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Why is this hard?



via the discrete uniformization theorem
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Reliable surface parameterization

bad meshes difficult cones spherical maps



• Generalize CETM [Springborn+ 2008] 

1. Change mesh connectivity 

‣ Ensures that we find a valid parameterization 

2. Correspondence 

3. Interpolation

6

Contributions

calculate in the hyperboloid model

use Ptolemy flips

normal coordinates & roundabouts
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4. Spherical case (guaranteed) 

‣ Discrete conformal map to convex, sphere-inscribed polyhedron
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Optimization
with Ptolemy flips



• “Conformal maps preserve angles” 

‣ Really easy to apply to meshes
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What is a discrete conformal map?

triangle mesh



• “Conformal maps preserve angles” 

‣ Too strict 

• Metric scaling 

‣ Locally, a conformal map just scales 

• Discrete analogue: vertex scaling 

‣ log scale factor  

‣

u : V → ℝ

ℓ̃ij = e(ui+uj)/2ℓij
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What is a discrete conformal map?

scale

‣ Captures rich 
mathematical theory 
[Bobenko+ 2011]



• Smooth uniformization [Poincaré 1907; Abikoff 1981] 

‣ Any surface can be conformally mapped to one of 
constant curvature 

• Discrete uniformization [Gu+ 2018ab; Springborn 2019] 

‣ Any triangle mesh can be discretely conformally mapped 
to one of constant curvature (or any valid target 
curvature) 

‣ Perfect tool for cone flaening
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Uniformization
[C

rane+ 2013]
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Discrete uniformization
• Discrete uniformization [Gu+ 2018ab; Springborn 2019] 

‣ Any triangle mesh can be discretely conformally mapped 
to one of constant curvature (or any valid target curvature) 

• [Luo 04]: follow flow 

• [Springborn+ 2008]: minimize energy

Main idea: find discrete conformal maps by minimizing a convex energy
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Challenges with discrete uniformization

scale
not a valid triangle

flip scale1/2 scale

flip
1/2 scale

Discrete uniformization 
doesn’t always work on 

a fixed mesh because 
triangles can degenerate

+u+u
−u



• Idea: flip edges when triangles 
break 

‣ Problem: energy discontinuous 
at flips (vertical lines) 

• [Gu+ 2018a]: maintain Delaunay 

‣ Problem: stop to flip

Challenges with discrete uniformization

flip when triangles degenerateflip when triangles degenerate
flip to Delaunay triangulation



• Reinterpret mesh as ideal polyhedron [Bobenko+ 2010] 

• Compute flipped edge lengths via Ptolemy’s formula 

‣  

‣ “Ptolemy flip” 

‣ Well-defined for any nonzero edge lengths 

• Decouples scaling and flipping

ℓij := (ℓljℓki + ℓilℓjk)/ℓlk
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Hyperbolic geometry to the rescue

Scale ScalePtolemy
 Flip

Start EndScalePtolemy
 FlipStart End

Scale Ptolemy
 Flip

Start End

input mesh

ideal hyperbolic 
polyhedron

[Springborn 2019]
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point ideal

point
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ideal point

horocycle horocycle

ideal
triangle

ideal
triangle

Klein disk

hyperboloid

geodesic

horocycle

geodesic
idealtriangle

• Hyperbolic plane 

‣ Saddle-shaped everywhere 

‣ Gaussian curvature  

• (for reference, sphere has constant curvature +1) 

• View through models, like maps of the earth

= − 1
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A quick primer on hyperbolic geometry
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• Represent hyperbolic plane inside unit disk 

‣ Conformal model: 

• Angles are preserved 

• Regions are scaled up or down

16

The Poincaré disk
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The Poincaré disk

ideal point

• Represent hyperbolic plane inside unit disk 

‣ Conformal model: 

• Angles are preserved 

• Regions are scaled up or down
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The Poincaré disk

ideal triangle

• Represent hyperbolic plane inside unit disk 

‣ Conformal model: 

