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Triangle meshes can be very 
frustrating
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Triangle meshes can be very 
frustrating
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Triangle meshes can be very 
frustrating

55

frustrating

Problem: a mesh encodes 
both the geometry of a 
surface and a function 
spaces on that surface.



Triangle meshes can be very 
frustrating
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frustrating

Intrinsic triangulations 
decouple surface geometry 

from other concerns
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Outline
I. Preliminaries II. Data structures for 

intrinsic triangulations

[ G., Sharp, & Crane. 2021. 
Integer coordinates for intrinsic 
geometry processing. ACM TOG ]

• Integer data structure for 
intrinsic triangulations

• ality guarantees for 
intrinsic remeshing 



[ G., Sharp, & Crane. 2021. 
Integer coordinates for intrinsic 
geometry processing. ACM TOG ]
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I. Preliminaries II. Data structures for 
intrinsic triangulations

III. Simplification of 
intrinsic triangulations

[ Liu, G., Chisle, Sharp, Jacobson & 
Crane. 2023. Surface Simplification using 
Intrinsic Error Metrics. ACM TOG ]
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• First algorithm for 
intrinsic simplification

• New distortion 
measurement via 
intrinsic curvature error

• Integer data structure for 
intrinsic triangulations

• ality guarantees for 
intrinsic remeshing 

• Integer data structure for 
intrinsic triangulations

• ality guarantees for 
intrinsic remeshing 

v
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I. Preliminaries II. Data structures for 
intrinsic triangulations

III. Simplification of 
intrinsic triangulations

IV. Discrete conformal 
maps & uniformization

[ G., Springborn, & Crane. 2021. 
Discrete conformal equivalence of 
polyhedral surfaces. ACM TOG ]
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• Data structure for ideal 
hyperbolic polyhedra

• Interpolation for 
hyperbolic isometries

• Careful treatment of 
numerics

• Integer data structure for 
intrinsic triangulations

• ality guarantees for 
intrinsic remeshing 

[ Liu, G., Chisle, Sharp, Jacobson & 
Crane. 2023. Surface Simplification using 
Intrinsic Error Metrics. ACM TOG ]

• First algorithm for 
intrinsic simplification

• New distortion 
measurement via 
intrinsic curvature error

• Integer data structure for 
intrinsic triangulations

• ality guarantees for 
intrinsic remeshing 

Intrinsic Error Metrics. ACM TOG ]

• First algorithm for 
intrinsic simplification

• New distortion 
measurement via 
intrinsic curvature errorvv

[ G., Sharp, & Crane. 2021. 
Integer coordinates for intrinsic 
geometry processing. ACM TOG ]
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Triangulations

• May be irregular (e.g., two edges of a face 
may be glued together)
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Definition
A (surface) triangulation is a 
manifold 2-dimensional cell 
complex  whose 
faces are all triangles

T = (V, E, F)

I. Preliminaries



Intrinsic and extrinsic 
triangulations
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Definition

An extrinsic triangulation is a triangulation 
equipped with a piecewise-linear embedding 
into , i.e., vertex positions ℝ3 p : V → ℝ3

Definition

An intrinsic triangulation is a triangulation 
equipped with positive edge lengths 

 satisfying the triangle 
inequality within each face
ℓ : E → ℝ>0

extrinsic

intrinsicintrinsic

I. Preliminaries

easy

hard
(in convex case, see 

[Bobenko &
 

Izm
estiev 2008]) 



Correspondence

• Common case: intrinsic triangulation on top of 
extrinsic triangulation

• i.e. isometric or at least homeomorphic to 
extrinsic triangulation

• The correspondence is the homeomorphism 
mapping between them

14

I. Preliminaries



Common subdivision

15

Definition

The common subdivision of two triangulations 
 is the coarsest polygonal complex 

such that all faces of  or  are unions of 
faces of 

T1, T2 𝒮
T1 T2

𝒮

I. Preliminaries

Intuitively, the result of cuing  along edges of T1 T2



The space of intrinsic 
triangulations is large

16

extrinsic 
triangulations

intrinsic 
triangulations

…

I. Preliminaries



Delaunay triangulations

• Planar Delaunay triangulations have many nice 
properties:

