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Harmonic functions

special kind of function

well-understood mathematically
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Harmonic functions




Intersecting a ray with a level set




Level sets of harmonic functions
show up everywhere

Poisson surface reconstruction generalized winding numbers Rigmann su1r£a5c1es hyperspherical harmonics
[ Kazhdan et al. 2006 ] [ Jacobson et al. 2013 ] [ Riemann ] [ Fock 1935 ]

nonplanar polygons curve networks shell structures in architectural space-filling surfaces for
[ Maxwell 1873 ] [ de Goes et al. 2011 ] geometry | Adiels et al. 2022 | digital fabrication 6



... but, they’re hard to render with

existing techniques
may have singularities

Increasing
( purported )

Lipschitz
constant

decreasing
step size

ray marchin
x (\Xth fixed step size) g

sphere tracing

(with purported Lipschitz constant)



... but, they’re hard to render with
existing techniques

may have boundaries

bisection
search

/ours

Newton’s interval
method arithmetic




... but, they’re hard to render with
existing techniques

may have boundaries

/ours

Mathematica
(ContourPlot3D)

cubes



/

Sphere tracing
[ Hart 1996 ]

f(x) = distance to curve
@

X

compute intersections for/signed(distanceifunctions!(SDDFs)



N

compute intersections,for/signed|distancelfunctions!(SDFs)




Sphere tracing: beyond SDFs

[ Hart 1996 ]

Easy to generalize to
Lipschitz functions:

(essentially, | Vf| < L)

Important fact:

f) =W <L|x—y]

provides a conservative b
bound on distance

A

| Inigo Quilez 2015



Problem: many harmonic functions

are not Lipschitz

O(x,y) = atan2(y, x)
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Problem: many harmonic functions

are not Lipschitz

O(x,y) = atan2(y, x)
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Problem: many harmonic functions

are not Lipschitz

O(x,y) = atan2(y, x)
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Problem: many harmonic functions

are not Lipschitz

0(x,y) = atan2(y, x)

No matter how close
points get, function
values never get closer

no distance bound
for sphere tracing

16



Main idea: get distance bounds

from Harnack’s inequality

Let f be a positive harmonic function on a ball: We can use the fact that
f is harmonic to obtain a

1 —7/R 1 +r/R distance bound
— O
(1 + 7/R) (1 —r/R
lower bound upper bound

always safe to take step of size

R
— a+2—\/a2+8a :

7 @)
f*

where a =







|. HARNACK’S INEQUALITY

[l. HARNACK TRACING

[1l. EXAMPLES

V. FUTURE WORK

?
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l. Harnack’s Inequality




Harnack’s Inequality

(in L

)

1 —r/R 1 +7r/R
Wf(x) <fy) < Wf(x)

lower bound upper bound
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Prelude: Bounding Positive Linear Functions

a linear function can
change arbitrarily fast

“technically speaking, positive affine functions
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Prelude: Bounding Positive Linear Functions

|

a linear function can |
change arbitrarily fast N ]

|

|

“technically speaking, positive affine functions
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Prelude: Bounding Positive Linear Functions

a linear function can
change arbitrarily fast

“technically speaking, positive affine functions
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Prelude: Bounding Positive Linear Functions

a linear function can
change arbitrarily fast

but if it changes too
fast, it does not stay
positive

“technically speaking, positive affine functions
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Prelude: Bounding Positive Linear Functions

a linear function can
change arbitrarily fast

but if it changes too
fast, it does not stay
positive

“technically speaking, positive affine functions

positive linear functions
must stay between the
upper and lower bounds
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The Mean Value Property

(in L
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high

The Mean Value Property

mean value
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The Poisson Kernel

(in L

high

weighted average

low

S1(x, R)
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The Poisson Kernel

30



The Poisson Kernel

— 2 R2_ 2

1 R* —r _
vol(S) L R2-4(R + r)d f(z) dz < f(y) < vol(S) L R~AR — 1) f(z) dz




The Poisson Kernel

R-r | | [ @) dzj< f) < — 7 | Jf()d
R=IR + | vol(s) ) 9 “ <JO) = iR il voles) S




The Poisson Kernel

(in L

high

low r
J(x)

R?~4(R + r)4




(in L

high

R2 2

low

r R r
a0 < e
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(in L

high
Harnack’s inequality
o 1 —r/R £ < ) 1 +R/r -
W < < X
1 + r/R)yd-1 I =JOV =1 _ Ry
§d-1(x. R) ( ) ( )
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Il. Harnack Tracing




Distance bounds from

Harnack’s inequality

Let f be a positive harmonic function on a ball: We can use the fact that
f is harmonic to obtain a

1 —7/R ] distance bound
— /O R — /(D)
(1 + 7/R) (1 —r/R
lower bound upper bound

always safe to take step of size

R
— a+2—\/a2+8a :

7 @)
f*

where a =




Distance bounds from

Harnack’s inequality

{positiveharmonic function on a ball:

Let f be

What if f is not positive?

