surface

virtual
vertex
virtual
vertex

subdivision
surface

subdivision
surface

mean value
coordinates
mean value
coordinates

harmonic
coordinates
harmonic

coordinates
solid
angle
solid
angle

no
np

la
na

r
po

ly
go

n
no

np
la

na
r

po
ly

go
n

no
nc
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ve

x
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go

n
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x
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 [ Floater 2003 ] [ Joshi et al.

       2007      ]

[ Bunge et al.

         2020      ] 

[ Catmull &

   Clark 1978 ]



Continuous interpolation
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m
in
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Discontinuous Jump



Architectural grid shells
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( directly ray traced )

[  Adiels et al. 2022 ]
[ Paxton, 1959 ]

12-sided polygon12-sided polygon circlecircle



Surface reconstruction

65( directly ray traced )

[  Kazhdan et al. 2006 ]

visualize results of Poisson 
surface reconstruction 

without requiring volumetric 
meshing or linear solves 

[ Barill et al. 2018 ] : evaluate 
solution as a sum of dipoles



Riemann surfaces

66( directly ray traced )
[ Jahnke, Emde & Lösch 1960 ]



Riemann surfaces as graphs

67( directly ray traced )

f (x, y)z =
graph



Riemann surfaces as graphs

68( directly ray traced )

f (x, y) z =− 0
level set 



Spherical harmonics
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( directly ray traced )

m=0 m=1 m=2 m=3 m=4m=-4 m=-3 m=-2 m=-1

l=
1

l=
2

l=
3

l=
4



Hyperspherical harmonics

70( directly ray traced )



The gyroid
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[ Diegel 2021 ]

not a harmonic function in 3D 

… but is a slice of a harmonic 
function in 4D

( directly ray traced )

*technically the trigonometric approximation to the gyroid



Laplacian Eigenfunctions
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Δℝ3 ϕ(x, y, z) = λ ϕ(x, y, z) ⟹ Δℝ4 (ew −λϕ(x, y, z)) = 0

Harnack tracingHarnack tracing reference solutionreference solution



Convergence
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Same asymptotic rate 
as sphere tracing

101 103100 102

iterations

10−4

10−3

10−2

10−1

100

101 103100 102

iterations

Sphere tracing

H
arnack tracing

Sphere tracing

H
arnack tracing

er
ro

r (
re

la
tiv

e 
to

 in
iti

al
 e

rr
or

)

Convergence Rate
(function value)

Convergence Rate
(distance to intersection)

1

1

linear

convergence rate
1

1

linear

convergence rate
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IV. Future Work



Subharmonic functions

75

harmonic: Δf = 0
subharmonic: Δf ≤ 0
less than the harmonic function

with the same boundary values 

superharmonic: Δf ≥ 0
greater than the harmonic function


with the same boundary values 
obeys upper bounds on


harmonic functions 
obeys lower bounds on


harmonic functions 

Warning: this slide uses the positive-semidefinite Laplacian where Δf = − ∑i
∂2

∂x2
i

f

Can we apply Harnack tracing?



Functions with bounded Laplacian

76
Warning: this slide uses the positive-semidefinite Laplacian where Δf = − ∑i

∂2

∂x2
i

f

then  is superharmonicf(x) −
λ

2d
∥x∥2

ℝdif ,|Δf | ≤ λ

and  is subharmonicf(x) +
λ

2d
∥x∥2

ℝd



Harnack tracing for other PDEs
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Harnack inequalities exist for many PDEs

But positivity becomes harder to enforce!



Optimization
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Signed Distance Functions
eikonal condition ∥∇f∥ = 1

nonconvex, nondifferentiable

insufficient to ensure  is an SDF

[ Xie et al. 2022, Marschner et al. 2023 ]

f

Harmonic Functions
Δf = 0

linear, variational

what space of functions 
should be optimized over? ?



Solid angle bounds

79

spatial extent of level sets function value 

2π level set 3π level set “convex”? ? general 
knots 



Solid angle in 4D

80

Shape interpolation via solid angle



Solid angle in 4D
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Shape interpolation via solid angle

 [ van Oosterom and Strackee 1983 ]

3D solid angle formula

 [ Ribando 2006 ]

4D solid angle formula?



Links to Blender code and ShaderToy examples can be found at:

www.markjgillespie.com/Research/harnack-tracing

input
curves

Thanks for listening

82



Supplemental Slides



Level sets of harmonic functions 
show up everywhere

84

surface reconstruction

& mesh repair 

architectural

geometry 

physics
fabrication mathematics



Poisson gradient termination artifacts

85gradient termination fixed termination 



Filtering out spurious intersections

86



Solid angle numerics

87



Off-centered envelopes

88



In practice: look for level sets above and below

89

f(x)

f*

f* − 2π

f* + 2π

f* + 4π

distance to  f*

distance to 
lower level set 

distance to 
upper level set 



Ray tracing harmonic functions in 3D
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≤ f(y) ≤

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x)

1 + r/R
(1 − r/R)2 f(x)

Harnack’s inequality in 3D:

(for a positive harmonic function on a 3D ball) 

x
R

yr
given isovalue ,f*

r =
R
2

a + 2 − a2 + 8a ,

safe to take step of size

where a =
f

f*

complete algorithm: 



Ray tracing harmonic functions in 3D
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≤ f(y) ≤

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x)

1 + r/R
(1 − r/R)2 f(x)

Harnack’s inequality in 3D:

(for a positive harmonic function on a 3D ball) 

x
R

yr
given isovalue ,f*

r =
R
2

a + 2 − a2 + 8a ,

safe to take step of size

where a =
f

f*



1 − r/R
(1 + r/R)

f(x) ≤ f(y) ≤
1 + r/R

(1 − r/R)
f(x)

2D Harnack Tracing

92

x

R yr

Let  be a positive harmonic 
function on a 2D ball

f

lower bound upper bound

1 − r/R
(1 + r/R)

f(x)
1 + r/R

(1 − r/R)
f(x)

given isovalue ,f*

r = R
| f(x) − f* |
f(x) + f*

safe to take step of size

We can use the fact that 
 is harmonic to obtain a 

distance bound
f



3D Harnack Tracing

93

≤ f(y) ≤

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x)

1 + r/R
(1 − r/R)2 f(x)

Harnack’s inequality in 3D:

(for a positive harmonic function on a 3D ball) 

x
R

yr
given isovalue ,f*

r =
R
2

a + 2 − a2 + 8a ,

safe to take step of size

where a =
f(x)
f*


