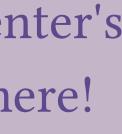


Discrete Conformal Equivalence of **Polyhedral Surfaces**

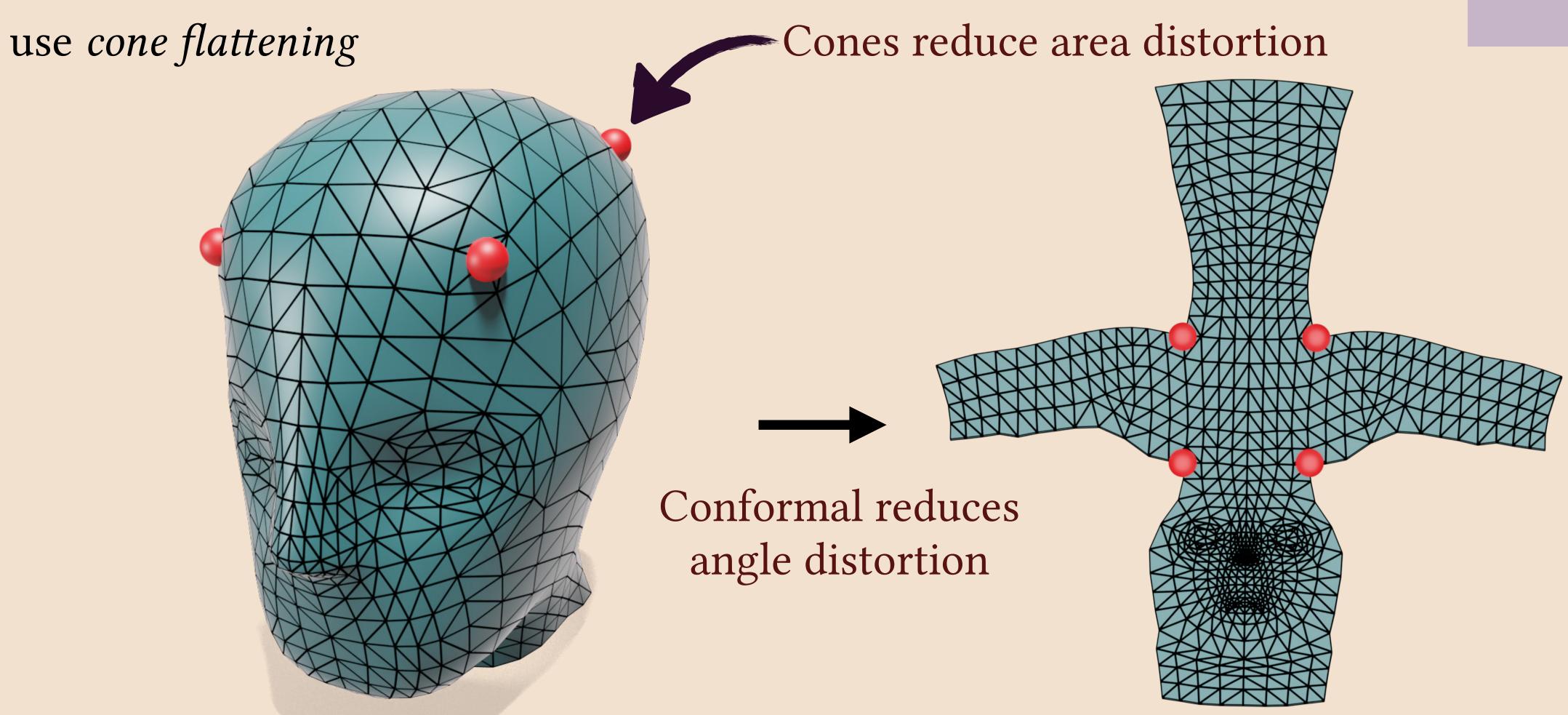
Put the presenter's video feed here!

Keenan Crane

Boris Springborn



Goal: high-quality surface parameterization

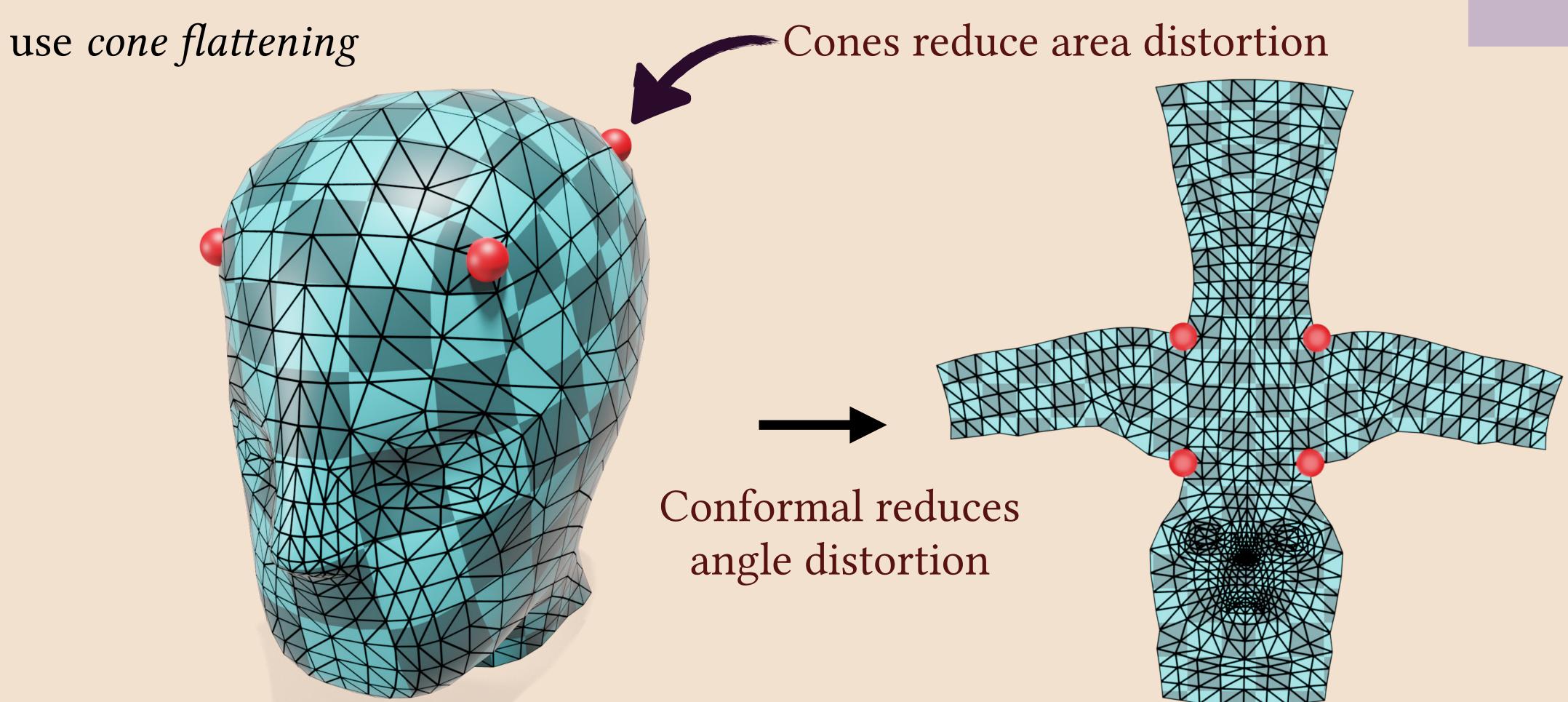


input mesh

Put the presenter's video feed here!

output parameterization

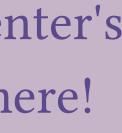
Goal: high-quality surface parameterization