Just add a constant to make
it positive on the ball

All you need iIs a
valid ball radius and

a lower bound on f

33



Algorithm sketch

Harnack Tracing
Starting from point x, in direction d:
Pick ball radius
Shift f to be positive on ball

Calculate safe step size

Take safe step in ray direction
Repeat until fis sufficiently close to f*

39



Invalid lower bounds

top view

bottom view

invalid lower bound

40



Balanc Ing the radius and shift




Balancing the radius and shift

- = lower bound

lower bound

smaller radius, larger shift larger radius, smaller shift

42



Sphere tracing acceleration

[ Keinert et al. 2014 ]: “over-stepping”

conservative steps | =CQ=p 1, : \’ e 0 0.0 0 o ¢o

o~

valid oversteps

43



Acceleration: gradient termination

How do you decide when you have “hit” the surface?

f(x)-fl<e
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Acceleration: gradient termination

How do you decide when you have “hit” the surface?

F(x) - f] <e F(x) - f*
Vi)
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How do you decide when you have “hit” the surface?

f(x)-fl<e

00 - _
Vi)

2000

SUOIID.IA]I

m—
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Angle-valued functions

O(x,y) = atan2(y, x)
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Angle-valued functions

continuous when
viewed modulo 27

O(x,y) = atan2(y,x)
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Angle-valued functions — continuous functions

— ‘ we never compute
O=271 this lift explicitly |

¥ g

DISCOANINNOOS S UNTTION
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In practice: look for level sets above and below

% 4+ 4
distance to f T X
upper level set
distance to f(X)
lower level set f>1< + 27
distance to f*
f*
2
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Angle-valued functions allow for boundaries

O(x,y) = atan2(y, x)

+ 7T
I |
—Jl
51




Angle-valued functions allow for boundaries




PBRT (CPU ray tracer)

Shadertoy Search... Welcome mgillesp | Browse New

» Shader Inputs
const float epsilon = 0.025

const
const
const
const
const

const
const

int max_iterations = 2500;

float animation_speed = .5
float unit_shift = 3.

bool fill_material = false;
float wall_thickness = 0.1

float scale = 9.; .
bool use_grad_termination = true

// 0 : harnack tracing

// 1 : ray marching

// 2 : interval arithmetic
const int method = 0;

const
const
const
const

bool clip_to_sphere = true

vec3 sphereCenter = vec3( 0.f, 0.f, 0. )

float sphereRadius = 1.

ShaderToy (WebGL shaders)

float outerRadius = sphereRadius + 0.5;

® g wn const bool draw_ground_plane = true
K Il 4310 1201fps 1280x720 rec €€ I3 const bool drew_shadow = true
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PBRT (CPU ray tracer)

=
-
Q
e
L
Q.
£
O
o
L
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s




Simple to implement

Welcome magillesp | Browse

Common - Image

New

» Shader Inputs

const float epsilon = 0.025;
const int max_iterations = 2500;
const float animation_speed = .5;
const float unit_shift = 3.;
const bool fill_material = false;
const float wall_thickness = 0.1;

const float scale = 9.; .
const bool use_grad_termination = true;

// @ : harnack tracing

// 1 : ray marching

// 2 : interval arithmetic
const int method = 0;

const bool clip_to_sphere = true;

const vec3 sphereCenter = vec3( 0.f, 0.f, 0.f );
const float sphereRadius = 1.;

const float outerRadius = sphereRadius + 0.5;

NNNNN
BWNFOOVONOUAWNHOOONOUIAWNK

® 4 const bool draw_ground_plane = true;
M 1l 4310 1201fps 1280x720 ac '€ I3 conef hool. draw _shadow T Erues
Harnack Gyroid P 0 P2 const vec3 light = vec3( 2., 10., 1. );
y

|
N
(%]

Views: 87, Tags: [ 3d, distancefield, sc

Forked from Lipschitz&RaymarchingC

Render a level set of a non-harmonic func

[ unlisted v

Comments (0)

m Your comment...

