New Foundations for Robust Geometry Processing

Mark Gillespie, Carnegie Mellon University / École Polytechnique

University of Utah

Geometry is all around us

technical assets

scientific data

simulation

animation

medical imaging

geometric ML

digital fabrication 2

Geometry Processing

design algorithms to be:
simple
efficient

• robust

robotics

creative tools

Example: Poisson reconstruction [Kazhdan *et al.* 2006]

$3D \operatorname{scan} \rightarrow 3D \operatorname{model}$

Robust

formulated as principled geometric optimization problem

medical imaging autonomous driving

neural reconstruction

README Code of conduct AGPI
ODM
An open source command line toolkit for p
Classified Point Clouds
 3D Textured Models
 Georeferenced Orthorectified Imagery
Georeferenced Digital Elevation Mode

drone mapping

Sim	pl	e
reduces pr	oble	m to

numerical linear algebra

geology

	[™] Watch 1/6 +	앟 Fork 1.6k	•	থ্য Star	8.2k
README গ্র্রু License					Ø
COLMAP					
About					
COLMAP is a general-purpose Structure- graphical and command-line interface. It unordered image collections. The softwar research, please cite:	from-Motion (SfM) and Multi-\ offers a wide range of features re is licensed under the new BS	/iew Stereo (MVS for reconstructio D license. If you) pipelin n of ore use this	ne with a dered an s project	d for you
<pre>@inproceedings{schoenberger2016sfm, author={Sch\"{0}nberger, Johanr title={Structure-from-Motion Re booktitle={Conference on Comput year={2016}, }</pre>	es Lutz and Frahm, Jan-Mich visited}, er Vision and Pattern Recoç	ael}, nition (CVPR)},			Ľ

forestry

architecture

Representing surfaces

Representing surfaces

Not all meshes are created equal

Challenge: Robustness

a hidden opportunity

actual output

Outline

I. SURFACE PARAMETERIZATION

New algorithm for a ubiquitous subroutine

using hyperbolic polyhedra

II. INTRINSIC

Other interests

Fabrication

Hirose, **Gillespie**, Bonilla Fominaya, & McCann. 2024. *Solid Knitting.* ACM Trans. Graph.

Best Paper (Honorable Mention)

Applied Topology

Feng, **Gillespie**, & Crane. 2023. Winding Numbers on Discrete Surfaces. ACM Trans. Graph.

Surface Parameterization

Gillespie, Springborn & Crane. 2021. *Discrete Conformal Equivalence of Polyhedral Surfaces.* ACM Trans. Graph.

Parameterization

a map from a surface to the plane

Parameterization of general surfaces

[Gao et al. 2015]

Signal processing

[Gao et al. 2015]

mal processing

neuroscience [Gao *et al.* 2015]

shape analysis [Lipman & Daubechies 2011]

Signal processing

physical simulation [Segall *et al.* 2016]

learning on surfaces [Maron *et al.* 2017]

[Nojoomi et al. 2021]

Fabrication

[Konaković-Luković et al. 2018] [Ren et al. 2022]

Texturing 3d models

Timen 2012]

Mesh dependence

[**Gillespie**, Springborn, & Crane. 2021. *Discrete Conformal Equivalence of Polyhedral Surfaces.* ACM Trans. Graph.]

[Gillespie, Sp Equivalence o

challenging input triangulations

[Gillespie, Sp Equivalence of

difficult constraints

[Gillespie, Sp Equivalence of

[**Gillespie**, Springborn, & Crane. 2021. *Discrete Conformal Equivalence of Polyhedral Surfaces.* ACM Trans. Graph.]

