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Geometry 
Processing

Geometry is all around us

3D scans

technical assets artist creations

scientific data 

simulation

animation

geometric ML 

creative tools 

robotics

medical imaging 

digital fabrication

design algorithms to be:  

• simple 
• e!icient 
• robust
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Example: Poisson reconstruction

3D scan → 3D model
[ Kazhdan et al. 2006 ]

medical imaging autonomous driving geology

drone mapping neural reconstruction 

architecture

photogrammetry

forestry

reduces problem to 
numerical linear algebra 

Simple
formulated as principled 

geometric optimization problem 

Robust



Representing surfaces

4

How should I 
represent my surface?
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Representing surfaces How should I 
represent my surface?

TRIANGLE MESH



Not all meshes are created equal

6

near-equilateral 
triangles

long, skinny 
triangles



Challenge: Robustness

7

goal: 
change pose

actual 
output 

a hidden opportunity 



Outline
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I. SURFACE 
PARAMETERIZATION

III. IMPLICIT 
SURFACES

IV. FUTURE 
DIRECTIONS

II. INTRINSIC 
TRIANGULATIONS

? ? ?
General-purpose technique 

for running classic 
algorithms more robustly

Efficient algorithm for 
rendering a new family 

of surfaces

New algorithm for a 
ubiquitous subroutine

using hyperbolic polyhedra 
using intrinsic geometry using harmonic functions 



Other interests
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Applied TopologyFabrication

Feng, Gillespie, & Crane. 2023. 
Winding Numbers on Discrete Surfaces. 

ACM Trans. Graph.[ ]Hirose, Gillespie, Bonilla Fominaya, 
& McCann. 2024. Solid Kni!ing. 

ACM Trans. Graph.[ ]
Best Paper (Honorable Mention)



Gillespie, Springborn & Crane. 2021. Discrete Conformal 
Equivalence of Polyhedral Surfaces. ACM Trans. Graph.[ ]

Surface 
Parameterization

10
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[ K
unim

une 2018 ]

[ C
ra

ne
 e

t a
l. 

20
13

 ]

Parameterization a map from a surface to the plane 



Parameterization of general surfaces
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Applications of parameterization

13[ Gao et al. 2015 ]

Signal processing



Applications of parameterization
Signal processing

14[ Gao et al. 2015 ]



Applications of parameterization
Signal processing
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[ Segall et al. 2016 ][ Gao et al. 2015 ]
physical simulation 

shape analysis 
[ Lipman & Daubechies 2011 ] [ Maron et al. 2017 ]

learning on surfaces 

neuroscience



Applications of parameterization
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initial shape target shape

[ Konaković-Luković et al. 2018 ]

Fabrication

[ Konaković et al. 2016 ]

[ Nojoomi et al. 2021 ]

[ Ren et al. 2024 ]

[ Ren et al. 2022 ]



Applications of parameterization
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Texturing 3d models
[ Tim

en 2012 ]



Mesh dependence
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[ Sawhney & Crane 2017 ]

high distortion

not injective 
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Robust surface parameterization
[ Gillespie, Springborn, & Crane. 2021. Discrete Conformal 

Equivalence of Polyhedral Surfaces. ACM Trans. Graph. ]



20challenging input triangulations 

Robust surface parameterization
[ Gillespie, Springborn, & Crane. 2021. Discrete Conformal 

Equivalence of Polyhedral Surfaces. ACM Trans. Graph. ]



21di!icult constraints

Robust surface parameterization
[ Gillespie, Springborn, & Crane. 2021. Discrete Conformal 

Equivalence of Polyhedral Surfaces. ACM Trans. Graph. ]



22maps to the sphere

Robust surface parameterization
[ Gillespie, Springborn, & Crane. 2021. Discrete Conformal 

Equivalence of Polyhedral Surfaces. ACM Trans. Graph. ]
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Robust surface parameterization
[ Gillespie, Springborn, & Crane. 2021. Discrete Conformal 

Equivalence of Polyhedral Surfaces. ACM Trans. Graph. ]

Correctness guarantee: 
parameterizations are 

locally injective 

!ality guarantee: 
parameterizations are 

discrete conformal maps 



Turning to hyperbolic geometry

Reinterpret input as 
ideal hyperbolic polyhedron 

[ Bobenko et al. 2010 ]