• Angles are preserved 

• Regions are scaled up or down ∞



• Glue together several ideal triangles
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Ideal hyperbolic polyhedra

ideal hyperbolic polyhedron

∞

∞



• Glue together several ideal triangles
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Ideal hyperbolic polyhedra

horosphere

ideal hyperbolic polyhedron

ℓ < ∞
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Triangle mesh ⟷ ideal polyhedron



Klein ideal triangle ⟷ Euclidean triangle inside circle
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The Beltrami-Klein model
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Triangle mesh ⟷ ideal polyhedron

ideal triangle
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Triangle mesh ⟷ ideal polyhedron
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Discrete conformal maps across triangulations
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input polyhedon

vertex scaling

invalid Euclidean metric

(lengths violate triangle inequality)
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Discrete conformal maps across triangulations

input polyhedon

vertex scaling

invalid Euclidean metric

(lengths violate triangle inequality)

hyperbolic edge flip

ideal Delaunay triangulation

intrinsic Delaunay triangulation

Ptolemy flips

Gives same result as pausing during scaling process to maintaining Delaunay condition



• Finding discrete conformal parameterization ⟷ minimizing energy  

• Have expressions for energy and derivatives in terms of edge lengths [Springborn+ 2008] 

• Hand to any optimization algorithm
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Optimization with Ptolemy flips

uscale by Ptolemy flips
evaluate
formula

Evaluating energy for scale factor u

Energy remains convex and C2
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The procedure so far

Find optimal scale factors Lay out triangles in plane

Challenge: connectivity might have changed



Correspondence Tracking
with normal coordinates and roundabouts



• Intrinsic edge flips
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Intrinsic triangulations



• Intrinsic edge flips 

• Basic data: edge lengths 

• Mesh is a general Δ-complex 

‣ Allows self edges, multi edges
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Intrinsic triangulations

i

j

k

ℓij

ℓjkℓki



• How does triangulation sit over input? 

‣ Existing schemes don’t suffice in this hyperbolic seing
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Correspondence data structures

new data structure[Fisher+ 2007]

prohibitively 
complex

[Sharp+ 2019]

floating point 
error



• Integer encoding of correspondence 

• Fully determines geometry of intersections 

• Easy to update
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Normal coordinates & roundabouts
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normal coordinates*

roundabouts

* not the same thing as “geodesic normal coordinates” from Riemannian geometry



• Tool from geometric topology  

• Encode curve siing along a triangulation 

‣ Just count crossings 

‣ Determines curves up to homotopy 

• We diverge from standard usage  

‣ Geodesic triangulations on triangle meshes 

‣ Determines curve geometry 

‣ New edge flip formula
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Normal coordinates
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• Trace curve along mesh
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Recovering curves from normal coordinates

3

2 3
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‣ Step one triangle at a time
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Recovering curves from normal coordinates
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Recovering curves from normal coordinates
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• Trace curve along mesh 

‣ Step one triangle at a time
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Recovering curves from normal coordinates
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Recovering curves from normal coordinates

3

2 3

• Trace curve along mesh 

‣ Step one triangle at a time 

‣ Guaranteed to be correct triangle strip (depends only on 
integer data)  

• Lay out in Euclidean or hyperbolic plane



• Problem: can’t always tell which edge the traced curve corresponds to 

‣ Aempt 1: Inspect curve endpoints 

‣ New idea: roundabouts - encode which edge each traced curve corresponds to
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Roundabouts
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4. Interpolate texture 
coordinates 

4. Interpolate texture 
coordinates 
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Final algorithm

1. Find scale factors 

‣ Maintain edge lengths, 
normal coordinates, 
roundabouts

3. Trace edges to 
get explicit 
correspondence 

2. Planar layout



Texture Interpolation
in the light cone 



linear
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projective

• [Springborn+ 2008]: projective interpolation 

• Problem: what should you do in variable triangulation case? 