Correctness guarantee: parameterizations are locally injective

Quality guarantee: parameterizations are discrete conformal maps

Turning to hyperbolic geometry

Reinterpret input as ideal hyperbolic polyhedron [Bobenko et al. 2010]

TRIANGLE MESH PARAMETERIZATION:

nonconvex optimization problem with nonlinear constraints

HYPERBOLIC PARAMETERIZATION: unconstrained convex optimization problem with a C^2 energy

guaranteed existence (and uniqueness) of solutions

hyperbolic length log ℓ

Challenge

new algorithms & data structures for geometric calculations on hyperbolic polyhedra

SHORTEST PATHS ON TRIANGLE MESHES [Sharir & Schorr 1986] [Mitchell et al. 1987] [Polthier & Schmies 2006] [Fisher et al. 2006] [Sharp *et al.* 2019]

Challenge

convert hyperbolic result back into ordinary Euclidean geometry

Reinterpret input as *ideal hyperbolic polyhedron* [Bobenko et al. 2010]

> Reinterpret result as an ordinary mesh parameterization [ours]

Succeess on difficult datasets

Success = produced a locally-injective parameterization

Dataset	# Models	Success rate	Avera tim
MPZ s <i>et al.</i> 2014]	114	100%	8s
ningi10k 1 <i>et al.</i> 2016]	32,744	97.7%	578

Maps to the sphere

Datas

brain s [Yeo et al.

anatomical [Boyer et a

set	# Models	Success rate	Average time
cans [. 2009]	78	100%	493s
surfaces al. 2011]	187	100%	15s

Uptake

adopted in a variety of areas

3D printing [Lenihan *et al.* 2023]

probability distributions on surfaces [Genest *et al.* 2024]

geometric topology [Bobenko & Lutz 2023]

geometry processing [Capouellez & Zorin 2023, 2024]

generative models (ongoing)

Robust Geometry Processing

Geometry Processing. ACM Trans. Graph.

Liu, **Gillespie**, Chislett, Sharp, Jacobson & Crane. 2023. *Surface Simplification using Intrinsic Error Metrics*. ACM Trans. Graph.

Sharp, **Gillespie**, & Crane. *Geometry Processing with Intrinsic Triangulations.* ACM SIGGRAPH 2021 Courses

Sharp, Gillespie, & Crane. Geometry Processing with Intrinsic Triangulations. SIAM IMR 2021 Courses

Working with low-quality triangle meshes

Status quo: remeshing

- State-of-the-art is robust but slow
 - Techniques work volumetrically

47 minutes

[Hu, Zhou, Gao, Jacobson, Zorin & Panozzo 2018]

Status quo: remeshing

- State-of-the-art is robust but slow
 - Techniques work volumetrically

runtime:

43 minutes

[Hu, Schneider, Wang, Zorin & Panozzo 2020]

Meshing is much easier in 2D

runtime: 47 minutes

strong guarantees on quality

Generate high-quality meshes in milliseconds

via Delaunay refinement [Chew 1993; Shewchuk 1997]

⊖ 70 milliseconds

Trade offs of extrinsic remeshing

triangle qualitymesh sizegeometric fidelity

330k faces

3k faces

)

es

Intrinsic triangulations sidestep the trade off

runs in milliseconds

high triangle quality

exact same geometry

without too many more triangles

Triangle meshes

DATA STRUCTURE faces = { (0, 1, 2), (2, 1, 3), (5,8,9),

Intrinsic triangles

store edge lengths instead of vertex positions

DATA STRUCTURE @dgeekepgthtions face_connectivity

The space of intrinsic triangulations is large

extrinsic triangle meshes

intrinsic triangulations

Delaunay triangulations

- Countless useful properties:
 - Maximize angles lexicographically, minimize spectrum lexicographically, smoothest interpolation, positive cotan weights...
- Key to successful 2D remeshing algorithms
- Characterized by empty circumcircle condition

Intrinsic Delaunay triangulations

- [Masur & Smillie 1991, Rivin 1994, Indermitte et al. 2001, Bobenko & Springborn 2007]: intrinsic Delaunay
 - Maintain useful mathematical properties. [Sharp, Gillespie & Crane 2021]

