

Discrete Conformal Equivalence of Polyhedral Surfaces

Mark Gillespie

Boris Springborn

Goal: high-quality surface parameterization

input mesh

output parameterization

Goal: high-quality surface parameterization

input mesh

output parameterization

Why is this hard?

Reliable surface parameterization

via the discrete uniformization theorem

Contributions

- Generalize CETM [Springborn+ 2008]
- 1. Change mesh connectivity use Ptolemy flips
 - Ensures that we find a valid parameterization
- 2. Correspondence \longrightarrow normal coordinates & roundabouts
- 3. Interpolation \longrightarrow calculate in the hyperboloid model

- Spherical case (guaranteed) 4.
 - Discrete conformal map to convex, sphere-inscribed polyhedron

Optimization with Ptolemy flips

What is a discrete conformal map?

- "Conformal maps preserve angles"
 - Really easy to apply to meshes

What is a discrete conformal map?

- "Conformal maps preserve angles"
 - ► Too strict
- Metric scaling
 - Locally, a conformal map just scales
- Discrete analogue: vertex scaling
 - log scale factor $u: V \to \mathbb{R}$

$$\tilde{\ell}_{ij} = e^{(u_i + u_j)/2} \ell_{ij}$$

 Captures rich mathematical theory [Bobenko+ 2011]

Uniformization

- Smooth uniformization [Poincaré 1907; Abikoff 1981]
 - Any surface can be conformally mapped to one of constant curvature
- Discrete uniformization [Gu+ 2018ab; Springborn 2019]
 - Any triangle mesh can be discretely conformally mapped to one of constant curvature (or any valid target curvature)
 - Perfect tool for cone flattening

Discrete uniformization

- Discrete uniformization [Gu+ 2018ab; Springborn 2019]
 - Any triangle mesh can be discretely conformally mapped to one of constant curvature (or any valid target curvature)
- [Luo 04]: follow flow
- [Springborn+ 2008]: minimize energy

Main idea: find discrete conformal maps by minimizing a convex energy

Challenges with discrete uniformization

Discrete uniformization doesn't always work on a fixed mesh because triangles can degenerate

1/2 scale

+u

Challenges with discrete uniformization

- Idea: flip edges when triangles break
 - Problem: energy discontinuous at flips (vertical lines)
- [Gu+ 2018a]: maintain Delaunay
 - Problem: stop to flip

Hyperbolic geometry to the rescue

- Reinterpret mesh as ideal polyhedron [Bobenko+ 2010]
- Compute flipped edge lengths via *Ptolemy's formula*

•
$$\ell_{ij} := (\ell_{lj}\ell_{ki} + \ell_{il}\ell_{jk})/\ell_{lk}$$

- "Ptolemy flip"
- Well-defined for any nonzero edge lengths
- Decouples scaling and flipping [Springborn 2019]

input mesh

ideal hyperbolic polyhedron

A quick primer on hyperbolic geometry

- Hyperbolic plane
 - Saddle-shaped everywhere
 - Gaussian curvature = -1
 - (for reference, sphere has constant curvature +1)
- View through models, like maps of the earth

The Poincaré disk

- Represent hyperbolic plane inside unit disk
 - Conformal model:
 - Angles are preserved
 - Regions are scaled up or down

The Poincaré disk

- Represent hyperbolic plane inside unit disk
 - Conformal model:
 - Angles are preserved
 - Regions are scaled up or down

The Poincaré disk

- Represent hyperbolic plane inside unit disk
 - Conformal model:
 - Angles are preserved
 - Regions are scaled up or down

Ideal hyperbolic polyhedra

• Glue together several ideal triangles

ideal hyperbolic polyhedron

Ideal hyperbolic polyhedra

• Glue together several ideal triangles

ideal hyperbolic polyhedron

Triangle mesh → ideal polyhedron

The Beltrami-Klein model

K

Klein ideal triangle \leftrightarrow Euclidean triangle inside circle

Triangle mesh → ideal polyhedron

Triangle mesh → ideal polyhedron

Discrete conformal maps across triangulations

Discrete conformal maps across triangulations

Gives same result as pausing during scaling process to maintaining Delaunay condition

Optimization with Ptolemy flips

- Finding discrete conformal parameterization \leftrightarrow minimizing energy $\mathcal{E}(u)$

• Hand to any optimization algorithm

• Have expressions for energy and derivatives in terms of edge lengths [Springborn+ 2008]

Energy remains convex and C^2

The procedure so far

Find optimal scale factors

Challenge: connectivity might have changed

Lay out triangles in plane

Correspondence Tracking with normal coordinates and roundabouts

Intrinsic triangulations

• Intrinsic edge flips

Intrinsic triangulations

- Intrinsic edge flips
- Basic data: edge lengths
- Mesh is a general Δ -complex
 - Allows self edges, multi edges

Correspondence data structures

- How does triangulation sit over input?
 - Existing schemes don't suffice in this hyperbolic setting

[Sharp+ 2019]

floating point

new data structure

Normal coordinates & roundabouts

- Integer encoding of correspondence
- Fully determines geometry of intersections
- Easy to update