24

Euclidean 
length  ℓ

hyperbolic 
length  log ℓ

nonconvex optimization problem 
with nonlinear constraints 

TRIANGLE MESH PARAMETERIZATION:
unconstrained convex optimization problem 

with a  energyC2

HYPERBOLIC PARAMETERIZATION:

guaranteed existence 
(and uniqueness) 
of solutions 



Challenge

25

new algorithms & data structures for 
geometric calculations on hyperbolic polyhedra 

SHORTEST PATHS ON 
TRIANGLE MESHES

[ Sharir & Schorr 1986 ] 
[ Mitchell et al. 1987 ] 

[ Polthier & Schmies 2006 ] 
[ Fisher et al. 2006 ] 
[ Sharp et al. 2019 ]



Challenge
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convert hyperbolic result back into 
ordinary Euclidean geometry 

Reinterpret input as 
ideal hyperbolic polyhedron 

[ Bobenko et al. 2010 ]

Reinterpret result as 
an ordinary mesh 
parameterization 

[ ours ]

encapsulated 
away from user  



Succeess on difficult datasets
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Dataset # Models Success 
rate

Average 
time

MPZ 
[ Myles et al. 2014 ] 114 100% 8s

ingi10k 
[ Zhou et al. 2016 ] 32,744 97.7% 57s

bad meshes

di!icult cones

Success = produced a locally-injective parameterization

Other “robust” algorithms have 90% success 
rate, or take minutes to hours to run

First to measure performance 
on a dataset this challenging

[ Zhou et al. 2020, Bright et al. 2017, Chien et al. 2017, 
Aigerman et al. 2014, Levi & Zorin 2014, Lipman 2012 ]



Maps to the sphere

28

Dataset # Models Success 
rate

Average 
time

brain scans 
[ Yeo et al. 2009 ] 78 100% 493s

anatomical surfaces 
[ Boyer et al. 2011 ] 187 100% 15s



Uptake adopted in a variety of areas  

29

[ Lenihan et al. 2023 ]
3D printing

probability distributions 
on surfaces 

[ Genest et al. 2024 ]

generative models 
( ongoing )

[ Bobenko & Lutz 2023 ]
geometric topology 

[ Capouellez & Zorin 2023, 2024 ]
geometry processing 



Robust Geometry Processing

i

jkGillespie, Sharp, & Crane. 2021. Integer Coordinates for Intrinsic 
Geometry Processing. ACM Trans. Graph. 

Liu, Gillespie, Chislett, Sharp, Jacobson & Crane. 2023. Surface 
Simplification using Intrinsic Error Metrics. ACM Trans. Graph. 

Sharp, Gillespie, & Crane. Geometry Processing with Intrinsic 
Triangulations. ACM SIGGRAPH 2021 Courses 

Sharp, Gillespie, & Crane. Geometry Processing with Intrinsic 
Triangulations. SIAM IMR 2021 Courses

[ ]
[ ]
[ ]
[ ]

30



? ? ?

Working with low-quality triangle meshes

31

solve
fail to 
solve 

intrinsic 
retriangulation 

transfer 
solution 

Input Mesh
(low quality) Intrinsic Mesh

(high quality) 

encapsulated away from user  



Status quo: remeshing

• State-of-the-art is robust but slow 

• Techniques work volumetrically

32

[Hu, Zhou, Gao, 
Jacobson, Zorin 

& Panozzo 2018]

[Hu, Schneider, 
Wang, Zorin & 
Panozzo 2020]

runtime: 
43 minutes

runtime: 
47 minutes



Status quo: remeshing

• State-of-the-art is robust but slow 

• Techniques work volumetrically

33

[Hu, Zhou, Gao, 
Jacobson, Zorin 

& Panozzo 2018]

[Hu, Schneider, 
Wang, Zorin & 
Panozzo 2020]

runtime: 
43 minutes

runtime: 
47 minutes

Meshing is much 
easier in 2D

[S
he

w
ch

uk
 1

99
7]

Generate high-quality meshes in milliseconds
via Delaunay refinement [Chew 1993; Shewchuk 1997]

strong guarantees 
on quality

⏲ 80 milliseconds ⏲ 70 milliseconds



3k faces3k faces

Trade offs of extrinsic remeshing

34

triangle quality

mesh size

geometric fidelity

330k faces



Intrinsic triangulations sidestep the trade off

35

runs in 
milliseconds 

high triangle quality 

exact same geometry 

without too many more triangles 



Triangle meshes
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vertices

edges

faces

DATA STRUCTURE
vertices = { 
( 1.2, 1.4, 0.7 ), 
( 1.3,-2.1, 4.7 ), 
  . . . 