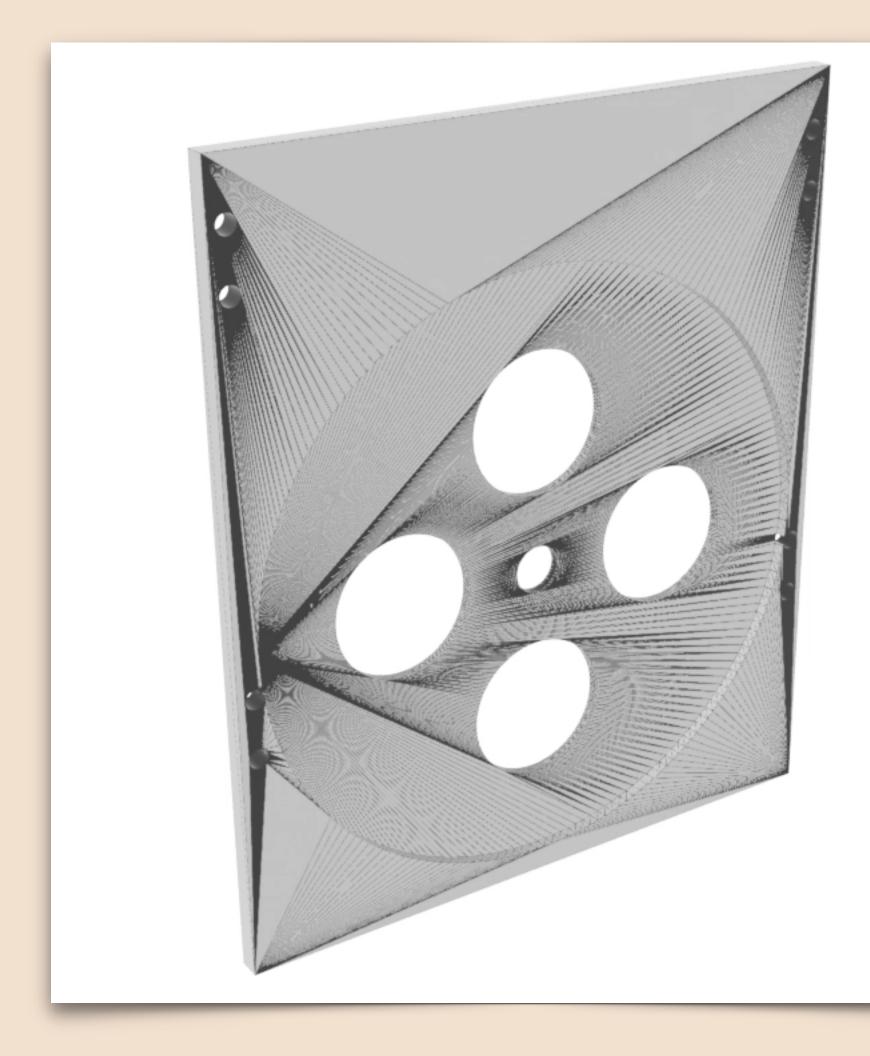
input mesh

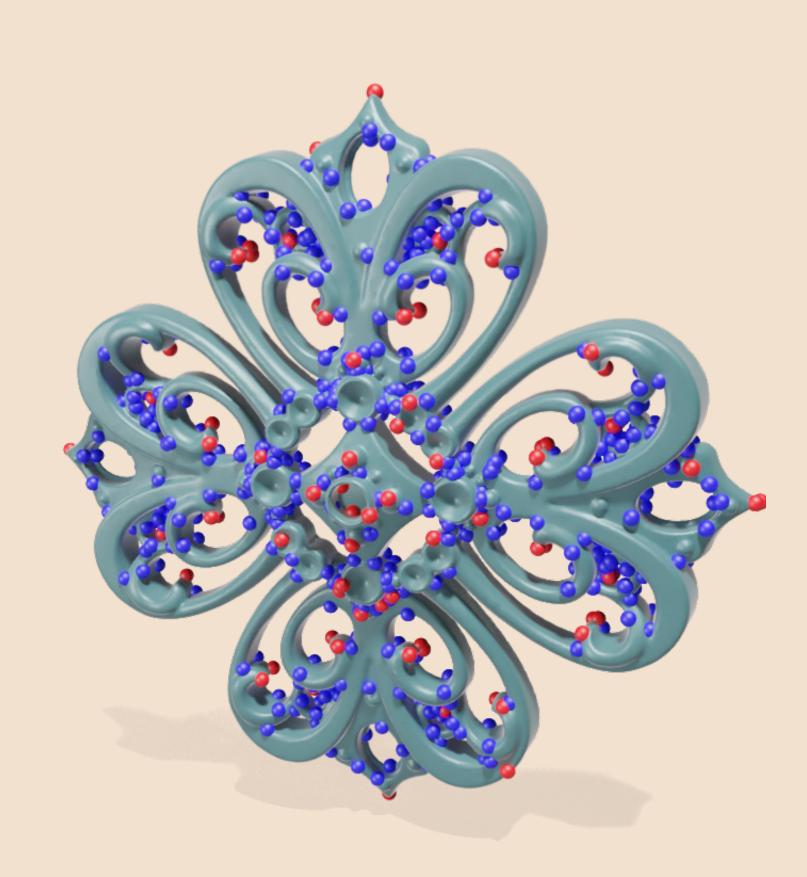
Put the presenter's video feed here!

output parameterization



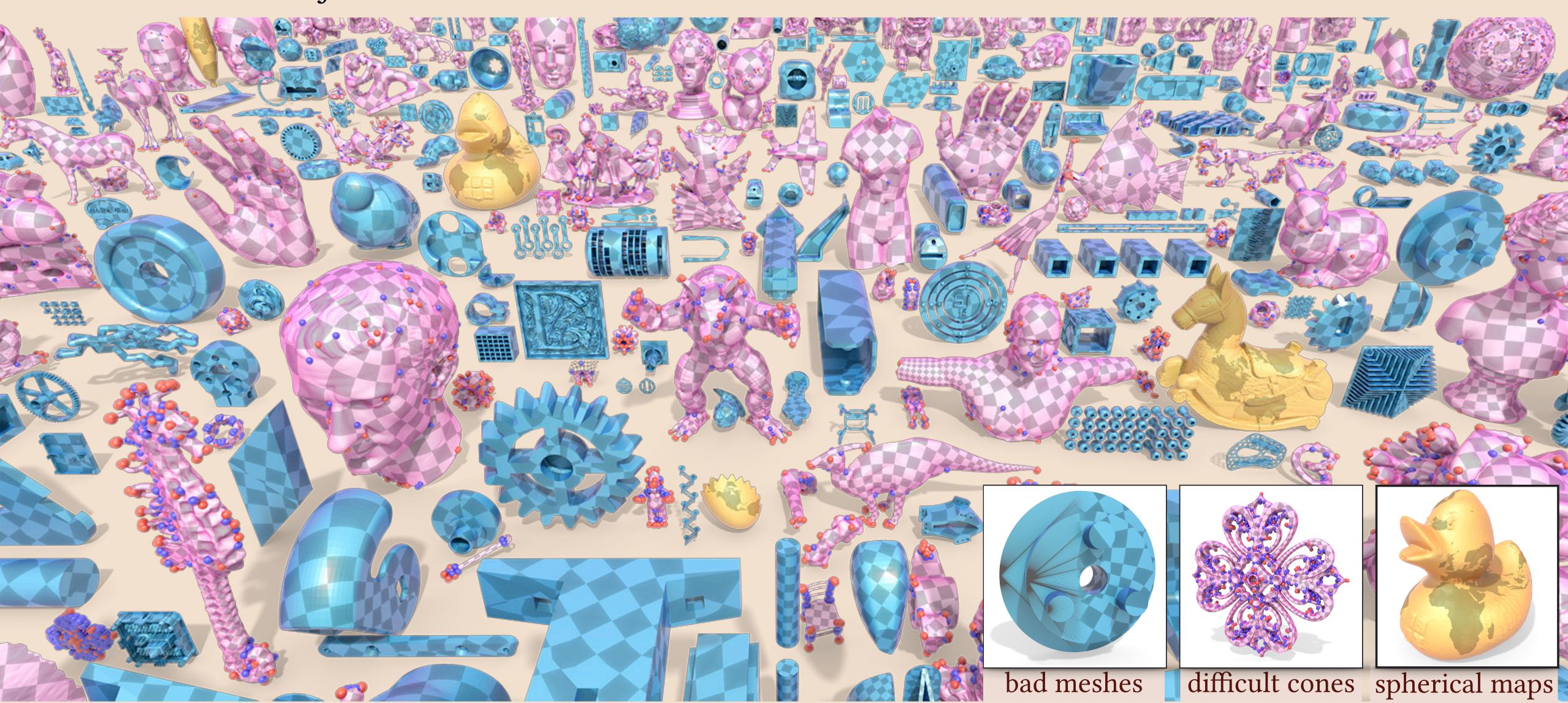
Why is this hard?

