Intrinsic Triangulations in Geometry Processing

Mark Gillespie, Carnegie Mellon University

Intrinsic triangles

Triangle meshes can be very frustrating

Outline

I. Preliminaries

Outline

I. Preliminaries
II. Data structures for intrinsic triangulations

[G., Sharp, \& Crane. 2021.
Integer coordinates for intrinsic geometry processing. ACM TOG]

- Integer data structure for intrinsic triangulations
- Quality guarantees for intrinsic remeshing

Outline

I. Preliminaries
II. Data structures for intrinsic triangulations

[G., Sharp, \& Crane. 2021. Integer coordinates for intrinsic geometry processing. ACM TOG]

- Integer data structure for intrinsic triangulations
- Quality guarantees for intrinsic remeshing
III. Simplification of intrinsic triangulations

[Liu, G., Chislett, Sharp, Jacobson \& Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM TOG]
- First algorithm for intrinsic simplification
- New distortion measurement via intrinsic curvature error

Outline

I. Preliminaries

II. Data structures for intrinsic triangulations

[G., Sharp, \& Crane. 2021 Integer coordinates for intrinsic geometry processing. ACM TOG]

- Integer data structure for intrinsic triangulations
- Quality guarantees for intrinsic remeshing

III. Simplification of intrinsic triangulations

[Liu, G., Chislett, Sharp, Jacobson \& Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM TOG]

- First algorithm for intrinsic simplification
- New distortion measurement via intrinsic curvature error

IV. Discrete conformal

 maps \& uniformization
[G., Springborn, \& Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM TOG]

- Data structure for ideal hyperbolic polyhedra
- Interpolation for hyperbolic isometries
- Careful treatment of numerics

I. Preliminaries

Triangulations

Definition

A (surface) triangulation is a manifold 2-dimensional cell complex $T=(V, E, F)$ whose faces are all triangles

- May be irregular (e.g., two edges of a face may be glued together)

Intrinsic and extrinsic triangulations

Definition

An extrinsic triangulation is a triangulation equipped with a piecewise-linear embedding into \mathbb{R}^{3}, i.e., vertex positions $p: V \rightarrow \mathbb{R}^{3}$

Definition

An intrinsic triangulation is a triangulation equipped with positive edge lengths $\ell: E \rightarrow \mathbb{R}_{>0}$ satisfying the triangle inequality within each face

Correspondence

- Common case: intrinsic triangulation on top of extrinsic triangulation
- i.e. isometric or at least homeomorphic to extrinsic triangulation
- The correspondence is the homeomorphism mapping between them

Common subdivision

Definition

The common subdivision of two triangulations T_{1}, T_{2} is the coarsest polygonal complex \mathcal{S} such that all faces of T_{1} or T_{2} are unions of faces of \mathcal{S}

Intuitively, the result of cutting T_{1} along edges of T_{2}

The space of intrinsic triangulations is large

Delaunay triangulations

I. Preliminaries

- Planar Delaunay triangulations have many nice properties:
- Essentially unique, maximize angles lexicographically, minimize spectrum lexicographically, smoothest interpolation, positive cotan weights...
- Characterized by empty circumcircle condition

$$
\alpha+\beta \leq \gamma+\delta
$$

Intrinsic Delaunay triangulations

I. Preliminaries

- [Indermitte, Liebling, Troyanov \& Clemençon 2001, Bobenko \& Springborn 2007]: empty intrinsic circumcircles
- Maintain most nice properties. [Sharp, G. \& Crane 2021; §4.1.1]
- Compute by a simple algorithm:
- Flip any non-Delaunay edge until none remain

Intrinsic Delaunay triangulations provide good function spaces

I. Preliminaries

A brief history of intrinsic triangulations

I. Preliminaries

Foundations: [Alexandrov 1948; Regge 1961]
Geometry Processing: [Fisher, Springborn, Bobenko \& Schröder 2006; Bobenko \& Springborn 2007, Bobenko \& Izmestiev 2008; Sun, Wu, Gu \& Luo 2015; Sharp, Soliman \& Crane 2019; Fumero, Möller \& Rodolà 2020; Gillespie, Springborn \& Crane 2021; Finnendahl, Schwartz \& Alexa 2023]

II. Integer Coordinates for Intrinsic Triangulations

$\left[\begin{array}{c}\text { G., Sharp, \& Crane. 2021. Integer coordinates for intrinsic geometry } \\ \text { processing. ACM Transactions on Graphics }\end{array}\right]$

Correspondence data structures

Overlay Mesh

[Fisher, Springborn, Bobenko \& Schröder 2006]

- Explicit mesh of common subdivision
- Edge flips nonlocal \& expensive
- No further operations

Signposts

Integer coordinates combine the best of both worlds
[Sharp, Soliman \& Crane 2019]