}

faces = { 
( 0, 1, 2 ), 
( 2, 1, 3 ), 
( 5, 8, 9 ), 
  . . .  

} 

Po
si

tio
n 

D
at

a
C

on
ne

ct
iv

ity
 

D
at

a



i

j

kIntrinsic triangles

37

i

jk

store edge lengths 
instead of vertex 

positions 

DATA STRUCTURE
vertex_positions

face_connectivity

edge_lengths



The space of intrinsic triangulations is large

38

extrinsic triangle 
meshes

intrinsic 
triangulations

…



Delaunay triangulations

• Countless useful properties: 
• Maximize angles lexicographically, minimize spectrum 

lexicographically, smoothest interpolation, positive cotan weights…  

• Key to successful 2D remeshing algorithms 

• Characterized by empty circumcircle condition

39



Intrinsic Delaunay triangulations

• [ Masur & Smillie 1991, Rivin 1994, Indermi$e et al. 
2001, Bobenko & Springborn 2007 ]: intrinsic Delaunay 

• Maintain useful mathematical properties.                                 
[ Sharp, Gillespie & Crane 2021 ]
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Intrinsic Delaunay triangulations

• [ Masur & Smillie 1991, Rivin 1994, Indermi$e et al. 
2001, Bobenko & Springborn 2007 ]: intrinsic Delaunay 

• Maintain useful mathematical properties.                                 
[ Sharp, Gillespie & Crane 2021 ] 

• Compute by a simple algorithm: 

• Flip any non-Delaunay edge until none remain

41

Faster than reading 
the mesh from disk

Problem: cannot guarantee 
high triangle quality

low quality Delaunay triangulation 



Intrinsic Delaunay refinement

42

Theorem [Gillespie, Sharp & Crane 2021]

Let M be a mesh without boundary 
whose cone angles are all at least 60°. 
Then intrinsic Delaunay refinement 
produces a Delaunay mesh with 
triangle corner angles at least 30°



Example: Approximate 
Shortest Paths

43

result on input 
mesh

mean error: 28%

|V| = 2948

Th
in

gi
ID

 4
43

95

heat method for 
surface distances 

[ Crane, Weischedel & 
Wardetzky 2013 ]

near

far



Example: Approximate 
Shortest Paths

44

result on input 
mesh

mean error: 28%

|V| = 2948

result on Delaunay 
refinement

mean error: 2%

|V| = 11954

Th
in

gi
ID

 4
43

95

heat method for 
surface distances 

[ Crane, Weischedel & 
Wardetzky 2013 ]

near

far



Tracking Correspondence

45

? ? ?
solve

fail to 
solve 

intrinsic 
retriangulation 

transfer 
solution 

Input Mesh
(low quality) Intrinsic Mesh

(high quality) 

encapsulated away from user  



roundabouts

( concretely, just 3 integers per edge )

Correspondence data structure

46

normal coordinates 

1

1

22



Normal coordinates

47

Foundations: [Kneser 1929; Haken 1961]
Computational Topology: [Schaefer+ 2008; Erickson & Nayyeri 2013]

Geometry Processing: [Hass & Trnkova 2020]

1
1

1
1 1

1 1
1

1

2

2
2

2



• Ordinarily: sequence of triangles 

• True curve unfolds to a straight line 

• Lay out in plane for exact curve 

• Normal coordinates determine 
edges exactly

48

Intrinsic edges

i

jk

i

j

k

Finding the exact curve geometry



Representing an intrinsic triangulation

49

[ ours ]

[ Sharp et a
l. 2019 ]

Th
in

gi
ID

 4
94

21



Intrinsic Delaunay refinement — validation

• Compute refinements for Thingi10k 
dataset [ Zhou & Jacobson 2016 ] 

• 7696 manifold meshes 

• 100% success rate 

• [ Sharp et al. 2019 ] succeed on 
only 69.1% of meshes

50



Usage

51

[ Takayama 2022 ]

Surface 
Correspondence [ Finnendahl 

et al. 2023 ]

Shape Modeling
[ Wang et al. 2022 ]

Parameterization

[ Lakshmipathy 
et al. 2024 ]

Robotics

[ Akalin et al. 2024 ]