Intrinsic Delaunay triangulations

- [Masur & Smillie 1991, Rivin 1994, Indermitte et al. 2001, Bobenko & Springborn 2007]: intrinsic Delaunay
 - Maintain useful mathematical properties. [Sharp, Gillespie & Crane 2021]
- Compute by a simple algorithm:
 - Flip any non-Delaunay edge until none remain

Faster than reading the mesh from disk

Problem: cannot guarantee high triangle quality

low quality Delaunay triangulation

Intrinsic Delaunay refinement

Theorem [Gillespie, Sharp & Crane 2021]

Let *M* be a mesh without boundary whose cone angles are all at least 60°. Then intrinsic Delaunay refinement produces a Delaunay mesh with triangle corner angles at least 30°

Example: Approximate Shortest Paths

heat method for surface distances [Crane, Weischedel & Wardetzky 2013]

mesh

Example: Approximate Shortest Paths

heat method for surface distances [Crane, Weischedel & Wardetzky 2013]

mean error: 28% result on input mesh

/V/= 2948

mean error: 2% result on Delaunay refinement

14 = 17954

Tracking Correspondence

Correspondence data structure

(concretely, just 3 integers per edge)

roundabouts

Normal coordinates

Geometry Processing: [Hass & Trnkova 2020]

- Foundations: [Kneser 1929; Haken 1961]
- **Computational Topology:** [Schaefer+ 2008; Erickson & Nayyeri 2013]

Finding the exact curve geometry

- Ordinarily: sequence of triangles
- True curve unfolds to a straight line
 - Lay out in plane for exact curve
- Normal coordinates determine edges exactly

Representing an intrinsic triangulation

Intrinsic Delaunay refinement — validation

- Compute refinements for Thingi10k dataset [Zhou & Jacobson 2016]
 - 7696 manifold meshes
- 100% success rate
 - [Sharp *et al.* 2019] succeed on only 69.1% of meshes

Usage

Robotics [Lakshmipathy] *et al.* 2024]

Cell Modeling [Numerow *et al.* 2024]

Parameterization [Fargion & Weber 2022] [Wang *et al.* 2022] [Akalin *et al.* 2024]

Surface Correspondence [Takayama 2022]

Shape Modeling [Finnendahl *et al.* 2023]

Aumentado-Armstrong *et al.* 2023]

Extrinsic Remeshing [Dai *et al.* 2024]

Simplification [Shoemaker *et al.* 2023]

Surface Distances [Feng & Crane 2024]

Rendering [Celes 2025]

A New Family of Implicit Surfaces

Gillespie, Yang, Botch & Crane. 2024. *Ray Tracing Harmonic Functions.* ACM Trans. Graph.

Best Paper (Honorable Mention)

3D scanner data: points + normals

Goal: "inside-outside" function

f(x)

()

3D scanner data: points + normals integrate

Goal: "inside-outside" function

blur normals

3D scanner data: points + normals

in practice, very complicated

integrate

custom solver

Goal: "inside-outside" function

extract triangle mesh

blur normals

3D scanner data: points + normals

in practice, very complicated

integrate

custom solver

Goal: "inside-outside" function

extract triangle mesh

Skipping straight to the answer

visualize results of Poisson surface reconstruction *without* requiring meshing or numerical solvers

(directly ray traced)

Harmonic functions

special kind of function

well-studied

heat transfer

gravitation

$$\sum_{i} \frac{\partial^2 f}{\partial x_i^2} = 0$$

electrostatics

complex analysis

58

Harmonic functions

 $\sum_{n=1}^{n} \frac{\partial^2 f}{\partial x^2} = 0$ $\Delta f := \sum_{i=1}^{n}$

Harmonic functions

 $\neg \frac{\partial^2 f}{\partial x^2} = 0$ $\Delta f :=$

S

ar

Intersecting a ray with a level set

Level sets of harmonic functions show up everywhere

Poisson surface reconstruction [Kazhdan *et al.* 2006]

generalized winding numbers [Jacobson *et al.* 2013]

nonplanar polygons [Maxwell 1873]

curve networks [de Goes *et al.* 2011]

input

Riemann surfaces [Riemann 1851]

shell structures in architectural geometry [Adiels *et al.* 2022]