- Floating point signpost vectors at vertices
- Supports many local mesh operations
- Common subdivision connectivity may be invalid

The integer coordinates data structure

II. Integer coordinates for intrinsic triangulations

[^0]
Normal coordinates

II. Integer coordinates for intrinsic triangulations

Foundations: [Kneser 1929; Haken 1961]
Computational Topology: [Schaefer+ 2008; Erickson \& Nayyeri 2013]

Normal coordinates

II. Integer coordinates for intrinsic triangulations

Slight complication

- Standard setting: homotopy classes of closed curves on a topological surface (or closed surfaces in a topological 3-manifold)
- Our setting: edges of a geodesic triangulation on a Riemannian manifold

Foundations: [Kneser 1929; Haken 1961]
Computational Topology: [Schaefer+ 2008; Erickson \& Nayyeri 2013]

Encoding a curve with normal coordinates

II. Integer coordinates for intrinsic triangulations

- Just count intersections

Rules

1. No self-crossings
2. No U-turns
(also curves may only start or end
 at vertices of the triangulation) automatically satisfied for geodesic triangulations

How much do normal coordinates tell us?

II. Integer coordinates for intrinsic triangulations

- Represents curve up to homotopy (on the surface punctured at vertices)
- Equivalently, encodes a sequence of triangles

Reconstructing the curve

Rules

1. No self-crossings
2. No U-turns

Reconstructing the curve

- Normality conditions determine curves within each triangle

Finding the exact curve geometry

- So far: triangle strip
- True curve is geodesic
- Lay out in plane to find exact curve
- Normal coordinates determine edges exactly

Collections of Curves

- e.g. edges of a triangulation
- Could store multiple sets of normal coordinates
- Expensive
- Instead, just store one set of normal coordinates

Store entire triangulation using one integer per edge

The integer coordinates data structure

II. Integer coordinates for intrinsic triangulations

normal coordinates

Normal coordinates are not enough for correspondence

II. Integer coordinates for intrinsic triangulations

- How do you tell what edge you have traced?

Normal coordinates are not enough for correspondence

II. Integer coordinates for intrinsic triangulations

- How do you tell what edge you have traced?

Normal coordinates are not enough for correspondence

II. Integer coordinates for intrinsic triangulations

- How do you tell what edge you have traced?
- Disambiguate with roundabouts

Roundabouts

II. Integer coordinates for intrinsic triangulations

- Each black edge stores a pointer to the next yellow curve
- Resolves all ambiguity

Data structure operations

II. Integer coordinates for intrinsic triangulations - connectivity changes

- Supports a variety of connectivity changes:

edge flips

vertex insertion

flat vertex removal

Edge flips

II. Integer coordinates for intrinsic triangulations

Normal Coordinates

$$
n_{k l}=\max \left(n_{k i}+n_{l j}, n_{j k}+n_{l i}\right)-n_{i j}
$$

$$
r_{k l}=r_{k i}+n_{k i}^{-}+\max \left(0, n_{i l}^{+}-n_{l k}^{+}-n_{k i}^{+}\right)
$$

(if there are no endpoints)

Edge flips

II. Integer coordinates for intrinsic triangulations

Normal Coordinates

$$
\begin{aligned}
& \left.n_{k l}=c_{l}^{j k}+c_{k}^{i j}+\frac{1}{2}\left|c_{j}^{i l}-c_{j}^{k i}\right|+\frac{1}{2} \right\rvert\, c_{i}^{l j}-c_{i}^{j k} \\
& -\frac{1}{2} e_{l}^{j i}-\frac{1}{2} e_{k}^{i j}+e_{i}^{l j}+e_{i}^{j k}+e_{j}^{i l}+e_{j}^{k i}+n_{i j}^{-} \\
& \text {(general case) } \\
& 2 c_{k}^{i j}:=\underset{-\rho_{j}^{j k}-e^{k i}}{\max \left(0, n_{j i}^{+}+n_{k i}^{+}-n_{i j}^{+}\right)} \\
& e_{k}^{i j}:=\max \left(0, n_{i j}^{+}-n_{j k}^{+}-n_{k i}^{+}\right)
\end{aligned}
$$

Key takeaway:

closed form flip formulas, independent of geometry

Roundabouts

Vertex insertion

_- edge \rightleftharpoons curve

- Unlike classic normal coordinates, depends on geometry
- Not a computational challenge:

1. Locate curves via normal coordinates
2. Count intersections
3. Update roundabouts

Vertex removal

_- edge

 \rightleftharpoons curveII. Integer coordinates for intrinsic triangulations

- Only remove inserted vertices
- Strategy: reduce to degree-3 case

Vertex removal

II. Integer coordinates for intrinsic triangulations

- Only remove inserted vertices
- Strategy: reduce to degree-3 case
II. Integer coordinates for intrinsic triangulations