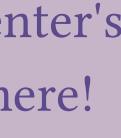




Reliable surface parameterization

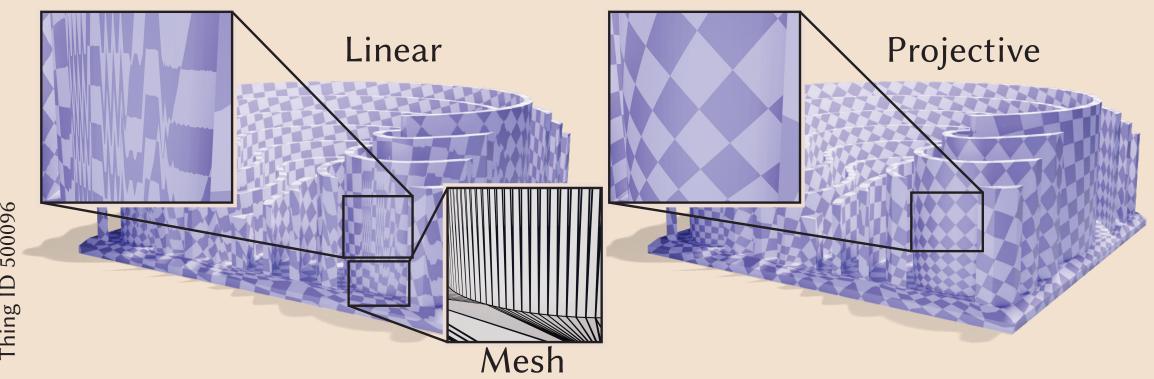
via the discrete uniformization theorem



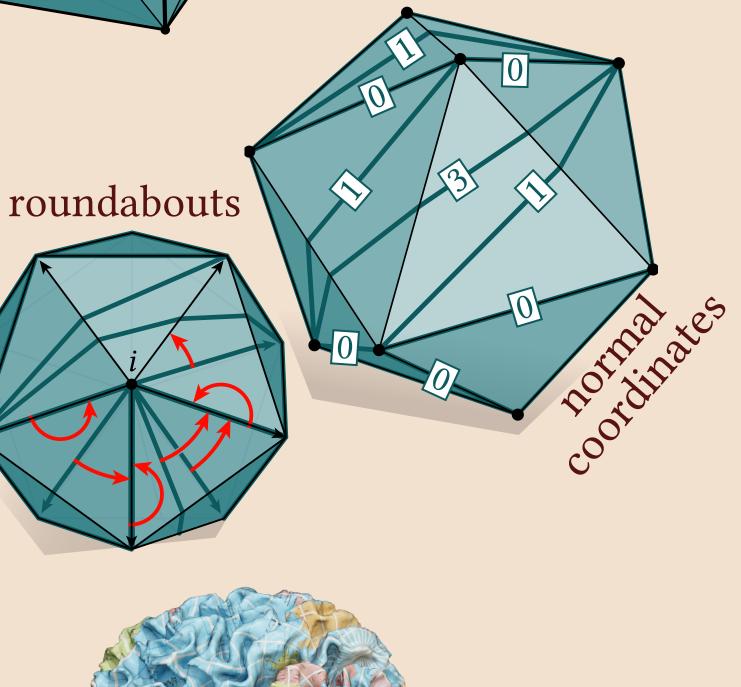


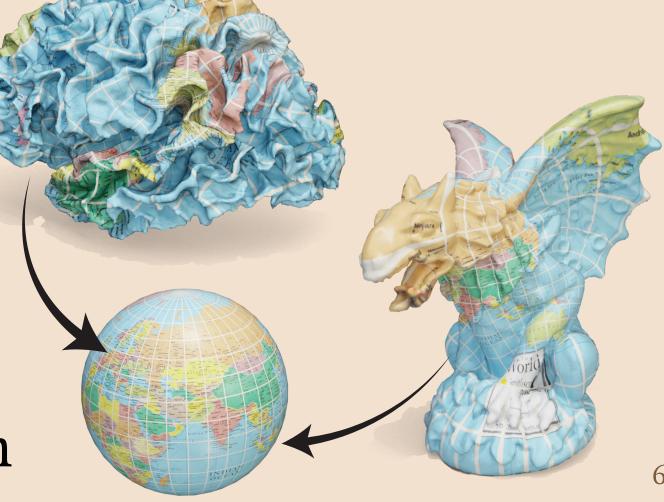
Contributions

- Generalize CETM [Springborn+ 2008]
- Change mesh connectivity use Ptolemy flips
 - Ensures that we find a valid parameterization
- Correspondence —> normal coordinates & roundabouts
- Interpolation —— calculate in the hyperboloid model



- Spherical case (guaranteed)
 - Discrete conformal map to convex, sphere-inscribed polyhedron

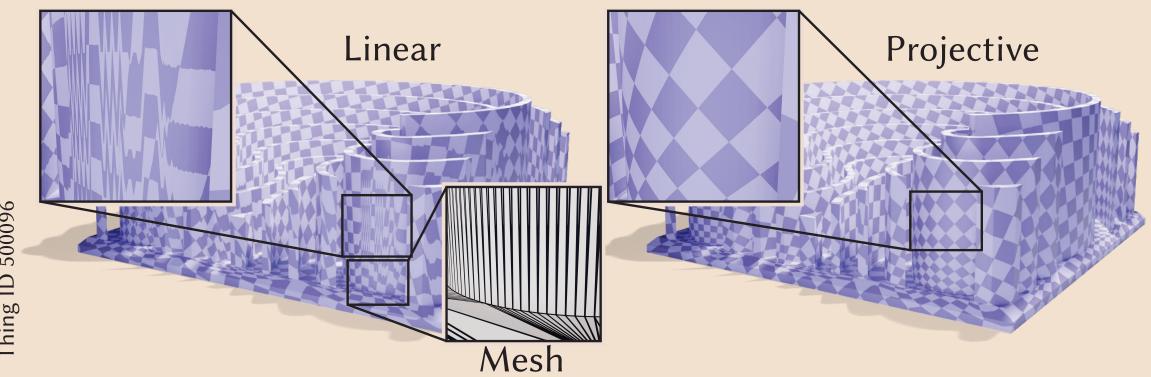






Contributions

- Generalize CETM [Springborn+ 2008]
- Change mesh connectivity use Ptolemy flips
 - Ensures that we find a valid parameterization
- Correspondence —> normal coordinates & roundabouts
- Interpolation ——> calculate in the light cone

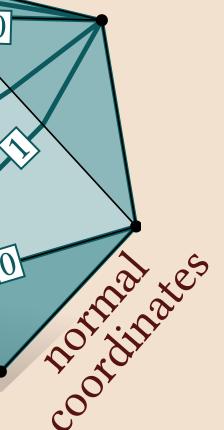


- Spherical case (guaranteed)
 - Discrete conformal map to convex, sphere-inscribed polyhedron

Put the presenter's video feed here!

roundabouts

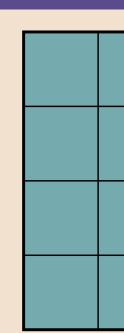




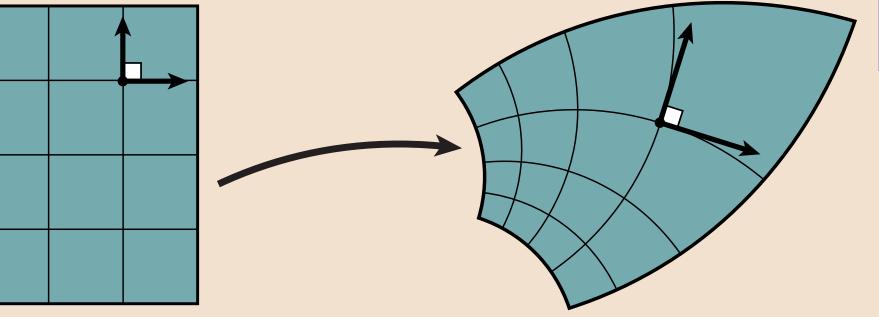
Discrete Conformal Parameterization with Ptolemy flips

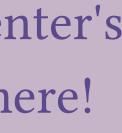
What is a discrete conformal map?

• "Conformal maps preserve angles"



Put the presenter's video feed here!





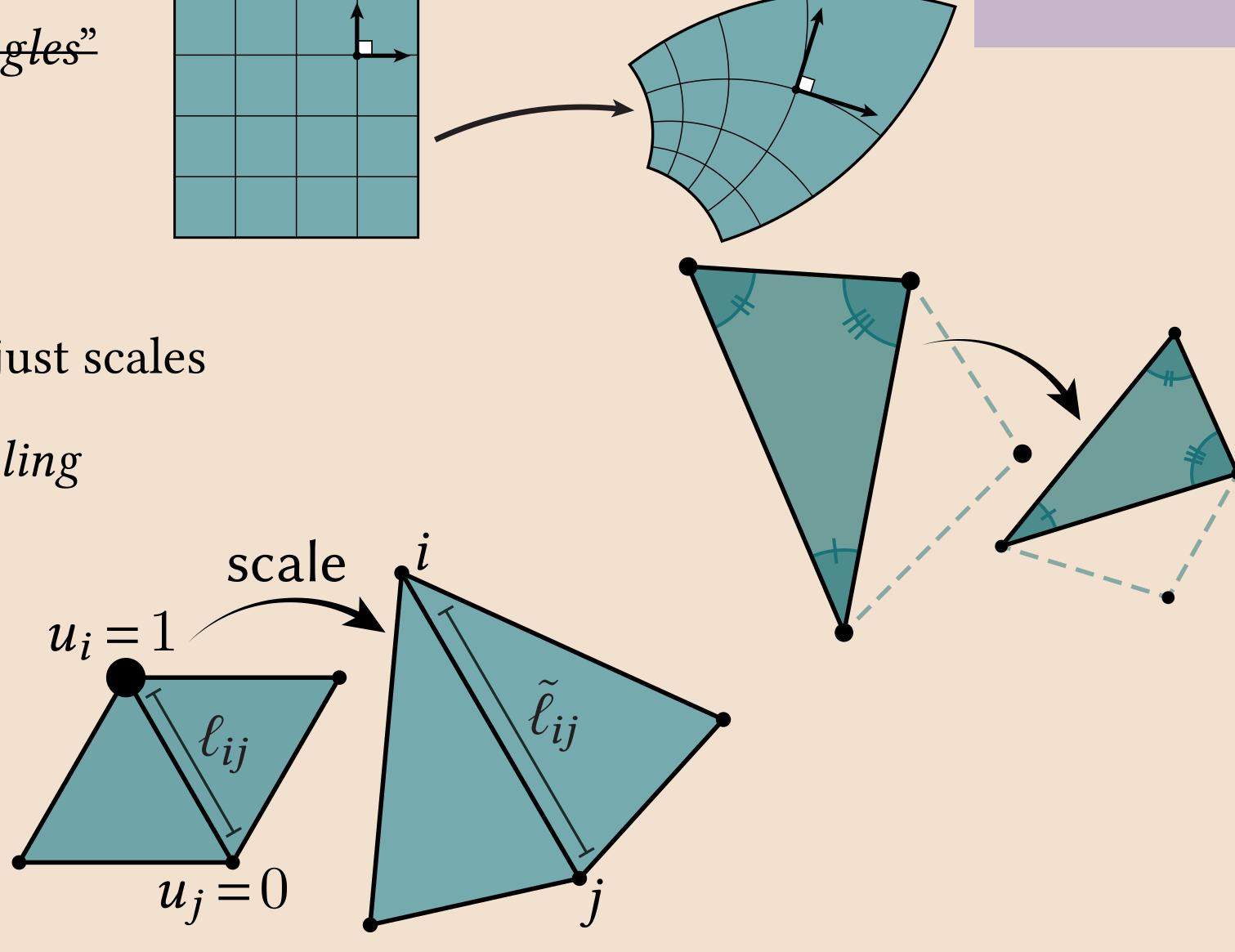
What is a discrete conformal map?

