Hamiltonian Mechanics

Simple Case

We call the total energy of a system H(z,p) + ﬁ p? + V(z) the Hamiltonian. For example, a harmonic oscillator

has Hamiltonian H (z,p) = ﬁpz + %kw? The dynamics of this system are described by Hamilton's equations

of motion
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In the case of the harmonic oscillator, this gives us the familiar result

A b _
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F = P = —kz (Hooke’s Law)

Preliminary Definitions

Given a configuration space (), we define phase space to be the cotangent bundle 7*(). The Hamiltonian is a
function H : T*Q — R. We can define a canonical one-form © on T*() by

(©(p,9), up,) = ((p,9), dmr-quy,)
In coordinates, ©(q, p) = pidq’. Using ©, we can define a canonical two-form
Q=-do
In coordinates,
Q =dg' A dp

) gives T*() the structure of a symplectic manifold (i.e. ) is closed and nondegenerate). If F' : T*Q — T*Q
preseves (), then F'is symplectic. If F preserves 0, then F'is special symplectic. Since 2 is nondegenerate, it
gives us a canonical isomorphism between the space of vector fields and the space of 1-forms. By analogy with
the Riemannian case, we will define musical isomorphisms by

Q>af, X) = a(X) X(Y)=Q(X,Y)
Then given a Hamiltonian H we can define a unique Hamiltonian vector field Xz by
Xg=(dH)}! <— 1x,0=dH

This vector field describes time evolution according to the Hamiltonian. In coordinates, this equation gives us
Hamilton's equations of motion. If Xz = (X, X,), then

LXHQ =dH
. OH . . OH
—Xpdq' + Xgdps = —dq' + —dp;
0q* op



Equating the components yields

O0H

X,i = ,
¢(¢,p) o, (¢,p)
OH
Xp(q,p) = — 50 (¢,p)
q
The Hamiltonian flow is symplectic:
4l (Fya=ry0
dt o !
= dLXHQ + LXHdQ
=d’H — 1x,d*©
=0

Hamiltonian Momentum Maps

Suppose we have a left action of a Liegroup Gon @, ® : G X Q — Q. This induces an action of G on T*() given

by <I>§*Q(q,p) = @;71 (¢,p). In coordinates, this is

7% (q, (q,p)) = ((‘Pg?l)i(q),pja—qi@>

This action gives us an infinitesimal generator

d

ér-g(q,p) = —

= < "% (exp(té), (¢, p))

t=0

We say that ® is a symmetry of the Hamiltonian H if H o & = H. In this case, it is also an infinitesimal
symmetry. ie. (dH,{r+q) = 0.

Actions of @ lifted to T () are always special symplectic maps, so (@Z*Q)*G = O for all g € G. This implies the
infinitesimal statement that L, o © = 0. Furthermore, 779 is always equivatiant.
Suppose our infinitesimal generator is a Hamiltonian vector field, i.e.

f
€T*Q = (dUﬁT*Q) (LﬁT*QQ - dUﬁT*Q)
for some Uy,., € C*(T*Q). We note that this Uy, is conserved.

£XHU£T*Q = 1xyAUg.,
LXplbepeg Q
—lepp Xy Q
= g dH
= —EgT*QH
=0
What's going on here, and how can we generalize it to more group actions? What we have is a conserved quantity

for each element £ € g. We could unify this by saying that instead of one conserved scalar for each £, we have a
conserved map g — RR. So our conserved quantity is really an element of g*. Define ¢ : T*Q — g* by

(9(q;p), &) = Ug,.p(a:P)



This is our Hamiltonian momentum map. It is itself a conserved category. If ® is a symmetry transformation, and
X g is the Hamilton flow of hamiltonian H.