... but, they're hard to render with existing techniques

may have singularities

... but, they're hard to render with existing techniques

Newton's

marching cubes

may have boundaries

Sphere tracing [Hart 1996]

compute intersections for signed distance functions (SDFs)

f(x) = distance to curve

Sphere tracing [Hart 1996]

compute intersections for signed distance functions (SDFs)

Sphere tracing: beyond SDFs [Hart 1996]

• Easy to generalize to *Lipschitz* functions:

(essentially, $|\nabla f| \leq L$)

- Important fact: $|f(x) - f(y)| \le L|x - y|$
- provides a conservative bound on distance

[Inigo Quilez 2015]

Problem: many harmonic functions are not Lipschitz

Problem: many harmonic functions are not Lipschitz

Problem: many harmonic functions are not Lipschitz

$\theta(x, y) = \operatorname{atan2}(y, x)$

+*π* 0

Problem: many harmonic functions are not Lipschitz

No matter how close points get, function values never get closer

$\theta(x, y) = \operatorname{atan2}(y, x)$

no distance bound for sphere tracing

$\begin{array}{c} \theta = \frac{\pi}{4} \\ \bullet \\ \theta = 0 \end{array}$

 $+\pi$

71

Main idea: get distance bounds from Harnack's inequality

Let *f* be a positive harmonic function on a ball:

lower bound

upper bound

always safe to take step of size $\frac{R}{2} \left| a+2-\sqrt{a^2+8a} \right|,$ where a =

We can use the fact that f is harmonic to obtain a distance bound

72
Main idea: get distance bounds from Harnack's inequality

Let f be a positive harmonic function on a ball:

What if *f* is not positive? Just add a constant to make it positive on the ball

 $\frac{1+r/R}{(x-r/R)^2}f(x)$

pper bound

always safe to take step of size $r = \frac{R}{2} \left| a + 2 - \sqrt{a^2 + 8a} \right|,$ where $a = \frac{f(x)}{f^*}$

All you need is a valid ball radius and a lower bound on f

Simple to implement

	ViewLayer 🗋						
<u>م</u> ۲	<u>۲</u> ~						
ene Collection							
Collection	⊙						
🔮 Camera	•						
🔽 Cube 🛛 🖉	•						
🚽 Light) •						
V Plane 🏹	7 ~						
Q							
Cube >) Harnack							
d Modifier							
) Harnack	[] 📮 🙆 🗸 🗙						
Epsilon	0.000100						
Level Set	0.50						
ounding Box	0.00						
lid Angle Fo	Triangulate ~						
	Use gradient termi						

Log

Simple to implement

Shadertoy Search								
			+ E Common × Buffer A	× 🖵 Image				
			Shader Inputs					
			<pre>1 const float epsilon 2 const int max_iterat 3 const float animatic 4 const float unit_shi 5 const bool fill_mate 6 const float wall_thi</pre>	= 0.025; ions = 2500; n_speed = .5; ft = 3.; rial = false; .ckness = 0.1;				
			7 8 const float scale = 9 const bool use_grad_	9.; termination = true;				
			11 // 0 : harnack traci 12 // 1 : ray marching 13 // 2 : interval arit 14 const int method = 0	ng hmetic ;				
			16 const bool clip_to_s 17 const vec3 sphereCen 18 const float sphereRa 19 const float outerRad	phere = true; ter = vec3(0.f, 0. dius = 1.; ius = sphereRadius	f, 0.f); + 0.5;			
H II 43.10 120.1 fps 128	0 x 720	REC 4	21 const bool draw_grou 22 const bool draw shad	nd_plane = true; ow = true;				
Harnack Gyroid		₽ + <> ♥ 2	23 24 const vec3 light = v	ec3(2., 10., 1.);				
/iews: 87, Tags: 3d, distancefield, sc								
Forked from Lipschitz&RaymarchingCo	る File Edit Render Windo							
Render a level set of a non-harmonic func						E=~		
						•		
unlisted V Save	User Perspective						Collection	
	(1) Cube							
	Sample 1/2							
Your comment					,			
?					6 ■			
					Æ			
	V Playback v Keying v							