- "Conformal maps preserve angles"
 - ► Too strict
- Metric scaling
 - Locally, a conformal map just scales
- Discrete analogue: vertex scaling

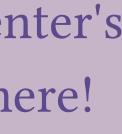
$$\blacktriangleright \ u: V \to \mathbb{R}$$

$$\bullet \ \tilde{\ell}_{ij} = e^{(u_i + u_j)/2} \ell_{ij}$$

 Just flexible enough [Bobenko+ 2011]



Put the presenter's video feed here!

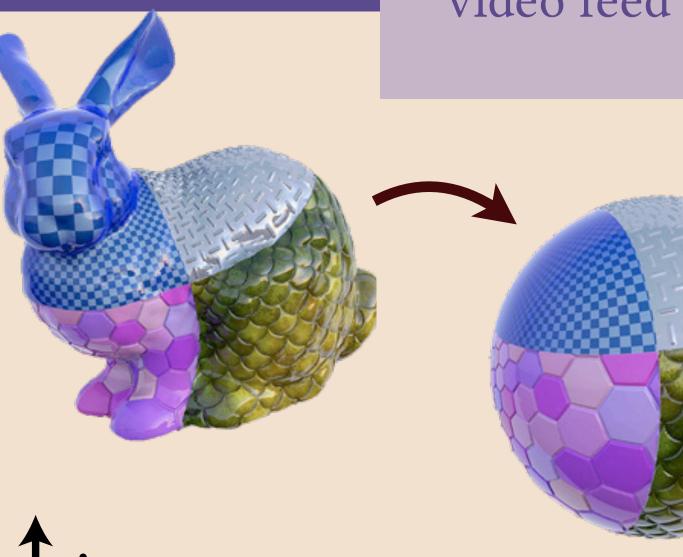


Uniformization

- Smooth uniformization [Poincaré 1907; Abikoff 1981]
 - Any surface can be conformally mapped to one of constant curvature
- Discrete uniformization [Gu+ 2018ab; Springborn 2019]
 - Any valid curvatures can be realized by some vertex scaling
 - ► [Luo 2004]: follow flow
 - Springborn+ 2008]: minimize energy
 - Main idea: find discrete conformal maps by minimizing a convex energy

Put the presenter's video feed here!

 $\mathcal{E}(u)$

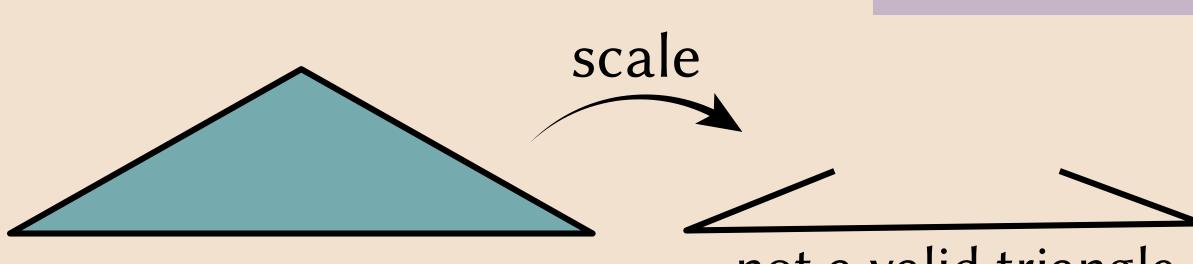


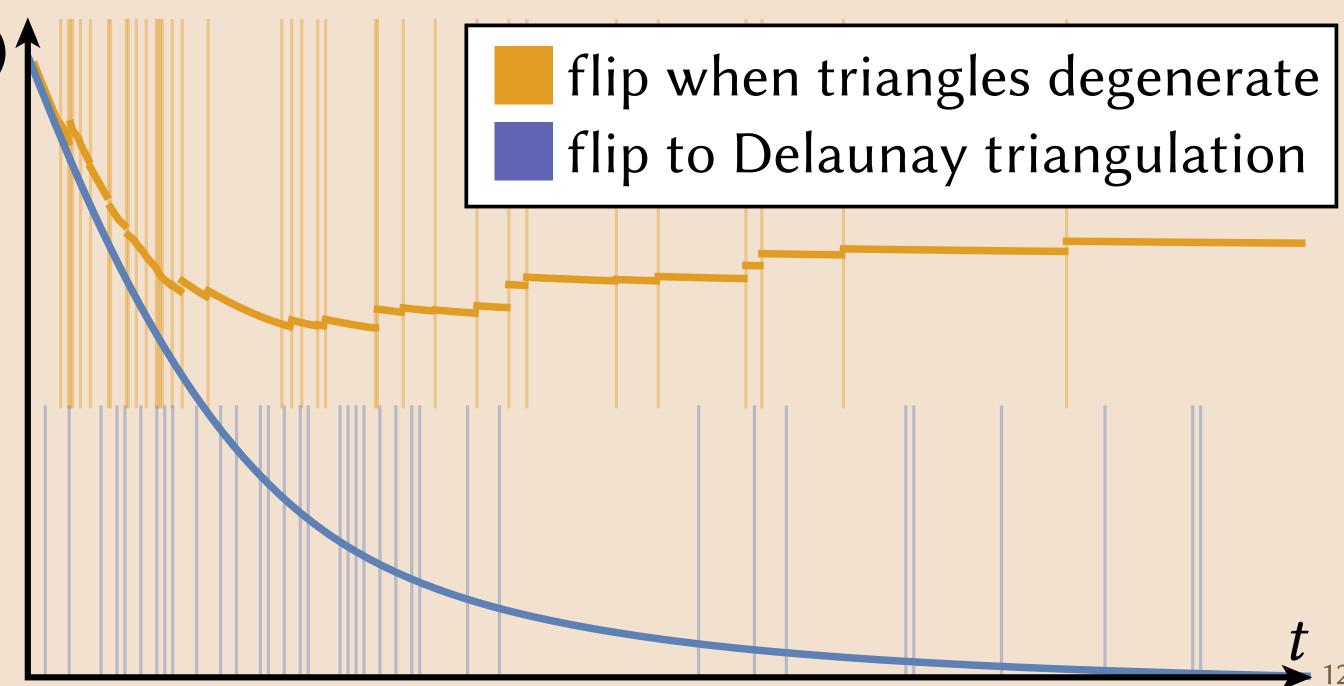
U



Challenges with discrete uniformization

- **Big Problem:** Discrete uniformization doesn't always work on a fixed mesh because triangles can degenerate
- Idea: flip edges when triangles break
 - Problem: energy discontinuous $\mathcal{E}(t)$ at flips (vertical lines)
- [Gu+ 2018a]: maintain Delaunay
 - Problem: stop to flip