[ Numerow et al. 2024 ]
Cell Modeling [ Aumentado-Armstrong 

et al. 2023 ]

Geometric ML
[ Dai et al. 2024 ]

Extrinsic 
Remeshing

[ Fargion & Weber 2022 ]
[ Shoemaker 
et al. 2023 ]

Simplification

[ Zhang et al. 2023 ]

Physical 
Simulation

[ Feng & 
Crane 2024 ]

Surface 
Distances Rendering

[ Celes 2025 ]



A New Family of 
Implicit Surfaces

52

Gillespie, Yang, Botch & Crane. 2024. 
Ray Tracing Harmonic Functions. ACM Trans. Graph.[ ]

Best Paper (Honorable Mention)



Motivation: Poisson reconstruction

53

3D scanner data: 
points

Goal: 
“inside-outside” 

function 

f(x)

0

−

+

 + normals

[ Kazhdan et al. 2006 ]



Motivation: Poisson reconstruction

54

3D scanner data: 
points + normals

Goal: 
“inside-outside” 

function 

blur 
normals integrate

f(x)

0

−

+

[ Kazhdan et al. 2006 ]



Motivation: Poisson reconstruction

55

3D scanner data: 
points + normals Goal: 

“inside-outside” 
function 

blur 
normals integrate extract 

triangle 
mesh 

build volumetric 
mesh 

in practice, very complicated 

custom solver 
low mesh 

quality 

[ Kazhdan et al. 2006 ]



Motivation: Poisson reconstruction

56

3D scanner data: 
points + normals Goal: 

“inside-outside” 
function 

blur 
normals integrate extract 

triangle 
mesh 

build volumetric 
mesh 

in practice, very complicated 

custom solver 
low mesh 

quality 

[ Kazhdan et al. 2006 ]



Skipping straight to the answer

( directly ray traced )

visualize results of Poisson 
surface reconstruction 

without requiring meshing or 
numerical solvers

57



Harmonic functions

special kind of function 

well-studied 

58

heat transfer electrostatics

gravitation complex analysis 



harmonic Greens’ function 

Harmonic functions

singularity

59



harmonic Greens’ function 

Harmonic functions

dipole potential

singularity

si
ng

ul
ar

ity

60



Intersecting a ray with a level set

level set

level set

rayray

61



Riemann surfaces 
[ Riemann 1851 ]

hyperspherical harmonics 
[ Fock 1935 ] 

input
curves

curve networks 
[ de Goes et al. 2011 ]

nonplanar polygons 
[ Maxwell 1873 ] 

shell structures in architectural geometry 
[  Adiels et al. 2022 ] 

space-filling surfaces for 
digital fabrication

generalized winding numbers 
[  Jacobson et al. 2013 ]

Level sets of harmonic functions 
show up everywhere

Poisson surface reconstruction 
[  Kazhdan et al. 2006 ]

62



… but, they’re hard to render with 
existing techniques

ours ray marching 
(with fixed step size)  

sphere tracing   (with purported Lipschitz constant)  

may have singularities 

63



… but, they’re hard to render with 
existing techniques

ours

Newton’s
method
Newton’s
method

bisection
search
bisection
search

may have boundaries 

marching
cubes
marching
cubes

Mathematica
(ContourPlot3D)
Mathematica
(ContourPlot3D)

interval
analysis
interval
analysis

64



compute intersections for signed distance functions (SDFs)compute intersections for signed distance functions (SDFs)

Sphere tracing
f(x) = distance to curve[ Hart 1996 ]

65



Sphere tracing
[ Hart 1996 ]

compute intersections for signed distance functions (SDFs)compute intersections for signed distance functions (SDFs)
66



Sphere tracing: beyond SDFs

• Easy to generalize to 
Lipschitz functions: 

( essentially,  ) 

• Important fact: 
 

• provides a conservative 
bound on distance

|∇f | ≤ L

| f(x) − f(y) | ≤ L |x − y |

[ Hart 1996 ]

[ Inigo &ilez 2015 ] 67



Problem: many harmonic functions 
are not Lipschitz

θ(x, y) = atan2(y, x)

–π

+π

0

(x,y)

͜
0

68



–π

+π

0
θ = 0

θ = π
4

Problem: many harmonic functions 
are not Lipschitz

θ(x, y) = atan2(y, x)
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–π

+π

0
θ = 0

θ = π
4

Problem: many harmonic functions 
are not Lipschitz

θ(x, y) = atan2(y, x)