PBRT (CPU ray tracer)

Simple to implement

Shadertoy Search		Welcome mgillesp					
	+ = Common × 🗖 Buffer A	× 🖵 Image					
	Shader Inputs	Shader Inputs					
	1const float epsilon2const float animatic3const float unit_shi4const float unit_shi5const float wall_thi67	= 0.025; tions = 2500; on_speed = .5; ift = 3.; erial = false; ickness = 0.1;					
	const float scale = 9 const bool use_grad_	9.; _termination = true;					
	10 11 // 0 : harnack tract 12 // 1 : ray marching	ing					
	13 // 2 : interval arit 14 const int method = 0	thmetic d;					
	15const bool clip_to_s16const vec3 sphereCer17const float sphereRa19const float outerRad	<pre>sphere = true; iter = vec3(0.f, 0.f, 0.f); adius = 1.; dius = sphereRadius + 0.5;</pre>					
H II 43.10 120.1 fps 1	1280 x 720 REC 4 II 220 const bool draw_grou const bool draw_shad	und_plane = true; dow = true;					
Harnack Gyroid	$ P + \langle \rangle \Psi 2 \qquad 23 \\ 24 \\ 25 \\ const vec3 light = v $	/ec3(2., 10., 1.);					
Views: 87, Tags: 3d, distancefield,	sc 💿 🕒 💿 🔊 nonplanar_						
Forked from Lipschitz&Raymarching	o つ File Edit Render Window Help Layout Modeling Sculpting UV Edition						
Render a level set of a non-harmonic fu	unc 🛫 🖓 Edit Mode 🗸 🗐 🗊 🗊 View Select Add Mesh Vertex Edge Fac	ce UV 🗘 Global 🗸 🗙 🖌					
unlisted V Save	User Perspective						
	(1) Cube						
Comments (0)							
Your comment		¢					
	f. ,						
?		👷 🖁					
nmunity Forums	6						
	View Marker • View Marker • View Marker • View Marker						

	ViewLayer	Ľ					
م v		\ ∀ ~					
ne Collection							
Collection		⊻ ⊙					
鵫 Camera	C P	o					
🔽 Cube 🛛 🖉	لا ک	•					
💡 Light 🛛 🤅)	o					
🔽 Plane 🌱		\sim					
Q							
Cube >) Harnack							
d Modifier							
) Harnack	ti 📮 🙆 🗸	×					
Epsilon	0.000100						
Level Set	0.50						
unding Box	0.00						
id Angle Fo	Triangulate	~					
	Use gradient ter	mi					

Generalized winding number [Jacobson et al. 2013]

input mesh

a.k.a. signed solid angle

repaired mesh (directly ray traced)

Architectural grid shells [Adiels et al. 2022]

1

and Félix Candela [4], Eladio Dieste's "Gaussian vaults" [5], and translational surfaces (Fig. 1(b)) by Jörg Schlaich [6]. Other examples include Weingarten surfaces [7], such as minimal surfaces, surfaces of revolution and constant mean surfaces. Additional techniques include form finding [8] striving for structural efficiency or a specific state of stress for

Emil Adiels

Chalmers University of Technology, Sweden, e-mail: emil.adiels@chalmers.se Mats Ander

Chalmers University of Technology, Sweden, e-mail: mats.ander@chalmers.se Chris J. K. Williams Chalmers University of Technology, Sweden, e-mail: christopher.williams@chalmers.se Fig. 12 Elevation of surface with constant solid angle having the the same boundary curves as the British Museum Great Court roof. It is the same surfaces as in seen in Figs. 13 and 14

(directly ray traced)

The gyroid

[Diegel 2021]

Metal AM heat exchanger design workflow

| contents | news | ever

not a harmonic function in 3D ... but is a *slice* of a harmonic function in 4D

Fig. 6 Section view of completed heat exchanger, including hot and cold fluid zones (left), and the printed part showing minimal support material requirements (right).