‘CXH <¢a £> - EXHUfT*Q
=0

Now, how do we generalize this? In the proof of conservation, we didn't actually need {7+¢ to be a Hamilton flow,
since we took the d of the Hamiltonian anyway. All we needed is that dU,.,, (&) = LgT*QQ. So we can generalize
the idea of a momentum map by saying a momentum map is a map ¢ : 7*() — g* that satisfies

d((6,8)) = tg., 2

These more general momentum maps are still conserved by Hamilton flow. We can define a Hamiltonian
momentum map Jyg : T*Q — g* by

(Ju(g,p),€) = (©(q,p), ér+q(q,P)) = L., ©
We can verify that this is indeed a momentum map
d(Ju(q,p), &) = dig,.,©
= EﬁT*Q@ —
= —lg.,dO©
= Lgpuo )

do

Lereg

Examples

R? acting on R? by translation
Consider the additive action of R® on R®. We let G = R?, Q= R?, T*Q = R® @ R®. Our action is

®:(g9,9) > q+g
379 : (g,(g,v)) = (g + g,v)

We can dualize to find the cotangent lift.

<‘I’§*Q(q,p),(Q+g,v)> <(q,p) iﬂ?(q+9w)>
= ((g,p), (g, v))
= (p,v)
=((¢+9g,p), (g +9),v)
S0 ®7°?(g,(q,p)) = (¢+ g, p)-

§T*Q = (§> 0)
Uty (0:0) = (9, €)
(¢(¢,p), &) = Ugpp(a,p) = (P, €)

SO(3) acting on R® by rotation
First, we explore 50(3). SO(3) is the space of 3 x 3 orthogonal matrices with determinant 1. The Lie algebra

50(3) is the space of matrices ¢ such that exp(£) € SO(3). The orthogonal condition on SO(3) means that {
must be skew-symmetric. The determinant constraint means that £ must have trace 0. So



This is just the cross product matrix. So for each &, we have a vector w¢ such that £ (v) = wg X v. Consider the
action of SO(3) on R?.

®:(A,q) — Aq
379 (4,(g,v)) — (Ag, Av)

Again, we dualize the tangent lift to find the cotangent lift
T*
<‘1’A (g,p), (Ag,v > ° (Aq, )>
A lw) >

Ap,v)
(Aq, Ap), (Ag,v))

Therefore, 7 ?(A, (¢,p)) = (Ag, Ap). Differentiating tells us that

<
<pA v>
= (
(

£r-q(q,p) = (£q,€p) = (we X q,we X p)

To find gz~5 we need to solve Hamilton's equations

O,

w§ X q= —3p
o,

w§ X p= _—3q

This is solved by Ug = (g X p) - we. So our momentum map is
P(q,p)(we) = (¢ X p) - we

(The dual of standard angular momentum).

Equivariance

One importatant property of montum maps is G -equivariance. A momentum map is G-equivariant if
T°Q ,. . . .
Ad;q oJg =Jugo®, @ (i.e. it commutes with the G-action on 7*() and g*).

Since (@Z*Q)’l = @Z_lQ , the Lagrangian momenum map is G-equivariant iff

JH—Ad _1OJHO(¢T1Q)
(T11(g,0),6) = (U o (2] 7)) (g,v), Ady +€)

Before we show this, we need a lemma: (Ady€)y = q)’gﬂlf M-



(Ady (o) = | Blexp(tadg).2)

d

=% t:O‘I’(g(eXP td)g ', z)

d
= —| (®g0PexpicoPyi(z)) fact about exponential map

dt |,
= d@gflfI)g(ﬁM(q’gfl(if)))

Computing the right hand side of our desired identity yields

(T (2]9)(a,v), Ady1 £) = (0n(2]%(q,v)), (Ady+ )ra(¥] (4, )))
o (@Tf?(q,v))( 29 ero(® f?(q, v)))
19(g,0)), €r0(0,0)) )
)'0)(a,v), €rq(a,v)))

v),&érq(g,v))) @Z:Q is special sypmlectic

()>

Lagrangian Mechanics

Preliminary definitions

We will work with a configuration manifold () with associated state space T'(Q and a Lagrangian L : T() — R. We
let 7o : TQ — @ be the canonical projection onto (). We define the path space to be

C(Q):={q:[0,T] — Q : gisa C? curve}

and we define the actionmap S : C(Q) — Rby

C(Q) is a smooth manifold, and the tangent space 7,C(Q) is the set of C* maps v, : [0,7] — T'Q such that
mQ © vy = q. We can describe the second derivatives of curves on () by the second-oder submanifold of T(TQ) to

be
Q= fwe T(TQ) : drg(w) = mro(w)} C T(IQ)