• Essentially unique, maximize angles lexicographically, 
minimize spectrum lexicographically, smoothest 
interpolation, positive cotan weights… 

• Characterized by empty circumcircle condition

17

I. Preliminaries

α + β ≤ γ + δ



Intrinsic Delaunay triangulations

• [Indermie, Liebling, Troyanov & Clemençon 2001, 
Bobenko & Springborn 2007]: empty intrinsic circumcircles

• Maintain most nice properties.                                 
[Sharp, G. & Crane 2021; §4.1.1]

• Compute by a simple algorithm:

• Flip any non-Delaunay edge until none remain

18

I. Preliminaries

Flip any non-Delaunay edge until none remainFlip any non-Delaunay edge until none remain



Intrinsic Delaunay triangulations 
provide good function spaces

19

I. Preliminariesprovide good function spaces I. Preliminariesprovide good function spaces

input 
mesh 

computation 
on input mesh 

computation on 
intrinsic Delaunay 

triangulation
still has some 

artifacts… 



A brief history of intrinsic 
triangulations

20

triangulations

Foundations: [Alexandrov 1948; Regge 1961]
Geometry Processing: [Fisher, Springborn, Bobenko & Schröder 2006; Bobenko 

& Springborn 2007, Bobenko & Izmestiev 2008; Sun, Wu, 
Gu & Luo 2015; Sharp, Soliman & Crane 2019; Fumero, 
Möller & Rodolà 2020; Gillespie, Springborn & Crane 
2021; Finnendahl, Schwartz & Alexa 2023]

I. Preliminaries



II. Integer Coordinates for 
Intrinsic Triangulations

G., Sharp, & Crane. 2021. Integer coordinates for intrinsic geometry 
processing. ACM Transactions on Graphics[ ], Sharp, & Crane. 2021. Integer coordinates for intrinsic geometry 
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Correspondence data structures

22

Overlay Mesh Signposts

[Fisher, Springborn, Bobenko 
& Schröder 2006]

• Explicit mesh of common subdivision

• Edge flips nonlocal & expensive

• No further operations

• Floating point signpost vectors at vertices

• Supports many local mesh operations

• Common subdivision connectivity may be 
invalid

[Sharp, Soliman & Crane 2019]

#10 #4

Integer coordinates combine 
the best of both worlds
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intrinsic triangulations
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II. Integer coordinates for 
intrinsic triangulations

roundabouts

( concretely, just 3 integers per mesh edge )

roundabouts

( concretely, just 3 integers per mesh edge )

The integer coordinates data structure
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normal coordinates 
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Normal coordinates
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Foundations: [Kneser 1929; Haken 1961]

Computational Topology: [Schaefer+ 2008; Erickson & Nayyeri 2013]

Geometry Processing: [Hass & Trnkova 2020]
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II. Integer coordinates for II. Integer coordinates for 
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Normal coordinates
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Foundations: [Kneser 1929; Haken 1961]

Computational Topology: [Schaefer+ 2008; Erickson & Nayyeri 2013]

Geometry Processing: [Hass & Trnkova 2020]
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II. Integer coordinates for II. Integer coordinates for 
intrinsic triangulationsintrinsic triangulations

Slight complication

• Standard seing: homotopy classes of 
closed curves on a topological surface (or 
closed surfaces in a topological 3-manifold)

• Our seing: edges of a geodesic 
triangulation on a Riemannian manifold



• Just count intersections

26
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Rules
1. No self-crossings

2. No U-turns

Encoding a curve with 
normal coordinates
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II. Integer coordinates for 
intrinsic triangulations

automatically satisfied for 
geodesic triangulations 

(also curves may only start or end 
at vertices of the triangulation) 



• Represents curve up to homotopy 
(on the surface punctured at vertices)

• Equivalently, encodes a sequence 
of triangles

27
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How much do normal 
coordinates tell us?
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Reconstructing the 
curve

28
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Reconstructing the 
curve
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II. Integer coordinates for 
intrinsic triangulations