70



No ma$er how close 
points get, function 
values never get closer

–π

+π

0
θ = 0

θ = π
4

no distance bound 
for sphere tracing 

Problem: many harmonic functions 
are not Lipschitz

θ(x, y) = atan2(y, x)

71



Main idea: get distance bounds 
from Harnack’s inequality

1 − r/R
(1 + r/R)2 f(x) ≤ f(y) ≤ 1 + r/R

(1 − r/R)2 f(x)

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x) 1 + r/R

(1 − r/R)2 f(x)

x
R

yr

R
2 a + 2 − a2 + 8a ,

always safe to take step of size

where a = f(x)
f*

Let  be a positive harmonic function on a ball:f We can use the fact that 
 is harmonic to obtain a 

distance bound
f

72



1 − r/R
(1 + r/R)2 f(x) ≤ f(y) ≤ 1 + r/R

(1 − r/R)2 f(x)

lower bound upper bound

1 − r/R
(1 + r/R)2 f(x) 1 + r/R

(1 − r/R)2 f(x)

x
R

yr

r = R
2 a + 2 − a2 + 8a ,

always safe to take step of size

where a = f(x)
f*

Let  be a positive harmonic function on a ball:f We can use the fact that 
 is harmonic to obtain a 

distance bound
fWhat if  is not positive?f

Just add a constant to make 
it positive on the ball 

Main idea: get distance bounds 
from Harnack’s inequality

All you need is a 
valid ball radius and 
a lower bound on f

73



Simple to implement
Sh

ad
er

To
y 

(W
eb

G
L 

sh
ad

er
s)

PBRT (CPU ray tracer)
B

lender (C
PU

 ray tracer)
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Sh
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To
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Simple to implement
PBRT (CPU ray tracer)

B
lender (C

PU
 ray tracer)
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Sh
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To

y 
(W

eb
G

L 
sh
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er

s)

Simple to implement
PBRT (CPU ray tracer)

B
lender (C

PU
 ray tracer)
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Simple to implement
Sh

ad
er

To
y 

(W
eb

G
L 

sh
ad

er
s)

PBRT (CPU ray tracer)
B

lender (C
PU

 ray tracer)
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Generalized winding number
a.k.a.  signed solid angle

input mesh 

repaired mesh 

[  Jacobson et al. 2013 ]

( directly ray traced )
78



Architectural grid shells

( directly ray traced )

[  Adiels et al. 2022 ]

79



The gyroid

[ Diegel 2021 ]

not a harmonic function in 3D 

… but is a slice of a harmonic 
function in 4D

( directly ray traced )

*technically the trigonometric approximation to the gyroid

80



Differentiable rendering

81

[ Chen et al. 2024 ] incorporated Harnack tracing into their di!erentiable 
3D reconstruction algorithm  



Future Directions

82



Robustness by default

83

Analogy: numerical linear algebra

solve  Ax = b

Cholesky factorization

LU decomposition

QR decomposition

triangular solver 

Hessenberg solver 

LDLT decomposition

A \ b



Topological robustness

84

Today’s talk: 
geometric robustness

manifold

nonmanifold

The missing ingredient: 
topological robustness



Everyone assumes the input is manifold

85

but in the real world, many models 
are not manifold



Fabrication

86

developable surfaces 

laid out in the plane without stretching 

easy to make from plywood or sheet metal 



Geometric design tools

87

developable surfaces 

textile design

flank milling 

curved-crease origami 

easy to make from plywood or sheet metal 
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hard to design 
1. Build from 

closed-form pieces
2. Complex non-convex 

optimization
[ Munidlova et al. 2021 ] [ Ion et al. 2020 ]

fit patches 
Work intrinsically:

developable surface 
design becomes a 

parameterization problem 

Fabrication developable surfaces 
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polygonal tilings Fabrication



90

standard approach: 
parameterization to plane

limited to regular 
quadrilaterals & triangles 

new approach: 
parameterization to hyperbolic plane

tiling by 
regular heptagons 

tiling by 
regular octagons 

Fabrication polygonal tilings 



Fabrication

91

standard approach: 
parameterization to plane

limited to regular 
quadrilaterals & triangles 

new approach: 
parameterization to hyperbolic plane

tiling by 
regular heptagons 

tiling by 
regular octagons 

polygonal tilings 



Fabrication

92

solid kni$ing 
Hirose, Gillespie, Bonilla Fominaya, 

& McCann. 2024. Solid Knitting. 
ACM Trans. Graph.