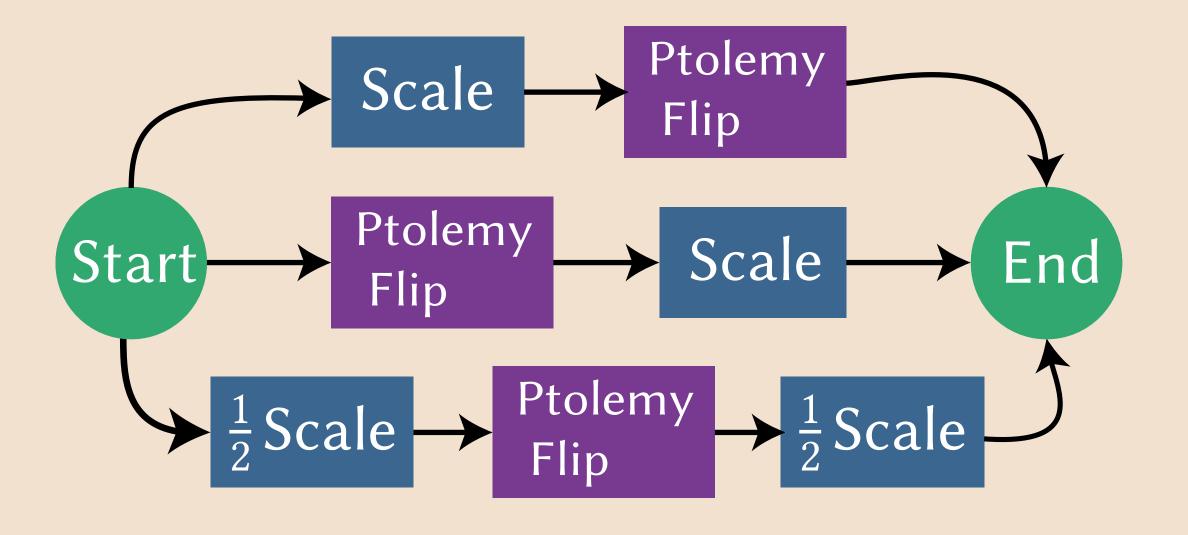


Hyperbolic geometry to the rescue

- Reinterpret mesh as ideal polyhedron [Bobenko+ 2010]
- Compute flipped edge lengths via Ptolemy's formula

•
$$\ell_{ij} := (\ell_{lj}\ell_{ki} + \ell_{il}\ell_{jk})/\ell_{lk}$$

- Well-defined for any positive edge lengths
- Decouples scaling and flipping [Springborn 2019]



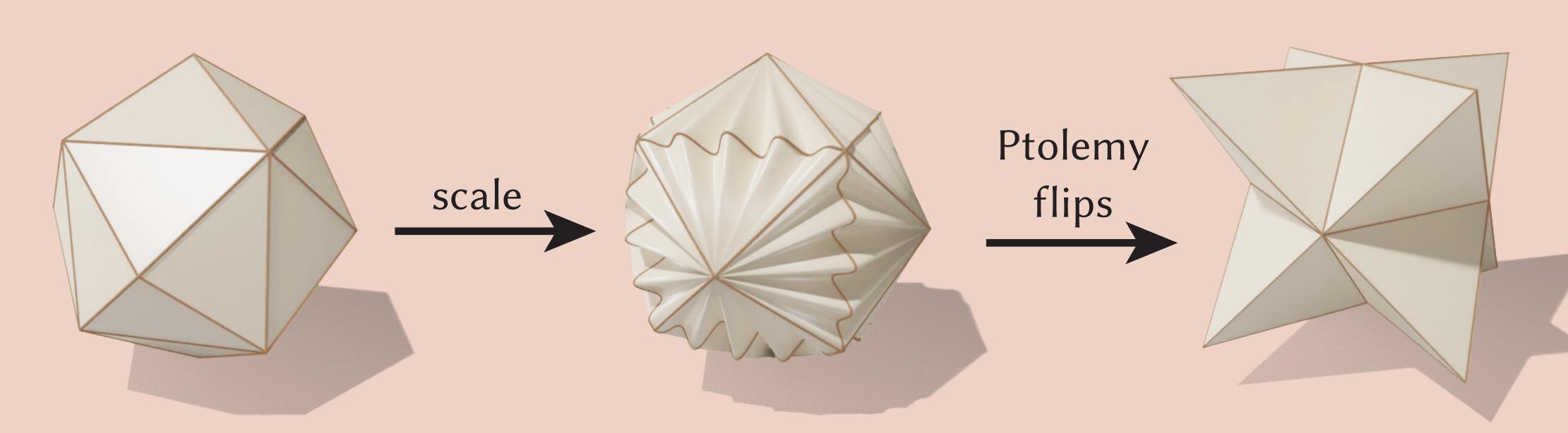
Put the presenter's video feed here!

input mesh

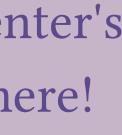
ideal hyperbolic polyhedron

Uniformization with Ptolemy Flips

Now, all scale factors are valid



Energy remains convex and C^2



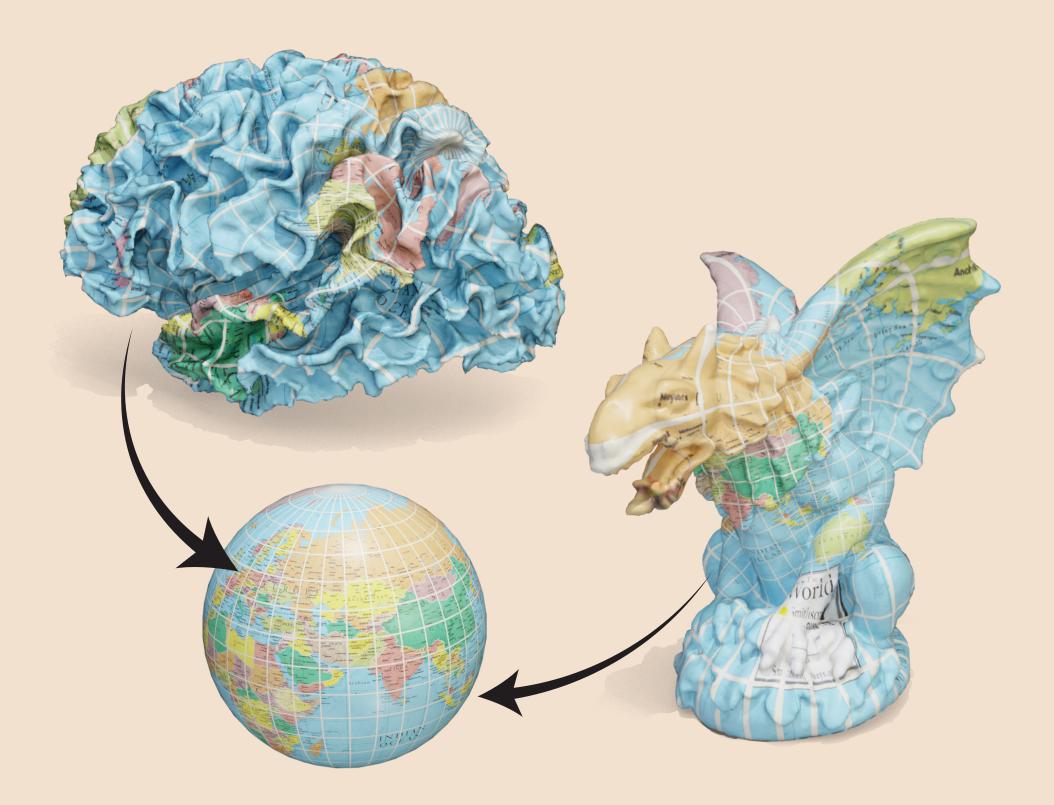
Spherical Uniformization

Put the presenter's video feed here!

a very brief overview

Discrete spherical uniformization

- So far: cone flattenings
- Also: map genus-0 surfaces to sphere
 - Explicitly, convex polyhedron w/ vertices on unit sphere