To understand this definition, we will compute dmg. Since 7 : TQ — Q,dmg : T(T'Q) — T'Q. Let
X =((g,9), (r,7)) € T(TQ), f € C*°(Q). Then

dmo(X)(f) = X(fomg)
= (q,7)

If dwo(q) = mro(w), then (g,7) = (g,4), sor = . Thus, Q) is the set of elements of the form
((¢,4),(4,4)) € T(TQ)



The Lagrangian One-Form

Given a Lagrangian L, there exists a unique map Dg L : Q — T*(Q (the Euler-Lagrange map) and a unique one-
form O, (the Lagrangian one-form) on T'Q) such that for all variations dq € T,C(Q) of g(t), we have

T

(@5(a),60) = [ Dex (Elavd.i).b0) i+ (O1.5q)

datt) = ( (a0 50 ) (0. k) ) )

We can compute these maps by computing the variation of the action map.

0

where

.
oL .. OL d _ .
dS(g), dq =/ -5q" + — —0dq" | dt
asta).s0 = | |Gate + o
T[or d oL '
=/ - — — —— | &¢" dt + | —d¢°
0 _&12 dt g4’ q 0
This gives us expressions for Dg; L and Oy, in coordinates.
OL d 0L
(DerL); = - —
8qz dt aqz
oL . .
@L = - dqz
0q"

Lagrangian Vector Fields and Flows

A Lagrangian Vector Field is a vector field X, : TQ — T(T'Q) on T'Q such that
DgrLo X, =0

and the Lagrangian flow Fr, : TQ x R — TQ is the flow of X ;. We will denote the flow at time ¢ by F'}. A curve
q € C(Q) is said to be a solution of the Euler-Lagrange equations if

/0 (DerL(g),6q) dt =0

for all variations dq € T,C(Q). This is equivalent to (g, ¢ ) being an integral curve of X and means that g must
satisfy the Euler-Lagrange equations

forallt € [0,T.

The Lagrangian Symplectic Form

We define the solution space Cr(Q) C C(Q) to be the set of solutions to the Euler-Lagrange equations. Since an
element g € Cr(Q) is an integral curve of a vector field, it is uniquely determined by the initial conditions



(¢(0),4d(0)) € TQ. Therefore, we can identify C1,(Q) with T'Q, the space of initial conditions. We define the
restricted action map S : TQ — R by

A

S(qo,v0) = S(q) where g € C(Q) and (g(0),4(0)) = (g0, vo)

Since q is a solution of the Euler-Lagrange equations, fOT (DgrL(q),6q) dt = 0 for any variation dg € T;,C(Q).
Given X = ((g,v), (r,w)) € T4, (TQ), pick g such that dq(t) = (FI).X. (Recall that 6q(t) € T(TQ). Picking
dq like this ensures that dg(t)). Then

<d3 (qo, o), w> = <d8(q), (FLt)*(X)>

:/0 (DprL(§),6q) dt + (©1(4), (F!).X)]s

. T
= (0L(9), (F})X)],
= (0.4 (1)), (F]).X) — (©1(4(0)), X)
= ((F1)"0L)(4(0)), X) — (©,(4(0)), X)
= <((F5)*®L)(Q7 v)) X> - <®L(q7 ’U), X>
Since d? = 0, differentiating both sides reveals that
(FT)*d®; = de;
Thus, Lagrangian flow preserves the 2-form d© ;. We define the Lagrangian symplectic form );, = dOy,. It is
given in coordinates by
2 2

L ‘
Qr(q,4) = ———dq' Ndg? + ———
U= 5 ap 94’04’

dg® A dg’

The Lagrangian Momentum Map

Suppose we have a Lie group G with aleft actionon @), ® : G x @ — Q. Let g be the Lie algebra of G and g* be
its dual. We can lift ® to an action 7% : G x TQ — T'Q by

d

QTQ(ga X) = E

H@(g, exp(tX))

In coordinates,
i

37(g, (q,v)) = (@i(.q, 2, g—qj<g, q)g'ﬂ')

Any tangent vector £ in g induces a vector field {g on ) by

Similarly, £ induces a vector field {7g on T'Q) by

t_OQTQ(eXp(tE), (g,v))

d
fTQ(% U) = E

These induced vector fields are called infinitesimal generators.