*technically the trigonometric approximation to the gyroid

(directly ray traced) 80

Differentiable rendering

[Chen *et al.* 2024] incorporated Harnack tracing into their differentiable 3D reconstruction algorithm

Future Directions

Robustness by default

Analogy: numerical linear algebra

solve Ax = b.

A∖b

Cholesky factorization
 LU decomposition
 QR decomposition
 triangular solver
 Hessenberg solver
 LDLT decomposition

Topological robustness

Today's talk: geometric robustness

The missing ingredient: topological robustness

Everyone assumes the input is manifold

Assume a 2-manifold triangle mesh M =

6.3. Limitations

KerGen assumes that each edge in the input mesh is shared by ex-

We represent surfaces as piecewise linear curves w essential steps of our algo distance field and finding surface. Both problems h geometry representation, rithms with publicly availa work: For our implement *Heat Method*) [CWW13] this choice is not unique, as well (refer to surveys n ment for any method is b

Discrete manifold and choice of variable space 3.1

given oriented topological 2-ma

In this section, our goal is to establish notations for representing a 2D manifold using a discrete mesh and the theoretical framework is not limited, the current minimal implementation is navigating its local topology. Our focus here lies in developing a common language for tensor calculus on a closed manifolds and employs first-order discretization. Future work could discrete manifold, which forms the basis for discretizing the system of equations. boundary conditions and higher-order discretizations. For applications, we expect the minimal system presented here to serve as a foundation for integrating more can be found in Table 1. In general, the runti complex models for specific biophysical problems. These could include additional global on the same order as those of Stein et al. volumetric/areal constraints, heterogeneity in material properties, in-plane anisotropy, and that our solver consistently converged for m surface activity, as exemplified in Zhu et al. (2022, 2024).

meshes with reasonable triangles.

Notation. In the smooth case, we consider a surface M, whose geometry is given by an embedding $\mathbf{x} \colon M \to \mathbb{R}^3$. We use **n** to denote the corresponding unit normals, and dA for intrinsic geometry of *M* by $S = (T, \mathbf{L}) | \mathbf{w} |$ the area element of the embedded surface. In the discrete case, we have a triangle mesh M = (V, E, T) with manifold connectivity. Its

geometry is given by vertex coordinates $x_v \in \mathbb{R}^3$ for each $v \in V$.

e the area, unit $e \in E$ we use F., C.F. with

but in the real world, many models are not manifold

and resp., supersolutions). \mathcal{M} . A function $u: V \to \mathbb{R}$ is tion) of $\frac{\partial u}{\partial t} + H(x, q, u) = 0$ d every point $x \in V$ such minimum) at *x*, we have

 n_{t_1}

the evolving Stokes expressed in tangent-

armal antitting with a simple, coordinate-free differential-geometric formulation. This irectly leads to a straightforward discrete model and a numerical scheme to ng-standing problem in its full geometric generality.

developable surfaces

laid out in the plane without stretching

easy to make from plywood or sheet metal

Geometric design tools

textile design

flank milling

curved-crease origami

developable surfaces

easy to make from plywood or sheet metal

developable surfaces

1. Build from closed-form pieces [Munidlova *et al.* 2021]

2. Complex non-convex optimization [lon *et al.* 2020] fit patches

Work intrinsically:

developable surface design becomes a parameterization problem

polygonal tilings

standard approach: parameterization to plane

limited to regular quadrilaterals & triangles

polygonal tilings

new approach: parameterization to hyperbolic plane

tiling by regular heptagons

tiling by regular octagons

standard approach: parameterization to plane

limited to regular quadrilaterals & triangles

polygonal tilings

new approach: parameterization to hyperbolic plane

regular heptagons

regular octagons

Hirose, Gillespie, Bonilla Fominaya, & McCann. 2024. Solid Knitting. ACM Trans. Graph.