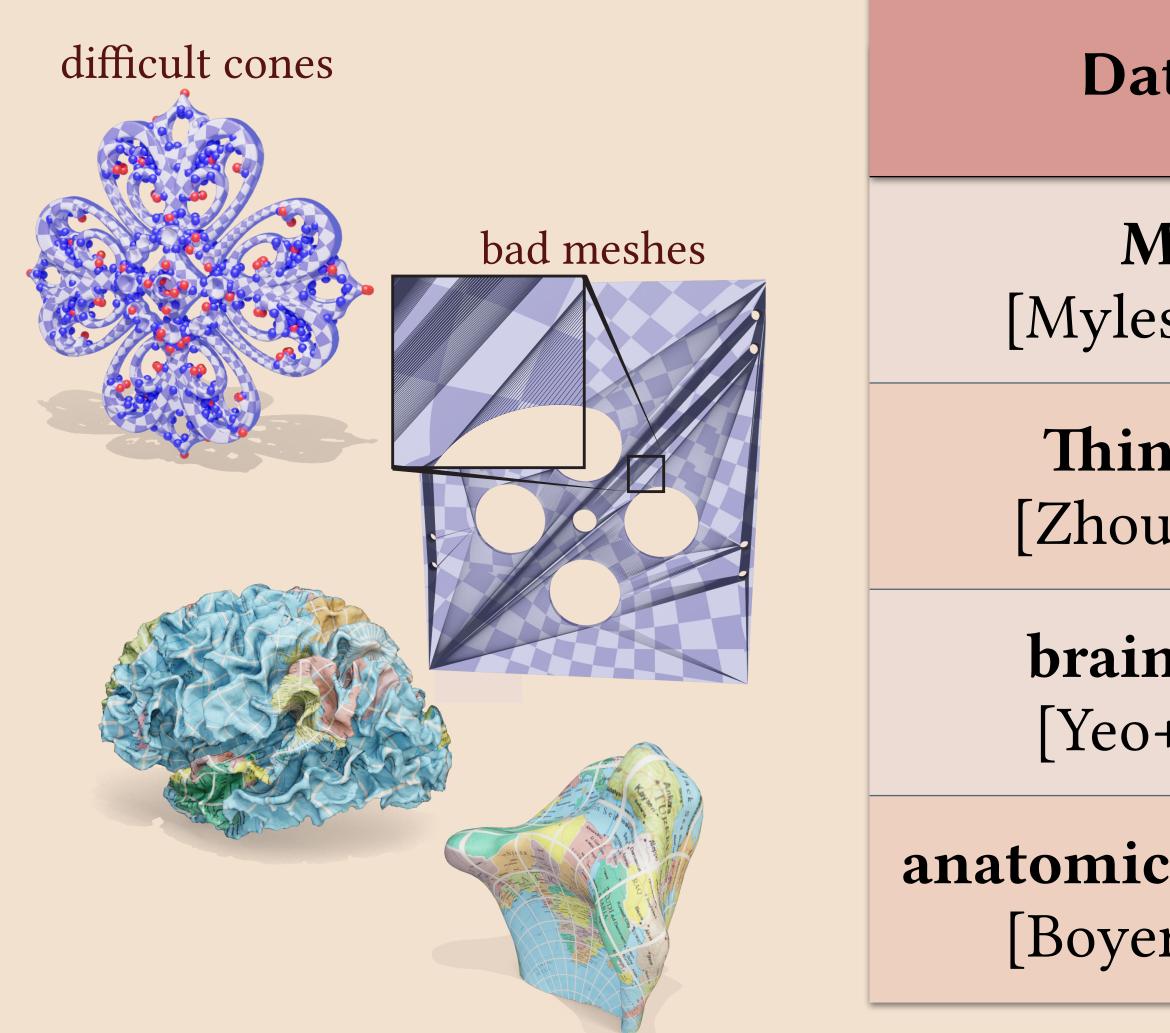
Discrete spherical uniformization

- Similar optimization problem to cone flattening
- Algorithm complicated by the fact that mesh connectivity may change
 - Use even more hyperbolic geometry! [Springborn 2019]

Results

Put the presenter's video feed here!

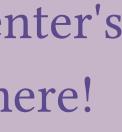
Challenging datasets



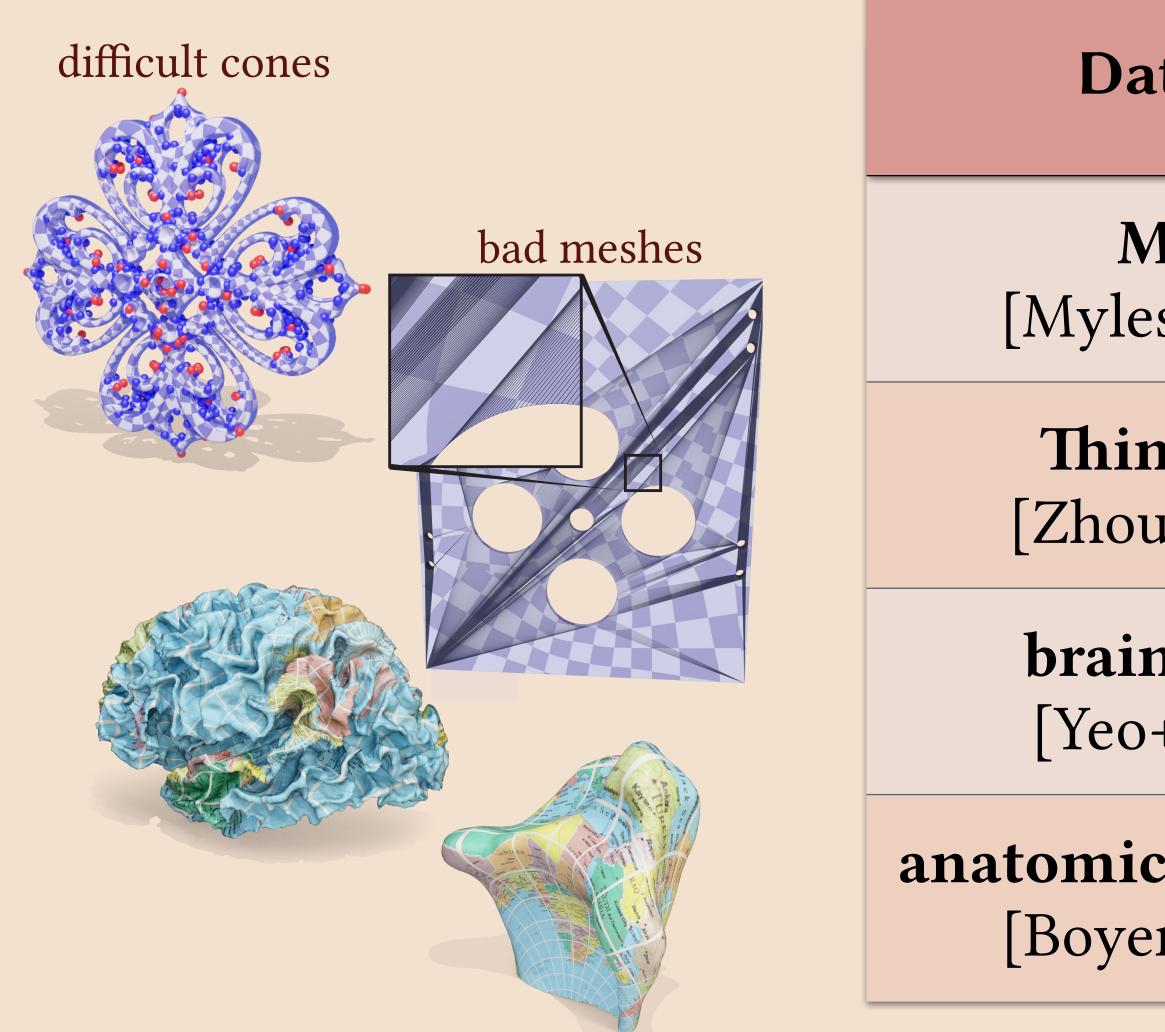
* connected components of models from Thingi10k

Put the presenter's video feed here!

taset	# Models
1PZ s+ 2014]	114
1gi10k 1+ 2016]	32,744*
n scans + 2009]	78
cal surfaces r+ 2011]	187



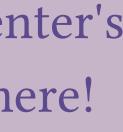
Challenging datasets



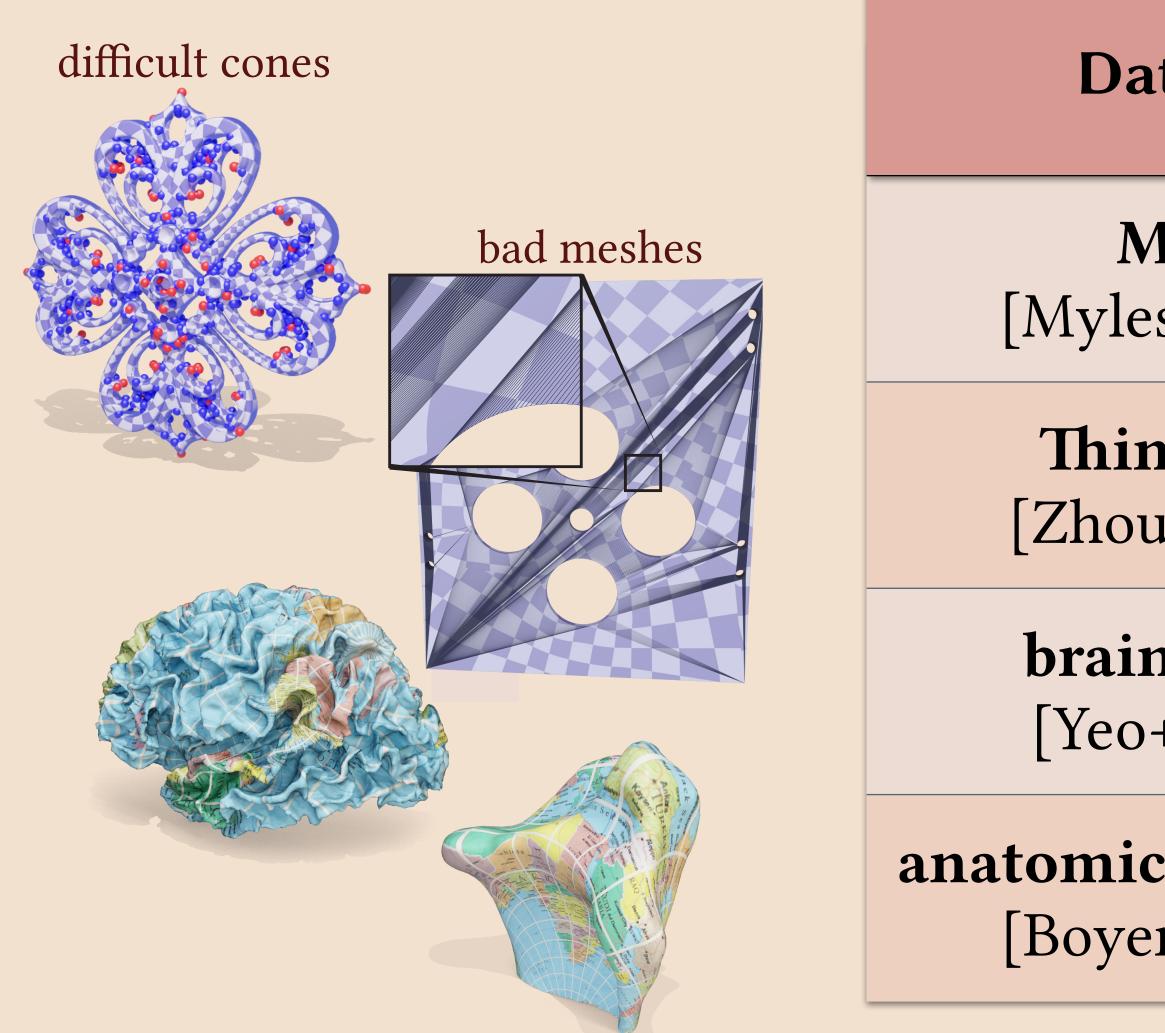
* connected components of models from Thingi10k