We define the Lagrangian momentum map Jy, : TQ) — g* by
<JL (Qa ’U), §> = <®L(Q7 ’U), €TQ(Q7 'U)> = (LﬁTQ GL) (q’ U)

In coordinates,

oL .
(05 Ero(a.v)) = 2L ag (i 79 (exp(t€), (4, v)>>
0q" dt |,
= gj’ dg’ (% tzo@(exp(tﬁ), q), something>

= <g—§,§Q(Q)>

Symmetries of the Lagrangian

If Lo TgTQ = Lforall g € G, then L is invariant under $T9 and the group action is a symmetry of the
Lagrangian. Invariance of the Lagrangian implies infinitesimal invariance

(dL,érg) =0VE € g
If L is invariant under a G action, then
L(®4(q),8,%4(q) - ¢) = L(g,9)
Differentiating both sides with respect to ¢ in the dq direction yields

oL oL
—(®4(q),0,P4(q) - 4) - 0,P4(q) - 6g = —
aq(g()qg() ) - 0,%4(q) 9

(®,°)*0r = O;

(¢,4) - dq

Noether's Theorem for Lagrangian Mechanics

If the action of G on T'Q) is a symmetry of the Lagrangian, the Lagrangian flow preserves the momentum map. We
can see this in the following computation:

The action of G on @ induces a pointwise action of G on C(Q) (i.e. 24(q)(t) = P4(g(t))). This gives us an
infinitesimal generator on C(Q).

®(exp(tf),q)(s) =

=0 3| Blexp(t6), 4(s)) = Erqla(s))

t=0

@ (@)(s) = ~

Since L is invariant under the G-action, so is S. Since S is invariant under the G-action, we also know that ®,
maps solution curves to solution curves. So {¢(g)(q) € T4(CL). So we can look at the restricted action map and
find that

0= <S(q, 'U)agTQ(Qa U)>
= (04(d(T)), ro(d(T))) — (O1(g,v), rq(g,v))
= <JL(FI:/F(’U, q)) - JL(Q? U)7€>

Legendre Transforms



We tie Hamiltonian and Lagrangian mechanics together using the Legendre transform (or fibre derivative)
FL:TQ — T*Q.

(FL(g,v), (q,0)) = —

9 L((g,v) + €(g, w))

e=0

In coordinates, this is

FL: (g,4) — (q,p) = (%Z—?(M))

We call L regularif FL is a local isomorphism and hyperregularif FL is a global isomorphism.
The fibre derivative of the Hamiltonian is themap FH : T*Q — TQ.

((¢,a),FH(q, B)) = —

o H((g,B) + €(q, @)

e=0

In coordinates, this is given by

FH : (q,p) — (q,9) = <q, %—IZ(Q>P)>

Like with the Lagrangian, we say that H is regularif IFH is a local isomorphism and hyperregular if it is a global
isomorphism.

The canonical one- and two-forms and Hamiltonian momentum maps are related to the Lagrangian one- and two-
forms and the Lagrangian momentum maps by the fibre derivative.

FL*© = FL*(p;dg")

=
h
<
=
S
S
o
I

(1 (s 2.4
(o (145) 002

Fact: If L is hyperregular, then H will also be hyperregular and FH = (]FL)_I.

Discrete Mechanics

Discrete Variational Mechanics: Lagrangian Viewpoint



Starting from a configuration space (), we can define the discrete state space to be (Q x Q. A discrete Lagrangian
is a function L, : @ x Q — R.If we fix a series of times {t;, = kh : k=0,..., N}, we can define the discrete
path space as

Ca(Q) = {qa : {ts}1, — Q}

The discrete action map Sy : C4(Q) — R is defined to be

N-1
Sa(ga) = La(ak, qr+1)
pay

The discrete path space is a product manifold and its tangent space Tj, ,Ca(Q) is
TfIdCd(Q) = {vfId : {tk}i\rzo —TQ | TQ © Vgy = Qd}