ShaderToy (WebGL shaders)
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Generalized winding number
[ Jacobson et al. 2013 ]

a.k.a. signed solid angle

input mesh

_
repaired mesh
( directly ray traced )
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Signed solid angle

signhed solid angle ( directly ray traced )
59




Signed solid angle

less planar

21t level set

more planar

31t level set

60



General nonplanar polygons

( directly ray traced )
61



Interpolating surfaces

lanar

pgl ygon

nonconvex non

polygon

solid  mean value harmonic subdivision virtual
angle  coordinates coordinates surface vertex

[ Joshi et al. [ Catmull & [ Bunge et al.
2007 ]  Clark 1978 ] 2020

minimal
surface
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Continuous interpolation

solid angle

minimal surface

pT
=
/4 ; //
/4
4 / |

Discontinuous Jump

63



Architectural grid shells .
[ Adiels et al. 2022 ] fi=tx—o K& (k) —mAo(4,k) (19)

[ Paxton, 1959 | /7

niviiuwcviurar 5W1.ucuy Id uIc appu\.nuuu vl 5W1.ucuy w
those with curved surfaces like shells and grid shells |
carry load mainly through membrane action, making 1
and beams used today. The complex geometry, combine
production, spatial and aesthetic aspects, makes this
centuries. Early treatises in architectural geometry inc
(1512-1570), examining the art of cutting stones in va
and applications from the field of differential geometry
have experimented with various shapes to balance requi
and Félix Candela [4], Eladio Dieste’s "Gaussian vaults
Other examples include Weingarten surfaces [7], such
surfaces. Additional techniques include form finding [8

r
AN (B
m L&__ro — .0

arXiv:2212.05913v1 [math.DG] 6 Dec 2022

Emil Adiels |
Chalmers University of Technology, Sweden, e-mail: emil. adie

Mats Ander
Chalmers University of Technology, Sweden, e-mail: |mats . ande

o
Chalmers University of Technology, Sweden, e-mail:‘christopl
! F

: I ngle subtended at points over the interior or
C I rC e ;r the periphery of disk (7o <tm).

—————r——* I




Surface reconstruction

[ Kazhdan et al. 2006 ]

o W ‘ ™

visualize results of Poisson
surface reconstruction

without requiring volumetric
meshing or linear solves

oY =

| Barill et al. 2018 ] : evaluate
solution as a sum of dipoles

e T

( directly ray traced )
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Riemann surfaces

9
— b &
//
// e
///
o, Hh.w ,/ \ 2 qoo

F!i -a-\ _X \ s [/ -

nrnf. _— // 2

i
7
& 0 : 7 > 7
{5 T

Fig. 24 Relief des 2. Zweiges der Funktion F(g, k) mit k = 0,8. (¢ = @, +ip,)
Fig. 24 Relief of the 2 nd branch of the function F(¢, k) with k = 0,8. (¢ = P4+ i@,)

| Jahnke, Emde & Losch 1960 | -
( directly ray traced ) 66



Riemann surfaces as graphs

( directly ray traced ) 67



Riemann surfaces as graphs

level set

( directly ray traced ) 68



( directly ray traced )

”

Spherical harmonics




Hyperspherical harmonics

f(x,y,z,w) = y"—3yz° f(x,y,z,w) = x°y +xy"—3xyw*— 3xyz"
( directly ray traced ) 70



“technically the trigonometric approximation to the gyroid

The gyroid

not a harmonic function in 3D

[ Diegel 2021 ] ... but is a slice of a harmonic
Metal AM heat exchanger design workflow | contents | news | evet fu nCtiOn in 4D

:

Fig. 6 Section view of completed heat exchanger, including hot and cold fluid zones (left], and the printed part showing
minimal support material requirements [right).

directly ray traced ) 71



Laplacian Eigenfunctions

/2



Convergence

CONVERGENCE RATE CONVERGENCE RATE ¢
(function value) (distance to intersection) f

10,

Same asymptotic rate

as sphere tracing 2

O 107 - —

g 5 z 2 s

"é’ N 9_’_\ N 1 N

£ - 3 i e, >

S A = - © Cg

S 1072 = ~ — < e

= R — - o -

g = = <

s s ' ‘

t 1073 = ==

O = = \

1074 L T T LT T T T T VT Tt 11 T A IR MR 1T O I |||||||\\| NN R
100 101 102 103 100 101 102 103
Iterations Iterations

/3



IV. Future Work



Subharmonic functions

harmonic: Af = 0

subharmonic: Af < 0 superharmonic: Af > 0
less than the harmonic function greater than the harmonic function
with the same boundary values with the same boundary values
obeys upper bounds on obeys lower bounds on
harmonic functions harmonic functions

Can we apply Harnack tracing?