Applications

Delaunay refinement for planar meshing

II. Integer coordinates for intrinsic triangulations

- Crucial tool in 2D - remesh with guaranteed quality bounds [Chew 1993; Shewchuk 1997]

Intrinsic Delaunay refinement

- Intrinsic retriangulation algorithm proposed by [Sharp, Soliman \& Crane 2019]

Theorem [G., Sharp \& Crane 2021]

Let M be a mesh without boundary whose cone angles are all at least 60°. Then intrinsic Delaunay refinement produces a Delaunay mesh with triangle corner angles at least 30°

II. Integer coordinates for

Common subdivisions of intrinsic Delaunay refinements

II. Integer coordinates for intrinsic triangulations

- Integer coordinates can be crucial to recovering the common subdivision

Intrinsic Delaunay refinement of meshes with boundary

Integer coordinates for intrinsic triangulations

- Extend algorithm to meshes with boundary

ThingilD 48352

Intrinsic Delaunay refinement - validation

II. Integer coordinates for intrinsic triangulations

- Compute refinements \& common subdivisions for Thingi10k dataset [Zhou \& Jacobson 2016]
- 7696 manifold meshes
- < 1s on most meshes; only took > 1m on 6 meshes
- 100% success rate for refinement $\&$ common subdivision
- [Sharp, Soliman \& Crane 2019] succeed on only 69.1% of meshes

Application: PDE-Based Geometry Processing

II. Integer coordinates for intrinsic triangulations
mean error: 2%
result on Delaunay refinement

Application: Flip-Based Geodesic Paths

- FlipOut [Sharp \& Crane 2020]:
- computes geodesic paths via edge flips

Try it out yourself

https://github.com/MarkGillespie/intrinsic-triangulations-demo

III. Simplifying Intrinsic Triangulations

[Liu, G., Chislett, Sharp, Jacobson, \& Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM Transactions on Graphics

Exact geometry preservation: a blessing and a curse

mean error: 2%
III. Intrinsic simplification

- motivation

Coarse meshes can be perfectly adequate

 - motivation
Coarse meshes can be perfectly adequate

III. Intrinsic simplification

23.14 s

Traditional goal: extrinsic simplification

III. Intrinsic simplification - motivation

- Find a coarse mesh close in space to the original
- Often designed to optimize for visual fidelity

Intrinsic problems benefit from intrinsic simplification

III. Intrinsic simplification

- Extrinsic methods preserve irrelevant extrinsic details
- Intrinsic approach opens up a larger space of triangulations
- Extreme example: neardevelopable surfaces

intrinsic simplification

Inspiration: quadric error simplification

[Garland \&
Heckbert 1997]
III. Intrinsic simplification - motivation

1. Local simplification operation

2. Accumulated distortion measurements

- Algorithm: repeatedly collapse cheapest edge
- Efficient: all local operations
- Accurate: accumulates error estimates

Intrinsic simplification

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex

Intrinsic simplification

III. Intrinsic simplification

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex

Intrinsic vertex removal

- Intrinsic view: replace curved vertex with flat patch
- i.e., parameterization problem

Intrinsic vertex removal

- Intrinsic view: replace curved vertex with flat patch
- i.e., parameterization problem

Vertex flattening

- Map 1-ring to plane such that:
(1) Distortion is low
(2) Boundary edge lengths are preserved
III. Intrinsic simplification - intrinsic vertex removal

- Discrete conformal map [Springborn, Schröder \& Pinkall 2008]
- Fix $u=0$ on boundary
- Efficient 1D optimization problem

Flat vertex removal

- Same as before

Intrinsic simplification

III. Intrinsic simplification - intrinsic curvature error

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex

Distortion: curvature redistribution

We approximate the transport cost of this curvature redistribution

Mass transport cost

Vertex removal

Comparing mass distributions

III. Intrinsic simplification - intrinsic curvature error

Goal: approximate cost of transporting each distribution to its vertex
mass distribution transported to vertex i
mass distribution transported to vertex j

Approximating the mass transport cost

III. Intrinsic simplification

Specializing to curvature

- Challenge: curvature is signed
- Just track positive and negative parts separately

Simplification with the curvature transport cost

III. Intrinsic simplification - intrinsic curvature error

Other transport costs

III. Intrinsic simplification - intrinsic curvature error

- Track transport of other data (e.g. area) in same way
- Can take weighted combinations of costs

Surface correspondence

- Simplified mesh not isometric to original surface

- But, only uses a few local operations
- Correspondence easy for each operation
- Encode correspondence via list of operations

[^1]

Prolongation

- Transfer piecewise-linear functions:
- Just find values at vertices
- Encode by a matrix