• Normality conditions determine 
curves within each triangle

1

1



Finding the exact curve 
geometry

• So far: triangle strip

• True curve is geodesic

• Lay out in plane to find exact 
curve

• Normal coordinates determine 
edges exactly

30
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II. Integer coordinates for 
intrinsic triangulations

Intrinsic 
edges



Collections of Curves

• e.g. edges of a triangulation

• Could store multiple sets of normal 
coordinates

‣ Expensive

• Instead, just store one set of normal 
coordinates

31

Could store multiple sets of normal 

Instead, just store one set of normal 

31
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II. Integer coordinates for 
intrinsic triangulations

Store entire triangulation 
using one integer per edge



normal coordinates 
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The integer coordinates data structure
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Normal coordinates are not 
enough for correspondence

• How do you tell what edge you have traced?

33
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Normal coordinates are not 
enough for correspondence

• How do you tell what edge you have traced?
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Normal coordinates are not 
enough for correspondence

• How do you tell what edge you have traced?

• Disambiguate with roundabouts

35
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Roundabouts

• Each black edge stores a pointer to 
the next yellow curve

• Resolves all ambiguity
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Data structure operations

• Supports a variety of connectivity changes:

37edge flips vertex insertion flat vertex removal 
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II. Integer coordinates for 
intrinsic triangulations

‣ connectivity 
changes

connectivity 
changes

connectivity 
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Roundabouts

Edge flips

38

Normal Coordinates

nkl = max(nki + nlj, njk + nli) − nij rkl = rki + n−
ki + max(0, n+

il − n+
lk − n+

ki)
( if there are no endpoints )
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II. Integer coordinates for 
intrinsic triangulations

‣ connectivity 
changes

connectivity 
changes

connectivity 
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edge
curve

Roundabouts

Edge flips

39

Normal Coordinates

− 1
2 eji

l − 1
2 eij

k + elj
i + ejk

i + eil
j + eki

j + n−
ij

nkl = cjk
l + cij

k + 1
2 cil

j − cki
j + 1

2 clj
i − cjk

i

( general case )

rkl = rki + n−
ki

+ max(0, n+
il − n+

lk − n+
ki)

2cij
k := max(0, n+

jk + n+
ki − n+

ij )
−ejk

i − eki
j

eij
k := max(0, n+

ij − n+
jk − n+

ki)

where

Key takeaway:
closed form !ip formulas, 
independent of geometry
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‣ connectivity 
changes
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Vertex insertion

• Unlike classic normal coordinates, depends on geometry

• Not a computational challenge: 

1. Locate curves via normal coordinates

2. Count intersections

3. Update roundabouts
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‣ connectivity 
changes

connectivity 
changes

connectivity 

2

1

2
1

2

1

edge
curve



Vertex removal

• Only remove inserted vertices

• Strategy: reduce to degree-3 case

41
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intrinsic triangulations

‣ connectivity 
changes

connectivity 
changes

connectivity 
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Vertex removal

• Only remove inserted vertices

• Strategy: reduce to degree-3 case

42
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‣ connectivity 
changes
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Applications
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[Shewchuk 1997]

• Crucial tool in 2D - remesh with guaranteed quality bounds 
[Chew 1993; Shewchuk 1997]

Delaunay refinement 
for planar meshing

44

[Busaryev+ 2013]

[Shewchuk 1997]
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‣ applications



Intrinsic Delaunay refinement

• Intrinsic retriangulation algorithm proposed 
by [Sharp, Soliman & Crane 2019]
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Theorem [G., Sharp & Crane 2021]

Let M be a mesh without boundary 
whose cone angles are all at least 60°. 
Then intrinsic Delaunay refinement 
produces a Delaunay mesh with 
triangle corner angles at least 30°

Intrinsic retriangulation algorithm proposed 
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‣ applications



Common subdivisions of 
intrinsic Delaunay refinements

• Integer coordinates can be crucial to recovering the common subdivision

46[Integer co
ordinates]

46[Integer co
ordinates]

[Sharp+ 2019]
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intrinsic triangulations