‣ Solution: lay out in hyperboloid
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Projective interpolation
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The hyperboloid and the light cone

light co
ne
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The hyperboloid and the light cone

ideal point
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The hyperboloid and the light cone

ideal triangle
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The hyperboloid and the light cone

• Normalize points
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The hyperboloid and the light cone

• Normalize points 

• Ideal triangle ⟷ inscribed Euclidean triangle
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The hyperboloid and the light cone

• Normalize points 

• Ideal triangle ⟷ inscribed Euclidean triangle 

• Vertex scaling ⟷ scaling vertices along light cone
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Projective maps

fixed triangulation
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Projective maps

fixed triangulation
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Projective maps

fixed triangulation
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Projective maps

fixed triangulation variable triangulation
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Projective maps

fixed triangulation variable triangulation
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Projective interpolation improves quality
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Discrete spherical uniformization



• So far: cone flaenings 

• Now: map genus-0 surfaces to sphere 

‣ Explicitly, convex polyhedron w/ vertices on unit sphere

60

Discrete spherical uniformization



• Idea [Springborn 2019]:
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Discrete spherical uniformization

remove a vertex flaen to a disk project onto 
the sphere

put vertex 
back in

flaen to a disk



• Mapping to polygon requires a similar optimization 
problem 

• Problem: what if you need to flip a boundary edge? 

• Hyperbolic perspective saves us again 

• Previous vertex scaling methods couldn’t 
guarantee success 

‣ Fun fact: compute (hyperbolic) geodesic distance 
via Delaunay flipping [Springborn 2019]
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Mapping to a polygon



Results
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Challenging datasets

* connected components of models from ingi10k

Dataset # Models Success 
rate

Average 
time

MPZ 
[Myles+ 2014] 114 100% 8s

ingi10k 
[Zhou+ 2016] 32,744* 97.7% 57s†

brain scans 
[Yeo+ 2009] 78 100% 493s

anatomical surfaces 
[Boyer+ 2011] 187 100% 15s

† average time on models with > 1000 vertices

bad meshes

difficult cones
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Ptolemy flips improve performance
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Even when fixed triangulation succeeds, variable triangulation is beer
66

Variable triangulation > fixed triangulation

Fixed triangulation (CETM) Variable triangulation (CEPS)



• Prescribe boundary curvature or scale factor 

• Key idea: eliminate boundary by doubling surface

Boundary conditions

circular disk

scale control
convex

polygonal

minimal area 
distortion orthogonal
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Multiply-connected domains
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Hole fillingNo hole filling



• Output is refined mesh 

‣ Could you unflip all flipped edges? 

• If all you care about is injectivity, 
correspondence is simpler
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Limitations and future work

input mesh output mesh
• Going beyond 2D 

‣ 2D uniformization theorem → 3D geometrization theorem 

‣ 2D Delaunay triangulations → 3D Delaunay tetrahedralizations



(s 0
0 s) (cos θ −sin θ

sin θ cos θ )

• Conformal deformations are a subspace of all 
deformations 

‣ What is the complementary subspace? 

• E.g. consider linear maps in the plane
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Work in Progress: Discrete Area Equivalence

all d
eformations

conformal

area-preserving

(a −b
b a )

conformal

(c d
d −c)

orthogonal to conformal
⟷ symmetric, trace-free

⟷ derivative of an 
area-preserving map



• What is the complement of discrete conformal maps? 

‣ Discrete conformal maps scale edges equally around 
vertices

71

Work in Progress: Discrete Area Equivalence

all d
eformations

conformal

area-preserving

d

∏
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ℓij

1/d

=
d

∏
j=1

ℓ̃ij

1/d

ℓ ⇝ ℓ̃

‣ Complementary maps should preserve the average 
edge length around a vertex

scale



• Doesn’t seem to work out so well in practice 

‣ Discretizes infinitesimal area-preserving maps 

‣ Sees a lot of “distortion” in finite area-preserving 
maps 

• Also some open theoretical questions: 

‣ What do you do if the triangulation changes?
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Work in Progress: Discrete Area Equivalence

all d
eformations

conformal

area-preserving

∏
j

ℓij = ∏
j

ℓ̃ij
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Thanks!
Code is available at github.com/MarkGillespie/CEPS
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