Discrete Conformal Equivalence of Polyhedral Surfaces

Goal: high-quality surface parameterization

Goal: high-quality surface parameterization

Why is this hard?

Reliable surface parameterization

via the discrete uniformization theorem

Contributions

- Generalize CETM [Springborn+ 2008]

1. Change mesh connectivity \longrightarrow use Ptolemy flips

- Ensures that we find a valid parameterization

2. Correspondence \longrightarrow normal coordinates \& roundabouts
3. Interpolation
\longrightarrow calculate in the hyperboloid model

4. Spherical case (guaranteed)

- Discrete conformal map to convex, sphere-inscribed polyhedron

Optimization with Ptolemy flips

What is a discrete conformal map?

- "Conformal maps preserve angles"
- Really easy to apply to meshes

What is a discrete conformal map?

- "Conformal maps preserve angles"
- Too strict
- Metric scaling

- Locally, a conformal map just scales
- Discrete analogue: vertex scaling
- \log scale factor $u: V \rightarrow \mathbb{R}$
- $\tilde{\ell}_{i j}=e^{\left(u_{i}+u_{j}\right) / 2} \ell_{i j}$
- Captures rich mathematical theory [Bobenko+ 2011]

Uniformization

- Smooth uniformization [Poincaré 1907; Abikoff 1981]
- Any surface can be conformally mapped to one of constant curvature
- Discrete uniformization [Gu+ 2018ab; Springborn 2019]
- Any triangle mesh can be discretely conformally mapped to one of constant curvature (or any valid target curvature)
- Perfect tool for cone flattening

Discrete uniformization

- Discrete uniformization [Gu+ 2018ab; Springborn 2019]
- Any triangle mesh can be discretely conformally mapped to one of constant curvature (or any valid target curvature)
- [Luo 04]: follow flow
- [Springborn+ 2008]: minimize energy

Main idea: find discrete conformal maps by minimizing a convex energy

Challenges with discrete uniformization

Discrete uniformization doesn't always work on a fixed mesh because triangles can degenerate

Challenges with discrete uniformization

- Idea: flip edges when triangles break
- Problem: energy discontinuous at flips (vertical lines)
- [Gu+2018a]: maintain Delaunay
- Problem: stop to flip

Hyperbolic geometry to the rescue

- Reinterpret mesh as ideal polyhedron [Bobenko+ 2010]
- Compute flipped edge lengths via Ptolemy's formula
- $\ell_{i j}:=\left(\ell_{l j} \ell_{k i}+\ell_{i l} \ell_{j k}\right) / \ell_{l k}$
- "Ptolemy flip"
input mesh
- Well-defined for any nonzero edge lengths
- Decouples scaling and flipping [Springborn 2019]

A quick primer on hyperbolic geometry

- Hyperbolic plane
- Saddle-shaped everywhere
- Gaussian curvature $=-1$
- (for reference, sphere has constant curvature +1)
- View through models, like maps of the earth

The Poincaré disk

- Represent hyperbolic plane inside unit disk
- Conformal model:
- Angles are preserved
- Regions are scaled up or down

The Poincaré disk

- Represent hyperbolic plane inside unit disk
- Conformal model:
- Angles are preserved
- Regions are scaled up or down

The Poincaré disk

- Represent hyperbolic plane inside unit disk
- Conformal model:
- Angles are preserved
- Regions are scaled up or down

Ideal hyperbolic polyhedra

- Glue together several ideal triangles

Ideal hyperbolic polyhedra

- Glue together several ideal triangles

ideal hyperbolic polyhedron

Triangle mesh \leftrightarrow ideal polyhedron

The Beltrami-Klein model

Klein ideal triangle \hookleftarrow Euclidean triangle inside circle

Triangle mesh \hookleftarrow ideal polyhedron

Triangle mesh \leftrightarrow ideal polyhedron

Discrete conformal maps across triangulations

Discrete conformal maps across triangulations

Gives same result as pausing during scaling process to maintaining Delaunay condition

Optimization with Ptolemy flips

- Finding discrete conformal parameterization \hookleftarrow minimizing energy $\mathcal{E}(u)$
- Have expressions for energy and derivatives in terms of edge lengths [Springborn+ 2008]

- Hand to any optimization algorithm

Energy remains convex and C^{2}

The procedure so far

Find optimal scale factors
Lay out triangles in plane

Challenge: connectivity might have changed

Correspondence Tracking with normal coordinates and roundabouts

Intrinsic triangulations

- Intrinsic edge flips

Intrinsic triangulations

- Intrinsic edge flips
- Basic data: edge lengths
- Mesh is a general Δ-complex
- Allows self edges, multi edges

Correspondence data structures

- How does triangulation sit over input?
- Existing schemes don't suffice in this hyperbolic setting

x
prohibitively complex
[Sharp+ 2019]

floating point
error
new data structure

Normal coordinates \& roundabouts

- Integer encoding of correspondence
- Fully determines geometry of intersections
- Easy to update

* not the same thing as "geodesic normal coordinates" from Riemannian geometry

Normal coordinates

- Tool from geometric topology [Kneser 1929; Haken 1961]
- Encode curve sitting along a triangulation
- Just count crossings
- Determines curves up to homotopy
- We diverge from standard usage
- Geodesic triangulations on triangle meshes
- Determines curve geometry
- New edge flip formula