‣ applications



Intrinsic Delaunay refinement of 
meshes with boundary

• Extend algorithm to meshes with boundary

47

Th
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gi
ID
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52

meshes with boundary

Extend algorithm to meshes with boundary
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Intrinsic Delaunay refinement 
— validation

• Compute refinements & common subdivisions 
for Thingi10k dataset [Zhou & Jacobson 2016]

• 7696 manifold meshes

• < 1s on most meshes; only took > 1m on 6 meshes

• 100% success rate for refinement & common 
subdivision

• [Sharp, Soliman & Crane 2019] succeed on 
only 69.1% of meshes

48
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intrinsic triangulations

applications

< 1s on most meshes; only took > 1m on 6 meshes< 1s on most meshes; only took > 1m on 6 meshes

II. Integer coordinates for 
intrinsic triangulations

‣ applications



Application: PDE-Based 
Geometry Processing

49

result on input 
mesh

Application: PDE-Based 

mean error: 28%

|V| = 2948

|V| = 2948

result on 
Delaunay 

refinement

mean error: 2%

|V| = 11954

mean error: 28%
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heat method for 
geodesic distance 
[Crane, Weischedel 
& Wardetzky 2013]
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Application: Flip-Based 
Geodesic Paths

• FlipOut [Sharp & Crane 2020]:
‣ computes geodesic paths via 

edge flips

50
[Sharp, Soliman 

& Crane 2019] [Integer coordinates]

Application: Flip-Based 
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Try it out yourself
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Try it out yourself
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hps://github.com/MarkGillespie/intrinsic-triangulations-demo



III. Simplifying Intrinsic Triangulations

|V |=1,009,118|V |=1,009,118

inputinput

|V|=72k|V|=72k |V|=4k|V|=4k |V|=282|V|=282

|V |=288k|V |=288k |V |=18k|V |=18k |V |=1k|V |=1k

Liu, G., Chisle, Sharp, Jacobson, & Crane. 2023. Surface Simplification using 
Intrinsic Error Metrics. ACM Transactions on Graphics[ ]



Exact geometry preservation: 
a blessing and a curse

53

|V|=871,434

53

|V| ~ 27,000,000

III. Intrinsic simplification
‣ motivation

mean error: 2%

mean error: 28%



Coarse meshes can be 
perfectly adequate

54

III. Intrinsic simplification
‣ motivation

perfectly adequate
|V

| =
 2

50
k



1.511λ2 =

1.639λ3 =

0.491λ1 =

|V
| =

 1
2.

5k

Coarse meshes can be 
perfectly adequate
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runtime:
23.14 s

runtime:
0.9 s

0.484λ1 =

|V
| =

 2
50

k

III. Intrinsic simplification
‣ motivation

1.639

|V
| =

 1
2.

5k

1.907λ4 =

1.610λ2 =

1.747λ3 = 1.747

1.978λ4 =

Near-identical, but 25x faster



Traditional goal: 
extrinsic simplification

• Find a coarse mesh close in space to the original

• Oen designed to optimize for visual fidelity

56|F|
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III. Intrinsic simplification
‣ motivation



III. Intrinsic simplification
‣ motivation

Intrinsic problems benefit 
from intrinsic simplification

• Extrinsic methods preserve 
irrelevant extrinsic details

• Intrinsic approach opens up a 
larger space of triangulations

• Extreme example: near-
developable surfaces

57

intrinsic simplification 

extrinsic simplification 

input



Inspiration: quadric error 
simplification

58

1. Local simplification operation 2. Accumulated distortion measurements

III. Intrinsic simplification
‣ motivation

• Algorithm: repeatedly collapse cheapest edge

• Efficient: all local operations

• Accurate: accumulates error estimates

[Garland & 
Heckbert 1997]



Intrinsic simplification

59

1. Local simplification operation

intrinsic vertex removal

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

III. Intrinsic simplification



Intrinsic simplification

60

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

III. Intrinsic simplification

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

1. Local simplification operation

intrinsic vertex removal



• Intrinsic view: replace curved vertex with flat patch

• i.e., parameterization problem

Intrinsic vertex removal

61

III. Intrinsic simplification
‣ intrinsic vertex removal 



Intrinsic vertex removal

• Intrinsic view: replace curved vertex with flat patch

• i.e., parameterization problem

62

parameterize remove flat vertex 

III. Intrinsic simplification
‣ intrinsic vertex removal 



Vertex flattening

• Map 1-ring to plane such that:

(1) Distortion is low

(2) Boundary edge lengths are preserved

• Discrete conformal map [Springborn, Schröder & Pinkall 2008]

• Fix u = 0 on boundary

• Efficient 1D optimization problem

63

III. Intrinsic simplification
‣ intrinsic vertex removal 

(If parameterization fails, pick a different vertex to remove)



Flat vertex removal

• Same as before

64

flip to degree 3 

delete vertex 

flip to Delaunay 

III. Intrinsic simplification
‣ intrinsic vertex removal 



1. Local simplification operation

intrinsic vertex removal

• Algorithm: repeatedly remove cheapest vertex

1. Local simplification operation

intrinsic vertex removalintrinsic vertex removalintrinsic vertex removal

• Algorithm: repeatedly remove cheapest vertex

2. Accumulated distortion measurements

intrinsic curvature error

Intrinsic simplification

65

III. Intrinsic simplification
‣ intrinsic curvature error 



Distortion: curvature redistribution

66

We approximate the transport cost of this curvature redistribution

III. Intrinsic simplification
‣ intrinsic curvature error 



Vertex removal

Mass transport cost

67
nonnegative mass 
distribution m : V → ℝ≥0

redistribute mass 

III. Intrinsic simplification
‣ intrinsic curvature error 



Comparing mass distributions

68

Comparing mass distributions

mass distribution 
transported to vertex i

mass distribution 
transported to vertex j 68
mass distribution mass distribution 
transported to vertex transported to vertex j

III. Intrinsic simplificationIII. Intrinsic simplification
‣ intrinsic curvature error 

Goal: approximate cost of transporting 
each distribution to its vertex



Vertex removal

Approximating the 
mass transport cost

69

III. Intrinsic simplification
‣ intrinsic curvature error 

vertex  stores an 
error vector 

i
ti

redistribute mass and error vectors 



Specializing to curvature

• Challenge: curvature is signed

• Just track positive and negative parts 
separately

70

III. Intrinsic simplification
intrinsic curvature error 

Specializing to curvature

70

III. Intrinsic simplification
‣ intrinsic curvature error 



Simplification with the 
curvature transport cost

71

III. Intrinsic simplification
‣ intrinsic curvature error 

input m
esh

 

coarsening 
via curvature 
transport cost 



Other transport costs

• Track transport of other data (e.g. area) in same way

• Can take weighted combinations of costs

72

III. Intrinsic simplification
‣ intrinsic curvature error 

input m
esh

 

coarsening 
via curvature 
transport cost 

coarsening 
via area

transport cost 

coarsening via 
blended cost 



Surface correspondence

• Simplified mesh not isometric to original surface

• Breaks existing data structures

• But, only uses a few local operations

• Correspondence easy for each operation

• Encode correspondence via list of operations

73

edge flip 

vertex scaling 

vertex removal 

III. Intrinsic simplification
‣ correspondence

1. Flip edge 1
2. Scale vertex 5
3. Remove vertex 5
4. Flip edge 8
5. Flip edge 12
6. Scale vertex 2
7. Remove vertex 2



Prolongation

• Transfer piecewise-linear functions:

• Just find values at vertices

• Encode by a matrix

74

III. Intrinsic simplification
correspondence

III. Intrinsic simplification
‣ correspondence

Transfer piecewise-linear functions:

φ̃ ∈ ℝ|Vc|φ ∈ ℝ|V| P ∈ ℝ|V|×|Vc|

i f (i)
fφ(i) := φ̃( f(i))



Pulling back vector fields

• Approximate differential of correspondence map

7575

Approximate differential of correspondence mapfferential of correspondence mapfferential of correspondence map