Put the presenter's video feed here!

taset	# Models	Success rate	
/ IPZ es+ 2014]	114	100%	
ngi10k u+ 2016]	32,744*	97.7%	
n scans + 2009]	78	100%	
cal surfaces er+ 2011]	187	100%	



Challenging datasets



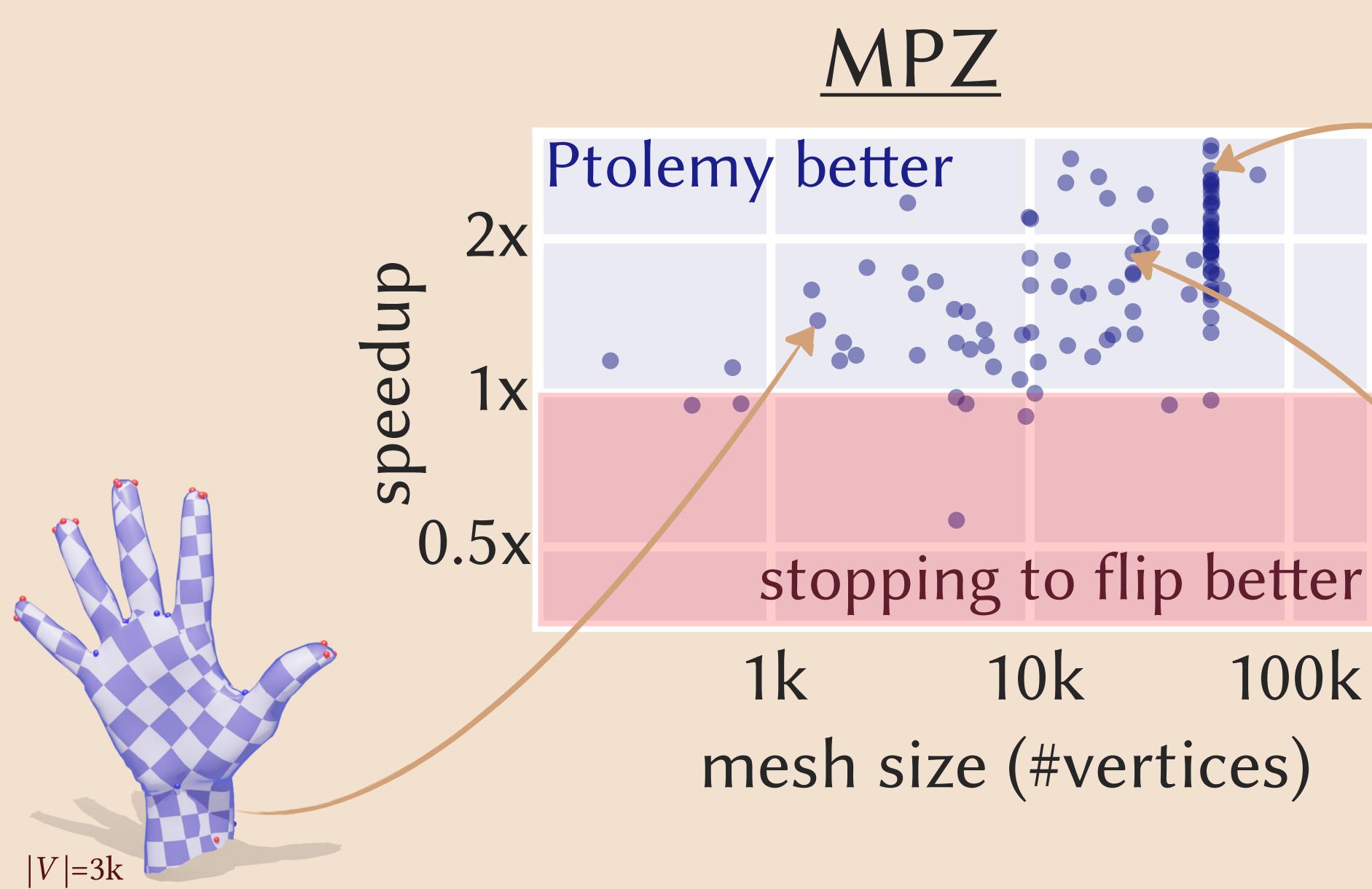
* connected components of models from Thingi10k

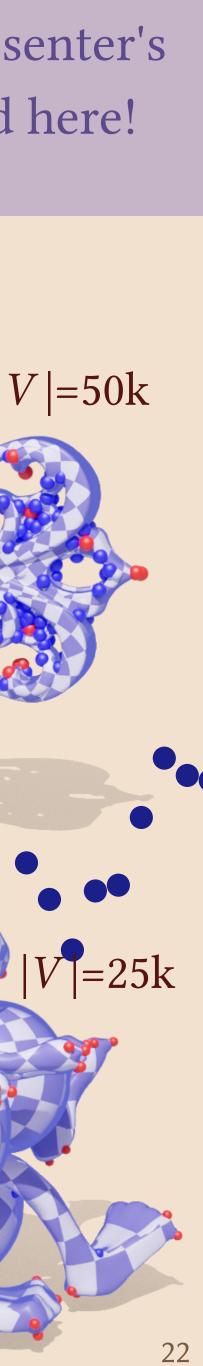
Put the presenter's video feed here!

ıtaset	# Models	Success rate	Average time
APZ es+ 2014]	114	100%	8s
n gi10k u+ 2016]	32,744*	97.7%	57s†
n scans + 2009]	78	100%	493s
cal surfaces er+ 2011]	187	100%	15s