2
Warning: this slide uses the positive-semidefinite Laplacian where Af = — z.a—

L Ox?

/3



Functions with bounded Laplacian

A
if |Af| <A, thenf(x)— Z_d”x”lzd is superharmonic

A
and f(x) + 2—d||x||[2d is subharmonic

2
Warning: this slide uses the positive-semidefinite Laplacian where Af = — zi%f
A
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Harnack tracing for other PDEs

Harnack inequalities exist for many PDEs

But positivity becomes harder to enforce!

77



Optimization

Signed Distance Functions Harmonic Functions
eikonal condition ||Vf]| = 1 Af=0
x nonconvex, nondifferentiable flinear, variational
xinsufﬁcient to ensure fis an SDF 7 what space of functions

[ Xie et al. 2022, Marschner et al. 2023 ] e should be optimized over?



Solid angle bounds

spatial extent of level sets function value

JZT[ level set 7 31t level set ¥ 4
o convex

general
knots




Solid angle in 4D

Shape interpolation via solid angle

-
-
|

30



Solid angle in 4D

Shape interpolation via solid angle

3D solid angle formula
[ van Oosterom and Strackee 1983 |

Theorem 2.2. Let Q2 C R” be a solid angle spanned by unit vectors {vy, ..., V,}, let
V be the matrix whose ith column is v;, and let a;; = V; - Vj, as above. Let T,, be the
following infinite multivariable Taylor series:

a

|det V|

(471’)"/ 2

Z (—2)Zi<jaij 1_[1" 1+ Zm¢iaim o
]_[a,- ! . 2 .
aeN(2) i<j J :

The series T, agrees with Vg, the normalized measure of solid angle 2, wherever T,

converges.

O

| Ribando 2006 |

4D solid anglé formula?

31



Thanks for listening

Links to Blender code and ShaderToy examples can be found at:
www.markjgillespie.com/Research/harnack-tracing
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Level sets of harmonic functions

show up everywhere
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Fig. 9 Surfaces with different constant solid angles on a circular boundary.
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— booleans and point set surfaces. in areas where removal was easy. exchangers of different sizes and
Authors’ addresses: Gavin Barill, David LW. Levin, Alec Jacobson, UofT, 40 St George CCS Concepts: - Computing methodologies — Mesh models; Point- efficiencies. With a few modifica-
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Poisson gradient termination artifacts

gradient termination fixed termination

1

——— i,
lpi — x|
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Filtering out spurious intersections

Moreover, for angle-valued functions, bisection
one may detect discontinuities in f(x), search
rather than true geometric intersections. -
For interval-based methods, one can try to
“patch” this issue by, e.g., checking whether
the value of ¢(t) at the center of the interval
is within ¢ of zero, but this sort of modifi- \
cation voids any guarantees—causing new
artifacts (see inset). For level sets of simple
functions, like the globally continuous gyroid in Figure 27 (top right),
interval analysis can reliably compute the first intersection. But for
the broader class of surfaces handled by Harnack tracing, significant
artifacts were visible in all root finding methods we tried (Figure 27).

interval
analysis



Solid angle numerics

solid angle

formula

triangulation quaternion angle sum

4

' 4
= L3I v \ t ;t/, \\t ;t \ \
53 o LEAAAR QAR b AN
SR |
LT A S
w1y '\

3 3 \

Biot-Savart algebraic rearrangement finite differences

Fig. 12. Not all expressions for the solid angle or its derivative provide
accurate results in floating point. Top: the solid angle formulas based on
triangulation and quaternions work well, but the expression based on angle
sums suffers from numerical instability. Bottom: The Biot-Savart law and its
rearrangement by Adiels et al. [2022] both yield accurate normals, but finite
differences give incorrect results due to jumps in the angle-valued function.
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Off-centered envelopes

f =%

| e
Fx) - f Fx) -7
Vol ~° vl Cf

fx)-fl<e

Fig. 5. If f(x) is a signed distance function, then terminating intersection
queries when | f(x) — f*| < € ensures that x is within ¢ of the chosen level
set. But, when f(x) is a general function, this condition loses its geometric
meaning and produces an uneven profile along the target surface (left). We
can obtain a more meaningful stopping condition using the gradient V f (x),
to relate changes in function value to changes in position (center, right).
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In practice: look for level sets above and below