III. Intrinsic simplification
‣ correspondence

Encode by complex 
prolongation matrix



1. Local simplification operation

intrinsic vertex removal

• Algorithm: repeatedly remove cheapest vertex

• Correspondence: record operation history

2. Accumulated distortion measurements

intrinsic curvature error

Intrinsic simplification—summary

76

III. Intrinsic simplification
‣ summary



Results

III. Intrinsic simplification



Surface hierarchies

78

Surface hierarchiesSurface hierarchies

78|V |=1,009,118|V |=1,009,118

inputinput

|V|=72k|V|=72k |V|=4k|V|=4k |V|=282|V|=282

|V |=288k|V |=288k |V |=18k|V |=18k |V |=1k|V |=1k
III. Intrinsic simplificationIII. Intrinsic simplification

‣ resultsresults



Hierarchies accelerate computation

• Accelerate many geometric tasks

• Even helps with extrinsic 
problems

79

III. Intrinsic simplification
‣ results

Even helps with extrinsic 

mean curvature flow 
20x speedup



Distortion

80

Distortion

area distortion anisotropic distortion
i.e. quasiconformal dilatation

(mean 1.115) 
(mean 8.1%) 

III. Intrinsic simplificationIII. Intrinsic simplification
‣ resultsresults

|V| = 56k

|Vc| = 200

0

max

1

18

0

max

min

0

120%

-120%



Geodesic distance

8181ground truth result on
simplified surface 

III. Intrinsic simplificationIII. Intrinsic simplification
‣ results

1000x smaller
relative error: 0.03% 

(Computed via [Mitchell, Mount & Papadimitriou 1987])
|Vc| = 400|V| = 350k



Geodesic Voronoi diagrams 

82

III. Intrinsic simplification
results

Geodesic Voronoi diagrams 
III. Intrinsic simplification

‣ results

|Vc | = 500

|V| = 63k

ground truth 

result on
simplified surface 

7207.4 ms

3.2 ms
(2252x faster)

only 1% vertices 
misclassified 



Speedup vs error in geodesic distance

83

III. Intrinsic simplification
‣ results

|V| = 20k |Vc| = 10k |Vc| = 100 |Vc| = 10

ground 
truth 

speedup/error: 3x / 0.0002% 840x / 0.2% 4880x / 1.5%



Low rank all-pairs distance 
matrix approximation

84

III. Intrinsic simplification
‣ results

…

…

|V|=6k

|Vc|=300

All pairs distance matrix 
D ∈ ℝ|V|×|V|

Prolongation operator 
P : ℝ|Vc| → ℝ|V|

Approximate distance matrix 
D̂ = PD̃P⊤

Distance matrix of 
simplified mesh :

1650x faster
1.4% relative 
error



Adaptive simplification

85

input anisotropic coarsening
(max principal direction)

anisotropic coarsening
(min principal direction)

opic coarsening
(max principal direction)

opic coarsening
(max principal direction)

opic coarseninginput anisotr
(max principal direction)

ropic coarsening
(max principal direction)

opic coarsening
(max principal direction)

opic coarseninganisot
(max principal direction)

anisotropic coarsening
(min principal direction)(min principal direction)

opic coarsening
(min principal direction)

opic coarseningopic coarsening
(max principal direction)

opic coarsening
(max principal direction)

opic coarsening anisot
(min principal direction)input adaptive coarsening heat kernel

|V |=99,037 |V |=1000

input constrained coarsening Poisson solve

constraintsconstraints

III. Intrinsic simplification
‣ results



Performance

• Linear scaling

• Constant work per vertex

86

III. Intrinsic simplification
‣ results

# input vertices

time (s)

103

10-1

100

101

102

104 105 106

O(n)

Removes ~10,000 
vertices per second



Try it out yourself (… in the near future)

87Coming soon to hps://github.com/HTDerekLiu/intrinsic-simplification

Try it out yourself (… in the near future)

Coming soon to hps://github.com/HTDerekLiu/intrinsic-simplification

III. Intrinsic simplification
‣ results

https://github.com/HTDerekLiu/intrinsic-simplification


IV. Discrete Uniformization

G., Springborn, & Crane. 2021. Discrete conformal equivalence of 
polyhedral surfaces. ACM Transactions on Graphics[ ]



The uniformization theorem

89

Image: [Crane, Pinkall & Schröder 2013] 

IV. Discrete uniformization[Poincare 1907; Koebe 1907; Troyanov 1991]

Any surface is conformally 
equivalent to a surface of 
constant curvature.