Hexahedral Meshing [Pietroni et al. 2023] [Desobry et al. 2021] [Fang et al. 2021] [Dalmar at al 2020]

solid knitting

Stronger guarantees for intrinsic retriangulation

intrinsic Delaunay refinement

meet quality bounds using as few triangles as possible

Stronger guarantees for intrinsic retriangulation

OTHER OPEN QUESTIONS

asymptotically-optimal **Delaunay triangulation** [Guibas & Stolfi 1985]

spatial distribution of inserted vertices Shewchuck 1997]

exact predicates [Devillers & Pion 2003]

intrinsic Delaunay refinement

meet quality bounds using as few triangles as possible

Thank you to all of my great collaborators

Keenan Crane

James McCann

Yuichi Hirose

Angelica Bonilla Fominaya

Hsueh-Ti Derek Liu

Benjamin Chislett

Alec Jacobson

Mario Botsch

Denise Yang

Nicole Feng

Boris Springborn

Mathieu Desbrun

Theo Braune

Yiying Tong

Fernando de Goes

Try it yourself

Open source implementations available at:

https://github.com/markGillespie/ CEPS

https://github.com/MarkGillespie/ intrinsic-triangulations-demo

markjgillespie.com

https://www.shadertoy.com/ user/mgillesp

Thanks for listening

⊠ mark.gillespie81@gmail.com markjgillespie.com

Supplemental Slides

Intrinsic Delaunay refinement size grading

Intrinsic Delaunay refinement size grading

330k faces

Bad basis functions

Input basis function

[Sharp, Soliman & Crane 2019]

Intrinsic basis function

Intrinsic Delaunay flip complexity

Empirically, usually linear time

[Sharp, Soliman & Crane 2019]

$\Omega(n^2)$ worst-case examples in the plane

Exact polyhedral geodesic distance [Mitchell, Mount & Papadimitriou 1987]

"continuous Dijkstra"

MITCHELL, MOUNT AND PAPADIMITRIOU

654

The interval I of points can be open, closed, or half-open and half closed. (An open endpoint arises in the degenerate case in which the unfolding of the shortest f-free path to the point passes through two or more vertices (see Fig. 6). The fact that the resulting interval has an open endpoint is really an artifact of our definition of the root of a path as being the *first* vertex encountered when tracing back along the path.) Let the subsegment I = [a, b] be the closure of \mathcal{I} . (Normally, we would write $I = \overline{ab}$ to indicate the segment with endpoints a and b; however, we write [a, b] to emphasize the fact that coordinate values can be attached to points of e, and I can be thought of as an interval of these coordinates.) The endpoint a (resp., b) is the one on the left (resp., right) when viewed looking into face f. We call I the interval of optimality for r and $\mathscr E$ with respect to (e, f). An alternative specification of an interval of optimality is to give its unfolded root $\bar{r} = U_{\mathscr{C}}(r)$, its depth d = d(r), and the corresponding edge-face pair (e, f). Note that r may be an endpoint of e (and hence of I) in the degenerate case. (Let us establish the convention that \mathscr{C} does not include the edge e, so that $U_{\mathscr{C}}(r)$ writes the image of r in the coordinate system of face f'. If $\mathscr{E} = \emptyset$, then r will be one of the vertices of f'.) A point x is an element of the interval of optimality of \bar{r} with respect to (e, f) if there exists a shortest f-free path to x whose unfolded image (along its last edge sequence) in the plane of f contains the segment \overline{rx} .