[ Pietroni et al. 2023 ] 
[ Desobry et al. 2021 ] 

[ Fang et al. 2021 ] 
[ Palmer et al. 2020 ] 

[ Corman & Crane 2019 ] 
[ Liu et al. 2018 ] 

[ Solomon et al. 2017 ] 
[ Xu et al. 2017 ]

Hexahedral Meshing

[ ]



Stronger guarantees for intrinsic retriangulation

93intrinsic Delaunay refinement 

quality guarantees ? e!iciency guarantees 

meet quality bounds using as 
few triangles as possible



Stronger guarantees for intrinsic retriangulation

94intrinsic Delaunay refinement 

quality guarantees ? e!iciency guarantees 

meet quality bounds using as 
few triangles as possible

asymptotically-optimal 
Delaunay triangulation 

[ Guibas & Stolfi 1985 ] 

spatial distribution of 
inserted vertices 

[ Shewchuck 1997 ] 

exact predicates 
[ Devillers & Pion 2003 ]

OTHER OPEN QUESTIONS
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Try it yourself

96

h$ps://github.com/MarkGillespie/
intrinsic-triangulations-demo

h$ps://github.com/markGillespie/
CEPS

Open source implementations available at:

h$ps://www.shadertoy.com/
user/mgillesp

    markjgillespie.com



Thanks for listening

✉ mark.gillespie81@gmail.com 
    markjgillespie.com
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Supplemental Slides
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Intrinsic Delaunay refinement size grading

99

[S
he

w
ch

uk
 1

99
7]



Intrinsic Delaunay refinement size grading

100

3k faces 330k faces



101

Bad basis functions

Input basis function Intrinsic basis function

[Sharp, Soliman & Crane 2019]



Intrinsic Delaunay flip complexity

102

10 100 104 10103 5 106
1

10

100

104
105

103

106

[Sharp, Soliman & Crane 2019]

Empirically, usually linear time  worst-case examples in the planeΩ(n2)



Exact polyhedral geodesic distance

103

[Mitchell, Mount & Papadimitriou 1987]
“continuous Dijkstra” 

[ Sharp &
 C

rane 2020 ]
floating point error 



Example: Flip-Based 
Geodesic Paths

• FlipOut [ Sharp & Crane 2020 ]: 
' computes geodesic paths via edge flips

104
[ Sharp, Soliman 

& Crane 2019 ] [ Ours]
Th

in
gi

ID
 8

10
83



Normal coordinates are not enough 
to encode correspondence

105



Theorem [Gillespie, Yang, 
Botch & Crane 2024]

Harnack tracing convergence

106
101 103100 102

iterations

10−4

10−3

10−2

10−1

100

101 103100 102

iterations

Sphere tracing

H
arnack tracing

Sphere tracing

H
arnack tracing

er
ro

r (
re

la
tiv

e 
to

 in
iti

al
 e

rr
or

)

(function value) (distance to intersection)

1

1

linear

convergence rate
1

1

linear

convergence rate

Suppose the radius  and shi( "(x) are compatible, in the sense that 
 on the ball  

for all , and that  > 0. Then 
Harnack tracing converges linearly 
to the first intersection of  with 

, so long as an 
intersection exists. 

R(x)

f(x) − c(x) > 0 BR(x0)(x0)
x0 R(x)

r(t)
{x : f(x) = 0}



Algorithm sketch

Harnack Tracing
Starting from point   in direction :x d

Pick ball radius

Shi(  to be positive on ballf
Calculate safe step size

Repeat until  is su!iciently close to f f*
Take safe step in ray direction

xR

safe 
step size 

d

0

0 x1

107



The Poincare disk

108

horosphere

ideal hyperbolic polyhedron



Intrinsic triangulations for learning on surfaces

109

block block block block
outputinput

scalars
per-vertex

per-vertex MLP
[3N,N,N,N]
learned weights

width: N

addition

concatspatial spatial
gradient features

Laplace &
mass matrix

spatial
gradient

matrix

precompute

eigenbasis
(optional)

precompute

eigenbasis

implicit timestep
or

fast spectral solve

learned   

learned  
per-channel

[ Sharp et al. 2022 ]