The discrete uniformization theorem

90

IV. Discrete uniformization

90

 [Gu, Luo, Sun & Wu 2018; Springborn 2019]

Any positive vertex cone 
angles satisfying Gauss-
Bonnet can be realized by 
some discrete conformal 
map.



The discrete spherical uniformization theorem

91

IV. Discrete uniformization [Springborn 2019]

Any simply-connected triangle 
mesh is discretely conformally 
equivalent to a mesh whose 
vertices lie on the unit sphere



Discrete uniformization in action

92bad meshes di"cult cones spherical maps92bad meshes di"cult cones spherical maps

 [G., Springborn, & Crane. 2021]



Triangle mesh ! ideal polyhedron

9393

IV. Discrete uniformization

Euclidean triangle in circumcircle ! Klein ideal triangle

 [Bobenko, Pinkall & Springborn 2010]



Ideal Delaunay triangulations

94

IV. Discrete uniformization

adjust horospheres hyperbolic edge flip

ideal Delaunay triangulation

Hyperbolic correspondence problem



Correspondence between 
ideal polyhedra

• Adapt Euclidean techniques to hyperbolic seing

• Integer coordinates essential

95

IV. Discrete uniformization

Adapt Euclidean techniques to hyperbolic seing

hyperbolic
integer coordinates hyperbolic 

signposts 
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projective

Projective interpolation

• [Springborn, Schröder & Pinkall 2008]: projective interpolation

• Hyperbolic isometry

• In variable triangulation case, lay out triangles in hyperboloid model

96

geodesic

Poincaré diskideal
point ideal

point

H2 H2

H 2

ideal point

horocycle horocycle

ideal
triangle

ideal
triangle

Klein disk

hyperboloid

geodesic

horocycle

geodesic
idealidealidealidealidealtriangletriangletriangletriangletriangletriangletriangletriangletriangle

IV. Discrete uniformization
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#xed triangulation

Interpolation in the 
hyperboloid model

#xed triangulation

IV. Discrete uniformization
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#xed triangulation variable triangulation

Interpolation in the 
hyperboloid model

#xed triangulation

IV. Discrete uniformization
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Starting from Delaunay
IV. Discrete uniformization

Delaunaynon-Delaunay

=

input (polyhedral)input (polyhedral)input (polyhedral)

==



Final algorithm

100

IV. Discrete uniformization

!ip to (Euclidean) 
Delaunay 

#nd scale 
factors 

lay out in 
plane 

extract 
correspondence 

compute 
common 

subdivision 

interpolate via 
hyperboloid 



Uniformization results

IV. Discrete uniformization



Challenging datasets

102* connected components of models from $ingi10k

Dataset # Models Success rate Average time

MPZ
[Myles+ 2014] 114 100% 8s

Thingi10k
[Zhou+ 2016] 32,744* 97.7% 57s†

brain scans
[Yeo+ 2009] 78 100% 493s

anatomical surfaces
[Boyer+ 2011] 187 100% 15s

† average time on models with > 1000 vertices

bad meshes

difficult conesdifficult cones
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IV. Discrete uniformization
‣ results



Variable triangulation > fixed 
triangulation

103
Fixed triangulation (CETM) Variable triangulation (CEPS)

IV. Discrete uniformization
‣ results



Boundary conditions

104

circular disk

scale control
convex

polygonal

minimal area
distortion orthogonal

IV. Discrete uniformization
‣ results



Try it out yourself

105hps://github.com/MarkGillespie/CEPS

Try it out yourself

105ps://github.com/MarkGillespie/CEPS

C++ application

projective interpolation in Blender 

IV. Discrete uniformization
‣ results



Thanks for listening

• And thank you to all of my great coauthors!
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Supplemental Slides



The importance of memory

108

The importance of memoryThe importance of memory
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The importance of memory

Memoryless transport cost Full transport cost

Vertex removal



Robust hierarchies

109



Tangent space approximations
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! "



Signed curvature transport
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