The discrete analogue of T(T'Q) is (Q X Q) x (Q x Q). We define 7 as the projection onto the first copy of
Q@ x @ and o as the projection onto the second copy of Q X Q. The discrete second-order submanifold is the
subset of points of the form ((qo, ¢1), (91, ¢2))-

Given this discrete Lagrangian structure, we have discrete versions of the Euler-Lagrange map and the
Lagrangian one-form. We can compute them by using discrete integration by parts (rearranging terms) on the
discrete action map.

i

(dSi(qa),994) = [D1L4(qk, gk+1) - gk + DaLo(qr, Qr+1) - 0qk+1]

il
Ll

[D1L4(qk, qk+1) + D2La(qr—1, qr)]0qr + D1La(qo, g1)0q0 + D2La(gn,, gn)dgn
1

B
Il

So our discrete Euler-Lagrange map is given by

DperLa((qk-1,9x), (ak, @k+1)) = D2La(gk-1, qk) + D1L2(gk, gr+1)
And we have two discrete Lagrangian one-forms

Lg . .
©; (90,q1) = D2La(q0, ¢1)dqs = ?dq{
1

L .
O (90, q1) = —D1La(q0, ¢1)dqo = ——jdqé
0

And
N-1

(dS(g4),892) = DoerLa((gk-1, ), (ak g5+1))00k + ©; (av-1,an) - (San-1,5qx) — ©7 (g0, @1) - (50, 61)
P

Note thatdL,; = 6; — @Zd. Since d? = 0, d@; = d@id, so we have a well-defined discrete Lagrangian two-
form.

Discrete Lagrangian Time Evolution

A discrete evolution operator X isamap X : Q X Q — (Q x Q) x (Q x Q) such that w o X = id. The discrete
mapis F = o o X. We will require that X(Q x Q) C @, (i.e. X has the form X(qo,¢1) = (g0, ¢1,91,92))- A
discrete Lagrangian operator X7, is a second-order discrete evolution operator such that



DpgrLgo Xg, =0
The associated discrete Lagrangian map is
FLd = 0O XLd

We define the discrete solution space Cr,,(Q) C C4(Q) as the set of solutions to the discrete Euler-Lagrange

equations. Again, solutions are uniquely determined by initial conditions (since they can be computed by
applying F7, repeatedly). So we can identify C7,(Q) with @ x @Q, the space of initial conditions. This gives us a

restriced discrete actionmap S 4 : Q X Q — R.Letvg = (90,q1) € Q@ x Qand w,, € T,,,(Q x Q). Since
elements of Cy,, are solutions to the discrete Euler-Lagrange equations,

(48 (va), wy, ) = OF, (F " (wa) (FX1)u(wy,)) — O, (va) (wa)

Differentiating again and recalling that d’S =0 yields that
(Fngil)*(QLd) = QLd

So the discrete Lagrangian map is discretely symplectic

Discrete Lagrangian Noether's Theorem

Let G be a Lie group with aleft action ® : G x Q — @ on Q. The infinitesimal generator £ is defined in the
same way as before. The action induces an action on ) x ) by acting component-wise
@gQXQ(qO, ¢1) = (®4(q0), ®4(q1)). This action has infinitesimal generator

QxQ d (@2

d
£0x0(q0,q1) = a‘t_o‘ﬁexp(t@(%,ql) =3 i <I>exp(t5)(qo),<1>ip(t@ (q1)) = (§0(90),&(qr))

Because we have two discrete Lagrangian one-forms, we get two discrete Lagrangian momentum maps

<JL+d’§> = <@Zda§QxQ(qo,q1)>
<JL_d’€> = <@;d,£ng(q0,ql)>

In coordinates, these are given by

<JL+d,£> = (DsL4(q0, 1), €0 (1))
<JL‘d,§> = (=D1L4(q0,q1),€0(0))

Again, the discrete Lagrangian momentum maps are equivariant if G acts on () x @) by a special discrete
symplectic map. The same proof from before works.

If Lo @?XQ = Lg4, then L, is invariant under ® and ® is a symmetry of the discrete Lagrangian. If L is
invariant, then it is also infinitesimaly invariant (i.e. <de, foQ> = 0).SincedL, = @zd — @Zd, the discrete
momentum maps of a symmetry are equal. For symmetries, we will write Jz, : Q X Q — g* for both disrete

momentum maps.
The proof is Noether's theorem in the discrete case is similar to the proof in the continuous case.