Algorithm 2 TRACEANGLEVALUED(ry, V, f, f(X), R(X), c(X), €, tmax)

1: t <0

3: Iy < Ig+1Vv
Jist ¢ f* + 4r 4: >Find the two level set values bracketing the current value of f
apperioveet | s () )/
PP (x) 6 foe2nlfol+f7
distance to 7. fre2x[fo] +
lower level set f>1< + 0 B Dol K G
distance t()Af>I< ) if mln(f(rt) _f—>f+ _f<rt)) < €||Vf(rt)|| then
10: return ¢
11:
e 12: a— «— (f(ry) —c(re))/(f= —c(rz))
J 5 ay e (frr) — c(re)/(fo — e(xr))
14: P — %R(rt) a_+ 2 — \/az + 3a_
15: Py — %R(rt) ay + 2 — \/ai + 8a.
f* — 2 16: p < min(p—, p+)
17: [<—1+p

18: return —1 39




Ray tracing harmonic functions in 3D

Harnack’s inequality in 3D:

<J(y) <

lower bound upper bound

r

given isovalue f*,
safe to take step of size

R
= — a+2—\/a2+8a :

2
_J
where g = —

f*

complete algorithm:

Algorithm 1 HARNACKTRACE(ry, v, [, f(X), R(X), c(X), €, tmax)

1: 1«0

2: while t < tyax dO

3: Iy < 19 +1IVv >current point along ray
4 if |f(r;) — 7| < ¢||Vf(ry)|| then >stopping condition
5: return ¢

6: if f* < c(r;) then >if f* lies below the lower bound...
7 p < R(r;) >...we can safely take the maximum step of R
8 else

9 a<— (f(ry)—c(r:))/(f* —c(ry)) »otherwise, shift and...
10: p — %R(rt) a+2— Va2 +8a >...compute safe step size
11: te—t+p >take step
12: return —1 >ray does not hit surface
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Ray tracing harmonic functions in 3D

Harnack’s inequality in 3D:

<J(y) <

lower bound upper bound

r

given isovalue f*,
safe to take step of size

R
= — a+2—\/a2+8a :
2
S
where a = —

f*

Algorithm 2 TRACEANGLEVALUED(ry, V, f~, f(X), R(X), c(X), €, tmax)

S G G G S
w DN = O

p—
"

15:

16:
17:

18:

ooge ey B o N o

t «— 0
while t < 5 do
Iy <TI0+ 1V >current point along ray
>Find the two level set values bracketing the current value of f
fo = (f(ro) - f5)/ (21
£ 2nlfol + f
fi e 2n[fol + f°
>Stop if close to either surface (§3.1.2)

if min(f(r;) - f-, fi — f(r:)) < el|Vf(r;)|| then

return ¢

. >Compute step size bound for each of the two closest level sets

a— — (f(ry) —c(ry))/(f- —c(r))
ar < (f(ry) —c(ry))/(f+ — c(rt))

p— — 3R(ry) la- +2 — /a2 + 8a_
Dt %R(rt) ay + 2 — \,/agr + 8a4
p «— min(p_, p+) >Take the smaller of the two steps
f—1t+p
return —1 >ray does not hit surface

91



2D Harnack Tracing

given isovalue f*,

safe to take step of size

Let f be a positive harmonic ) =
function on a 2D ball r=R Ax) +
SUESTRY - /() < RS
R < f(v) < X
1 +7r/R l —r/R O
( ) ( ) R -
lower bound upper bound R
X

We can use the fact that

f is harmonic to obtain a
distance bound
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3D Harnack Tracing

Harnack’s inequality in 3D:

SRRAC ) o PESEES
TR e e
(1 + r/R)* == (1 — r/R)*

lower bound upper bound

given isovalue f*,
safe to take step of size

R

g = — d+2—\/a2+861 .
2
J(x)
where a =
i
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