Pulling back vector fields

- correspondence
- Approximate differential of correspondence map

Encode by complex prolongation matrix

Intrinsic simplification-summary

III. Intrinsic simplification

- summary

1. Local simplification operation

intrinsic vertex removal
2. Accumulated distortion measurements

intrinsic curvature error

- Algorithm: repeatedly remove cheapest vertex
- Correspondence: record operation history

Results

Surface hierarchies

Hierarchies accelerate computation

- Accelerate many geometric tasks
- Even helps with extrinsic problems

Distortion

i.e. quasiconformal dilatation
(mean 1.115)
(mean 8.1\%)

Geodesic distance

III. Intrinsic simplification

Geodesic Voronoi diagrams

III. Intrinsic simplification
result on
simplified surface
ground truth
7207.4 ms
only 1% vertices misclassified

Speedup vs error in geodesic distance

speedup/error: 3x/0.0002\%

840x / 0.2\%

Low rank all-pairs distance matrix approximation

III. Intrinsic simplification

Distance matrix of simplified mesh
$\overbrace{}^{P}$
Prolongation operator

- Approximate distance matrix
$P: \mathbb{R}^{\left|V^{c}\right|} \rightarrow \mathbb{R}^{|V|}$
$\hat{D}=P \tilde{D} P^{\top}$

Adaptive simplification

III. Intrinsic simplification
results

input

input
constrained coarsening
Poisson solve

Performance

- Linear scaling
- Constant work per vertex

Removes ~10,000 vertices per second
time (s)
II. Intrinsic simplification

Try it out yourself (... in the near future)

IV. Discrete Uniformization

[
G., Springborn, \& Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM Transactions on Graphics

The uniformization theorem

 [Poincare 1907; Koebe 1907; Troyanov 1991]
IV. Discrete uniformization

Any surface is conformally equivalent to a surface of constant curvature.

Image: [Crane, Pinkall \& Schröder 2013]

The discrete uniformization theorem

[Gu, Luo, Sun \& Wu 2018; Springborn 2019]

IV. Discrete uniformization

Any positive vertex cone angles satisfying GaussBonnet can be realized by some discrete conformal map.

The discrete spherical uniformization theorem

[Springborn 2019]
IV. Discrete uniformization

Any simply-connected triangle mesh is discretely conformally equivalent to a mesh whose vertices lie on the unit sphere

Discrete uniformization in action

[G., Springborn, \& Crane. 2021]

Triangle mesh \hookleftarrow ideal polyhedron

[Bobenko, Pinkall \& Springborn 2010]

IV. Discrete uniformization

Euclidean triangle in circumcircle \hookleftarrow Klein ideal triangle

Ideal Delaunay triangulations

Hyperbolic correspondence problem

Correspondence between ideal polyhedra

- Adapt Euclidean techniques to hyperbolic setting
- Integer coordinates essential

Projective interpolation

- [Springborn, Schröder \& Pinkall 2008]: projective interpolation
- Hyperbolic isometry
- In variable triangulation case, lay out triangles in hyperboloid model

Interpolation in the hyperboloid model

IV. Discrete uniformization

Interpolation in the hyperboloid model

fixed triangulation

variable triangulation

Starting from Delaunay

Final algorithm

flip to (Euclidean)
Delaunay

find scale factors

lay out in plane
\qquad
extract correspondence

compute common subdivision
\qquad
interpolate via hyperboloid

Uniformization results

Challenging datasets

IV. Discrete uniformization

- results
difficult cones

Dataset

MPZ

[Myles+ 2014]	114	100%	8 s
Thingi10k [Zhou+2016]	$32,744^{*}$	97.7%	$57 \mathrm{~s}^{\dagger}$
brain scans $[Y e o+2009]$	78	100%	493 s
anatomical surfaces [Boyer+ 2011]	187	100%	15 s

Variable triangulation > fixed triangulation

IV. Discrete uniformization

Fixed triangulation (CETM)

Boundary conditions

IV. Discrete uniformization - results
convex

Try it out yourself

IV. Discrete uniformization

- results

C++ application
Save textured mesh
projective interpolation in Blender

https://github.com/MarkGillespie/CEPS

Thanks for listening

- And thank you to all of my great coauthors!

Boris
Springborn

Keenan
Crane

Nicholas
Sharp

Hsueh-Ti
Derek Liu

Benjamin Chislett

Alec Jacobson

Supplemental Slides

The importance of memory

Memoryless transport cost
Vertex removal

Robust hierarchies

Tangent space approximations

Signed curvature transport

$$
\alpha_{i j}:=\frac{\left|\tilde{K}_{j}-K_{j}\right|}{\sum_{l \in \mathcal{N}_{i}}\left|\tilde{K}_{l}-K_{l}\right|}
$$

[^0]: (concretely, just 3 integers per mesh edge)

[^1]: 1. Flip edge 1
 2. Scale vertex 5
 3. Remove vertex 5
 4. Flip edge 8
 5. Flip edge 12
 6. Scale vertex 2