We illustrate the notion of unfoldings and intervals of optimality in Fig. 6. On the left we show the interval I' of points on e which are "accessible" from r through the given edge sequence along paths that unfold into straight lines. Note that I' is determined by the left and right "clipping" vertices, r_L and r_R . (I' is simply that part of e which is visible from r within the polygon obtained by unfolding the sequence of adjacent faces.) In the figure on the right, we show the interval of optimality I = [a, b]. (Note also that in this case, $\mathcal{I} = (a, b]$ is half open, since the root of the

Example: Flip-Based Geodesic Paths

- FlipOut [Sharp & Crane 2020]:
 - computes geodesic paths via edge flips

[Sharp, Soliman & Crane 2019]

[Ours]

Normal coordinates are not enough to encode correspondence

Harnack tracing convergence

Theorem [Gillespie, Yang, Botch & Crane 2024]

Suppose the radius R(x) and shift c(x) are compatible, in the sense that f(x) - c(x) > 0 on the ball $B_{R(x_0)}(x_0)$ for all x_0 , and that R(x) > 0. Then Harnack tracing converges linearly to the first intersection of r(t) with $\{x : f(x) = 0\}$, so long as an intersection exists.

Algorithm sketch

Harnack TracingStarting from point x_0 in direction d:Pick ball radiusPick ball radiusShift f to be positive on ballCalculate safe step sizeTake safe step in ray directionRepeat until f is sufficiently close to f^*

The Poincare disk

k

ideal hyperbolic polyhedron

Intrinsic triangulations for learning on surfaces

[Sharp *et al.* 2022]

Point cloud processing

[Sharp & Crane 2020]

Ptolemy flips improve performance

MPZ

stopping to flip better1k10k10k100kmesh size (#vertices)

Boundary conditions

circular disk

minimal area distortion

orthogonal

scale control

Multiply-connected domains

No hole filling

Interpolation in the hyperboloid model

ĩ

Interpolation in the hyperboloid model

 $\tilde{\chi}$

variable triangulation

Final algorithm

flip to (Euclidean) Delaunay

find scale factors

lay out in plane

extract correspondence

compute common subdivision interpolate via hyperboloid

Projective interpolation

500096

 \square

Discrete conformal equivalence across triangulations

Optimization with Ptolemy Flips

• Express energy and derivatives in terms of edge lengths [Springborn 2019]

• Hand to any optimization algorithm

- Why not preserve angles?
 - Too strict
- Positive metric scaling

•
$$\tilde{g}_p = e^{2u(p)}g_p$$

- Vertex scaling
 - $u: V \to \mathbb{R}$

•
$$\tilde{\ell}_{ij} = e^{(u_i + u_j)/2} \ell_{ij}$$

• Just flexible enough [Bobenko, Pinkall & Springborn 2011]

Discrete Uniformization

- Discrete uniformization [Gu, Luo, Sun & Wu 2018; Springborn 2019]
 - Essentially any vertex curvatures satisfying Gauss-Bonnet can be realized by some vertex scaling
- [Luo 2004]: follow flow
- [Springborn, Schröder & Pinkall 2008]: minimize energy

Challenges with discrete uniformization

- Discrete uniformization doesn't always work on a fixed mesh because triangles can degenerate
- Idea: flip edges when triangles break
 - Problem: energy discontinuous at flips (vertical lines)
- [Gu, Luo, Sun & Wu 2018]: maintain Delaunay
 - Problem: stop to flip

 $\mathcal{E}(t)'$

Riemann surfaces

Fig. 24 Relief of the 2nd branch of the function $F(\varphi, k)$ with k = 0.8. $(\varphi = \varphi_1 + i\varphi_2)$

[Jahnke, Emde & Lösch 1960]

(directly ray traced) 124

Signed solid angle

(directly ray traced)

Encoding a curve with normal coordinates

• Just count intersections

Rules

- No self-crossings 1.
- No U-turns 2.

(also curves may only start or end at vertices of the triangulation)

automatically satisfied for our triangulations

Reconstructing the curve

Reconstructing the curve

Rules

- 1. No self-crossings
- 2. No U-turns

Reconstructing the curve

Finding the exact curve geometry

- So far: sequence of triangles
- True curve unfolds to a straight line
 - Lay out in plane for exact curve
- Normal coordinates determine edges exactly

Collections of Curves

- e.g. edges of a triangulation
- Could store multiple sets of normal coordinates
 - Expensive

• Instead, just store one set of normal coordinates

Store just one integer per edge