* † average time on models with > 1000 vertices ²¹

Ptolemy flips improve performance

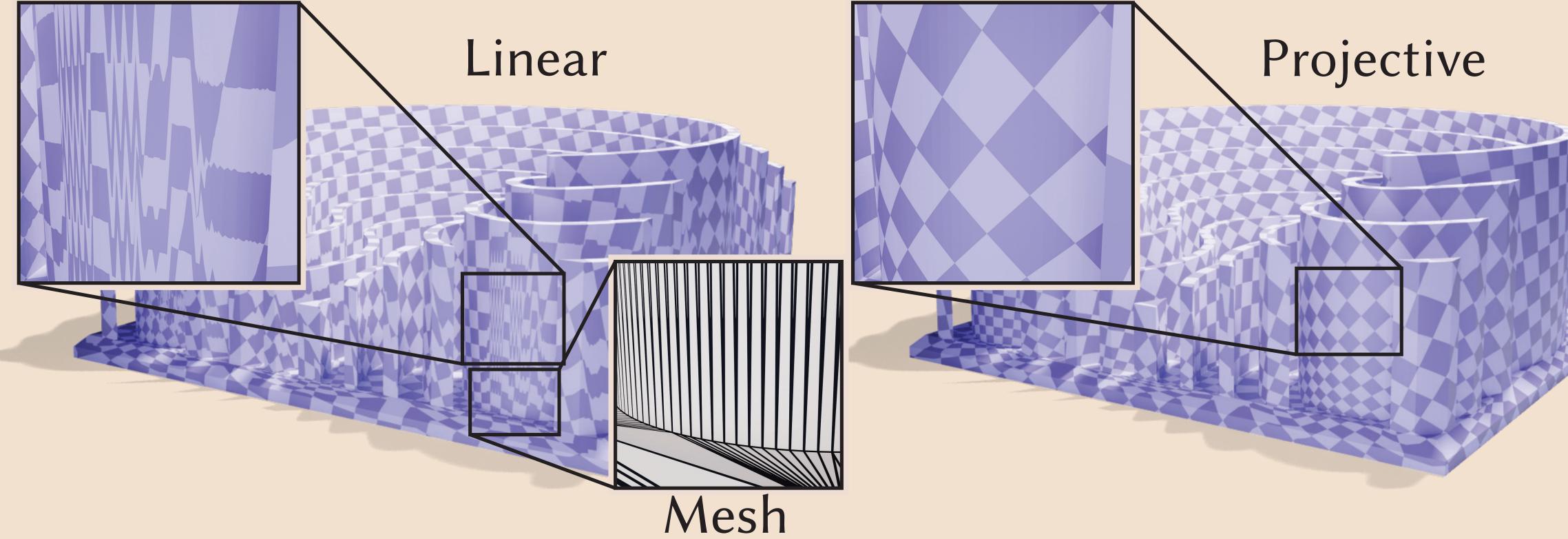




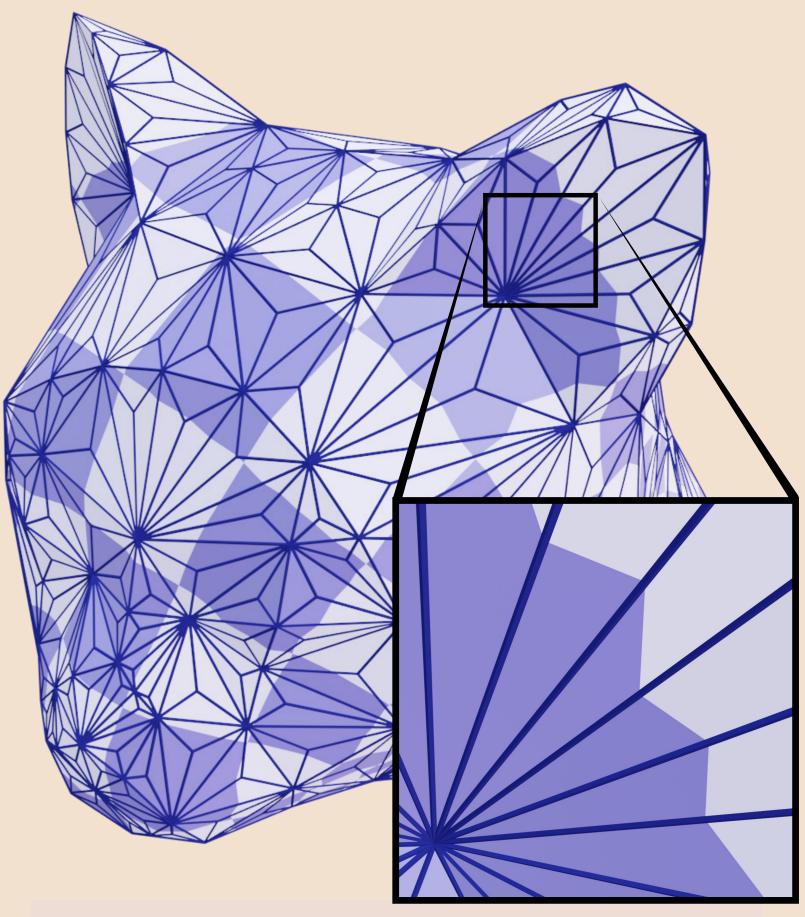
Projective interpolation improves quality

500096

Thing ID

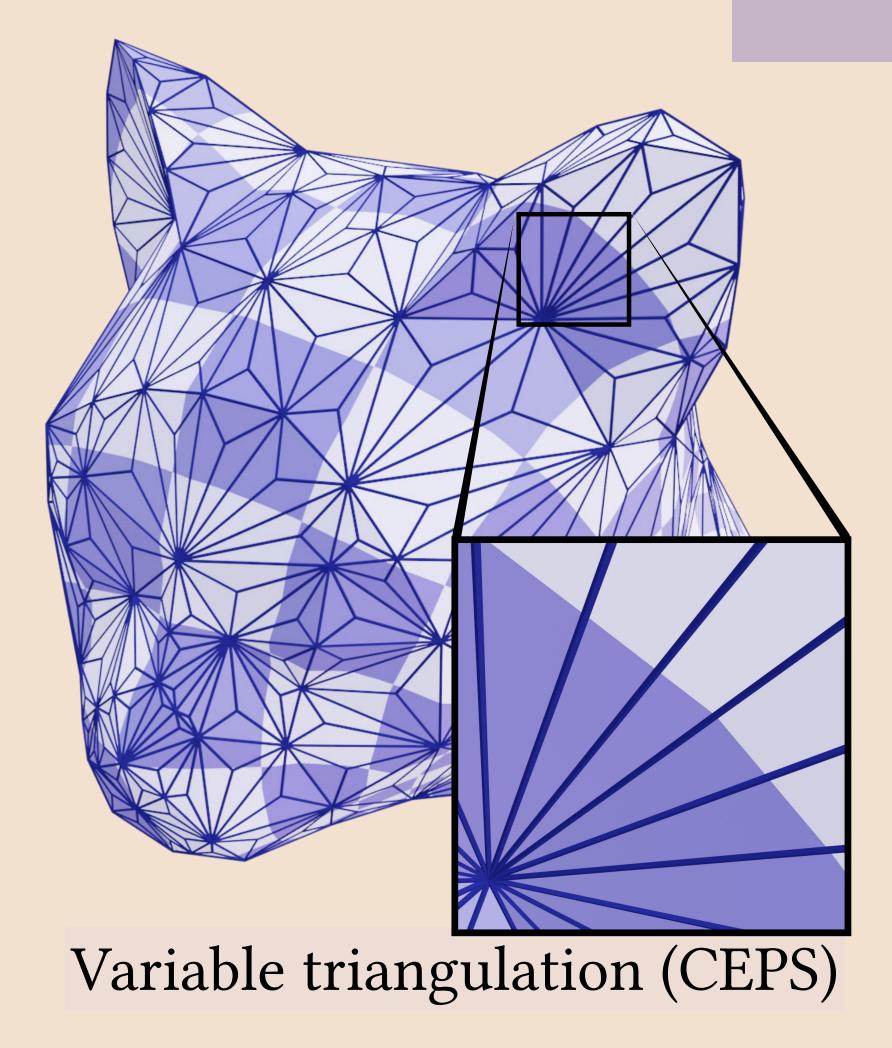


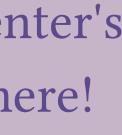
Variable triangulation > fixed triangulation



Fixed triangulation (CETM)

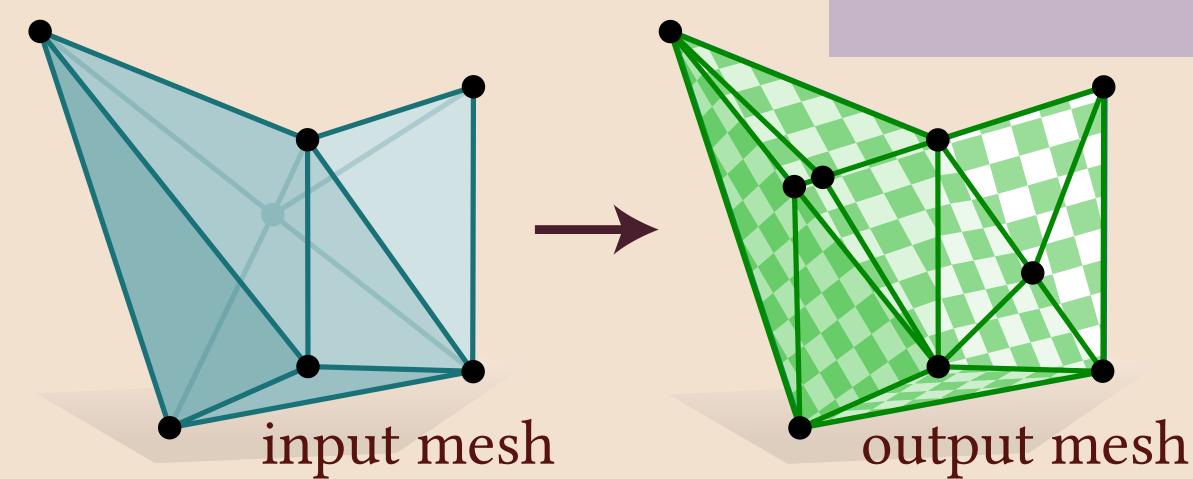
Even when fixed triangulation succeeds, variable triangulation projective interpolation is smoother





Limitations and future work

- Output is refined mesh
 - Could you unflip all flipped edges?
- If all you care about is injectivity, correspondence is simpler
- Going beyond 2D
 - 2D uniformization theorem \rightarrow 3D geometrization theorem
 - 2D Delaunay triangulations \rightarrow 3D Delaunay tetrahedralizations



Thanks!

Code is available at github.com/MarkGillespie/CEPS

Carnegie Nellon University