Recovering curves from normal coordinates

- Trace curve along mesh

Recovering curves from normal coordinates

- Trace curve along mesh
- Step one triangle at a time

Recovering curves from normal coordinates

- Trace curve along mesh
- Step one triangle at a time

Recovering curves from normal coordinates

- Trace curve along mesh
- Step one triangle at a time

Recovering curves from normal coordinates

- Trace curve along mesh
- Step one triangle at a time

Recovering curves from normal coordinates

- Trace curve along mesh
- Step one triangle at a time
- Guaranteed to be correct triangle strip (depends only on integer data)
- Lay out in Euclidean or hyperbolic plane

Roundabouts

- Problem: can't always tell which edge the traced curve corresponds to
- Attempt 1: Inspect curve endpoints
- New idea: roundabouts - encode which edge each traced curve corresponds to

roundabout at vertex i

Final algorithm

1. Find scale factors

- Maintain edge lengths, normal coordinates, roundabouts

2. Planar layout
3. Trace edges to get explicit correspondence
4. Interpolate texture coordinates

Texture Interpolation

in the light cone

Projective interpolation

- [Springborn+ 2008]: projective interpolation
- Problem: what should you do in variable triangulation case?
- Solution: lay out in hyperboloid

The hyperboloid and the light cone

hyperboloid

The hyperboloid and the light cone

hyperboloid

The hyperboloid and the light cone

The hyperboloid and the light cone

- Normalize points

The hyperboloid and the light cone

- Normalize points
- Ideal triangle \hookleftarrow inscribed Euclidean triangle

The hyperboloid and the light cone

- Normalize points
- Ideal triangle \hookleftarrow inscribed Euclidean triangle

The hyperboloid and the light cone

- Normalize points
- Ideal triangle \leftrightarrows inscribed Euclidean triangle

The hyperboloid and the light cone

- Normalize points
- Ideal triangle \hookleftarrow inscribed Euclidean triangle
- Vertex scaling \hookleftarrow scaling vertices along light cone

Projective maps

fixed triangulation

Projective maps

fixed triangulation

Projective maps

Projective maps

Projective maps

Projective interpolation improves quality

Discrete spherical uniformization

Discrete spherical uniformization

- So far: cone flattenings
- Now: map genus-0 surfaces to sphere
- Explicitly, convex polyhedron w/ vertices on unit sphere

Discrete spherical uniformization

- Idea [Springborn 2019]:

Mapping to a polygon

- Mapping to polygon requires a similar optimization problem
- Problem: what if you need to flip a boundary edge?
- Hyperbolic perspective saves us again

- Previous vertex scaling methods couldn't guarantee success
- Fun fact: compute (hyperbolic) geodesic distance via Delaunay flipping [Springborn 2019]

Results

Challenging datasets

Ptolemy flips improve performance

MPZ

Variable triangulation > fixed triangulation

Fixed triangulation (CETM)

Even when fixed triangulation succeeds, variable triangulation is better

Boundary conditions

- Prescribe boundary curvature or scale factor
- Key idea: eliminate boundary by doubling surface

scale control

orthogonal

Multiply-connected domains

Limitations and future work

- Output is refined mesh
- Could you unflip all flipped edges?
- If all you care about is injectivity, correspondence is simpler
- Going beyond 2D

- 2D uniformization theorem \rightarrow 3D geometrization theorem
- 2D Delaunay triangulations \rightarrow 3D Delaunay tetrahedralizations

Work in Progress: Discrete Area Equivalence

- Conformal deformations are a subspace of all deformations
- What is the complementary subspace?
- E.g. consider linear maps in the plane

$$
\left.\left(\begin{array}{cc}
s & \phi \\
0 & s
\end{array}\right)\left(\begin{array}{cc}
\mathrm{e} d s
\end{array}\right) \theta-\sin \theta\right) \quad\left(\begin{array}{cc}
c & d \\
\sin \theta & \cos \theta
\end{array}\right)
$$

conformal
orthogonal to conformal

\hookleftarrow symmetric, trace-free
\hookleftarrow derivative of an area-preserving map

Work in Progress: Discrete Area Equivalence

- What is the complement of discrete conformal maps?
- Discrete conformal maps scale edges equally around vertices

- Complementary maps should preserve the average
 edge length around a vertex

$$
\left(\prod_{j=1}^{d} e_{i j}\right)^{1 / d}=\left(\prod_{j=1}^{d} \tilde{\ell}_{i j}\right)^{1 / d}
$$

Work in Progress: Discrete Area Equivalence
 $\Pi \theta_{i j}=\prod_{\hat{\theta}_{i j}}$ j j

- Doesn't seem to work out so well in practice
- Discretizes infinitesimal area-preserving maps
- Sees a lot of "distortion" in finite area-preserving maps
- Also some open theoretical questions:
- What do you do if the triangulation changes?

Thanks!

Code is available at github.com/MarkGillespie/CEPS

Carnegie Mellong University 屋

GEEMMERYY CoLLective