* not the same thing as "geodesic normal coordinates" from Riemannian geometry

Normal coordinates

- Tool from geometric topology [Kneser 1929; Haken 1961]
- Encode curve sitting along a triangulation
 - Just count crossings
 - Determines curves up to homotopy
- We diverge from standard usage
 - Geodesic *triangulations* on triangle meshes
 - Determines curve geometry
 - New edge flip formula

Recovering curves from normal coordinates

• Trace curve along mesh

Recovering curves from normal coordinates

- Trace curve along mesh
 - Step one triangle at a time

- Trace curve along mesh
 - Step one triangle at a time

- Trace curve along mesh
 - Step one triangle at a time

- Trace curve along mesh
 - Step one triangle at a time

- Trace curve along mesh
 - Step one triangle at a time
 - Guaranteed to be correct triangle strip (depends only on integer data)
- Lay out in Euclidean or hyperbolic plane

Roundabouts

- Problem: can't always tell which edge the traced curve corresponds to
 - Attempt 1: Inspect curve endpoints
 - New idea: roundabouts encode which edge each traced curve corresponds to

roundabout at vertex *i*

Final algorithm

- 1. Find scale factors
- Maintain edge lengths, normal coordinates, roundabouts

2. Planar layout

3. Trace edges to get explicit correspondence

4. Interpolate texture coordinates

Texture Interpolation in the light cone

Projective interpolation

- [Springborn+ 2008]: projective interpolation
- Problem: what should you do in variable triangulation case?
 - Solution: lay out in hyperboloid

hyperboloid

light cone

kideal point

hyperboloid

light cone

k

hyperboloid

• Normalize points

- Normalize points
- Ideal triangle \leftrightarrow inscribed Euclidean triangle

- Normalize points
- Ideal triangle \leftrightarrow inscribed Euclidean triangle

- Normalize points
- Ideal triangle \leftrightarrow inscribed Euclidean triangle

- Normalize points
- Ideal triangle \longleftrightarrow inscribed Euclidean triangle
- Vertex scaling \leftrightarrow scaling vertices along light cone

fixed triangulation

fixed triangulation

• X

fixed triangulation

 $\tilde{\chi}$

fixed triangulation

 $\lambda_{\tilde{\chi}}$

variable triangulation

fixed triangulation

 $Z\tilde{\chi}$

variable triangulation

 \mathcal{X}

 $\tilde{\chi}$

Projective interpolation improves quality

Discrete spherical uniformization

Discrete spherical uniformization

- So far: cone flattenings
- Now: map genus-0 surfaces to sphere

Discrete spherical uniformization

• Idea [Springborn 2019]:

remove a vertex

flatten to a disk

project onto the sphere

put vertex back in

Mapping to a polygon

- Mapping to polygon requires a similar optimization problem
- Problem: what if you need to flip a boundary edge?
- Hyperbolic perspective saves us again
 - Previous vertex scaling methods couldn't guarantee success
 - Fun fact: compute (hyperbolic) geodesic distance via Delaunay flipping [Springborn 2019]

Results

Challenging datasets

* connected components of models from Thingi10k

taset	# Models	Success rate	Averag time
IPZ s+ 2014]	114	100%	8s
lgi10k I+ 2016]	32,744*	97.7%	57s†
1 scans + 2009]	78	100%	493s
eal surfaces r+ 2011]	187	100%	15s

[†] average time on models with > 1000 vertices

Ptolemy flips improve performance

Variable triangulation > fixed triangulation

Fixed triangulation (CETM)

Even when fixed triangulation succeeds, variable triangulation is better

Boundary conditions

- Prescribe boundary curvature or scale factor
- Key idea: eliminate boundary by doubling surface

scale control

minimal area distortion

orthogonal

Multiply-connected domains

No hole filling

Hole filling

Limitations and future work

- Output is refined mesh
 - Could you unflip all flipped edges?
- If all you care about is injectivity, correspondence is simpler
- Going beyond 2D
 - 2D uniformization theorem \rightarrow 3D geometrization theorem
 - 2D Delaunay triangulations \rightarrow 3D Delaunay tetrahedralizations

Work in Progress: Discrete Area Equivalence

- Conformal deformations are a subspace of all deformations
 - What is the complementary subspace?
- E.g. consider linear maps in the plane

$$\begin{pmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ s & s & 0 & 0 \\ conformal & cos & 0 \end{pmatrix} \begin{pmatrix} c & d \\ d & -c \end{pmatrix}$$

conformal & orthogonal to conformal \leftrightarrow symmetric, trace
 \leftrightarrow derivative of \cdot

area-preserving map

Work in Progress: Discrete Area Equivalence

d

j=1

- What is the complement of discrete conformal maps?
 - vertices

edge length around a vertex

 $\ell \rightsquigarrow \tilde{\ell}$

$$I'_{ij} = \left(\prod_{j=1}^{d} \tilde{\ell}_{ij} \right)^{1/c}$$

Work in Progress: Discrete Area Equivalence

- Doesn't seem to work out so well in practice
 - Discretizes infinitesimal area-preserving maps
 - Sees a lot of "distortion" in finite area-preserving maps
- Also some open theoretical questions:
 - What do you do if the triangulation changes?

Thanks!

Code is available at <u>github.com/MarkGillespie/CEPS</u>

This work was supported by a Packard Fellowship, NSF Award 1717320, DFG TRR 109, an NSF Graduate Research Fellowship, and gifts from Autodesk, Adobe, and Facebook.