184,042
verts

sampling
agnostic

representation
agnostic

resolution
agnostic

750
verts



Point cloud processing

110

[ Sharp & Crane 2020 ]

local
triangulations

parameterizationnoisy point cloud

source



Ptolemy flips improve 
performance

111

Thingi10kMPZ

10 100 1k 10k 100k
mesh size (#vertices)

0.5x

1x

2x

m
ed

ia
n 

sp
ee

du
p CEPS be!er

UEF be!er
1k 10k 100k

mesh size (#vertices)

0.5x

1x

2x
sp

ee
du

p
Ptolemy be!er

stopping to flip be!er |V |=25k

|V |=50k

|V |=3k



Boundary conditions

112

circular disk

scale control
convex

polygonal

minimal area 
distortion orthogonal

IV. Discrete uniformization
" results



Multiply-connected domains

113

[H
ef

et
z+
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Hole filling
No hole filling
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fixed triangulation

Interpolation in the 
hyperboloid model IV. Discrete uniformization
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fixed triangulation variable triangulation

Interpolation in the 
hyperboloid model IV. Discrete uniformization
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Starting from Delaunay
IV. Discrete uniformization

Delaunaynon-Delaunay

=

input (polyhedral)



Final algorithm
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IV. Discrete uniformization

flip to (Euclidean) 
Delaunay 

find scale 
factors 

lay out in 
plane 

extract 
correspondence 

compute 
common 

subdivision 

interpolate via 
hyperboloid 



Projective interpolation improves quality
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IV. Discrete uniformization
" results



Eu
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id
ea

n
H
yp
er

bo
li
c

adjust horospheres

Discrete conformal equivalence across 
triangulations
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input polyhedon

vertex scaling

invalid Euclidean metric

(lengths violate triangle inequality)

hyperbolic edge flip

ideal Delaunay triangulation

intrinsic Delaunay triangulation

Ptolemy flips



Optimization with Ptolemy Flips

• Express energy and derivatives in terms of edge lengths 
[Springborn 2019] 

• Hand to any optimization algorithm

120

Ptolemy flips
evaluate
formulascale by u 



What is a discrete conformal map?

• Why not preserve angles? 

• Too strict 

• Positive metric scaling 

•  

• Vertex scaling 

•  

•  

• Just flexible enough

g̃p = e2u(p)gp

u : V → ℝ
ℓ̃ij = e(ui+uj)/2ℓij
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scale

[Bobenko, Pinkall & 
Springborn 2011]



Discrete Uniformization

• Discrete uniformization [Gu, Luo, Sun & Wu 2018; 
Springborn 2019] 

• Essentially any vertex curvatures satisfying Gauss-
Bonnet can be realized by some vertex scaling 

• [Luo 2004]: follow flow 

• [Springborn, Schröder & Pinkall 2008]: minimize energy

[C
rane, Pinkall 

&
  Schröder  

2013]



Challenges with discrete uniformization

• Discrete uniformization doesn’t 
always work on a fixed mesh  
because triangles can 
degenerate 

• Idea: flip edges when triangles 
break 

• Problem: energy discontinuous 
at flips (vertical lines) 

• [Gu, Luo, Sun & Wu 2018]: 
maintain Delaunay 

• Problem: stop to flip

flip when triangles degenerateflip when triangles degenerate
flip to Delaunay triangulation

scale

not a valid triangle



Riemann surfaces

( directly ray traced )
[ Jahnke, Emde & Lösch 1960 ]

124



Signed solid angle

( directly ray traced )
125



• Just count intersections
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1

1
1

1

1
1 1

1

2

1

1

1
1

Rules
1. No self-crossings 

2. No U-turns

automatically satisfied for 
our triangulations 

(also curves may only start or end 
at vertices of the triangulation) 

Encoding a curve with normal coordinates
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Reconstructing the curve
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1
1

1
1

2
Rules

1. No self-crossings 

2. No U-turns

Reconstructing the curve
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Reconstructing the curve

1



• So far: sequence of triangles 

• True curve unfolds to a straight line 

• Lay out in plane for exact curve 

• Normal coordinates determine 
edges exactly
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Intrinsic edges

i

jk

i

j

k

Finding the exact curve geometry



Collections of Curves

• e.g. edges of a triangulation  

• Could store multiple sets of normal 
coordinates 

' Expensive 

• Instead, just store one set of normal 
coordinates

131

1
1

1
3

2

3

2
2

3 3

2
2

3
2

2

3
3

2

2
2

1

Store just one integer per edge