N-1

(dSa(ga), ey (aa)) = Z (dLq,€gxq)

k=0



By infinitesimal invariance, this is 0, so <I>g maps solution curves to solutinon curves. Using our reduced discrete
action map and the fact that solution curves solve the Euler-Lagrange equations,

0 = (dS4(ga), écyi)(aa))
= <dgd(QOaQI)’§QXQ(QO7‘11)>

- <((FLJZ')*(@‘L*d) - @gd)(qO,ql),SQxQ(qO,q1)>

So FLJZ preserves the discrete momentum map. In particular, this means that F, preserves the discrete
momentum map.

Discrete Variational Mechanics: Hamiltonian Viewpoint

We can define discrete Legendre transforms F* Ly, F Ly : Q x Q — T*Q. These are

(F*La(go, 1), 0q1) = (D2La(qo, q1), 6q1)
<F_Ld(qo, ql), 5(]0) = (—D1Ld(qo, CII), 5QO>

In coordinates, these are written

F* La(qo, ¢1) = (g1, D2La(q0,q1))
F~La(q0,q1) = (g0, —D1L4(go0,q1))

The discrete fibre derivatives relate the canonical one- and two-forms and Hamiltonian momentum maps to the
discrete Lagrangian one- and two-forms and the discrete Lagrangian momentum maps. We will often consider
discrete Lagrangians that do not correspond exactly to a Hamiltonian. This means that we will not always have
this nice pull-back relationship.

Momentum Matching

The discrete fibre derivatives provide a different interpretation of the discrete Euler Lagrange equation. Define
Prgyr =P (@ @rr1) = F La(ar, ars1)
Prgir =P (@hs @h1) = F Lal(gr, qer1)
The discrete Euler-Lagrange equations are
D2 La(qk-1,q) = —D1La(gk, gr+1)
which can be written as
F'La(qk—q,a%) = F La(ar, q1) or F'Ly=F Lgo Fy,

So the discrete Euler-Lagrange equations just say that the momentum at the end of the interval [k — 1, k] equals
the momentum at the beginning of the interval [k, k + 1]. This means that each point on the solution curve has a
well-defined momentum py.

Discrete Hamiltonian Maps

The discrete fibre derivatives let us translate the discrete Lagrangian map F7, : Q X Q — @ X @ into the
Hamiltonian setting. We define the discrete Hamiltonianmap F'r, : T*Q — T*Q by
Fr,=F"Lyo Fy, o (F"Ly)~!. With this definition, the following diagram commutes:



QOa QI q11 Q2

VAN

QOaPO Q1,P1 CI2,

Ld Ld

The fact that the middle triangle commutes is our previous observation that F*L; = F L o F, ,- The fact that
the right-hand parallelogram commutes is the definition of F'r,,. Thus, the right-hand triangle commutes. Since

the right- and left-hand triangles are identical (up to re-indexing), the left-hand triangle must also commute.
In coordinates, the discrete Hamiltonian maps are given by

FLd : (QO7p0) = ((J17P1)
po = —D1L4(q0, q1)
= D2Ld(QOaQ1)

We can see this from the diagram. According to the diagram, F Ly = FtL;o (F~ Ld)’l. Suppose the state starts

out at (o, po) = F~ Ly4(qo,q1). Then 'z, (qo, po) = F* Ly(qo,q1) = (q1,p1). By the definition of F~ L,
po = —D1L4(qo, q1)- By the definition of F* Ly, py = DyLa(qo, q1)-

Correspondence Between Discrete and Continuous Mechanics

Suppose we have a configuration space (), a reqular Lagrangian L, points gy, ¢; € ) and a time-step h € R. If g
and q; are sufficiently close and A is sufficiently small, there exists a unique solution to the Euler-Lagrange
equations such that ¢(0) = g and g(h) = ¢;.

We can define the exact discrete Lagrangian as

h
LE(qo0,q1,h) 3:/0 L(qo,1(t),d¢1(¢))dt

where qp 1 is the unique solution to the Euler-Lagrange equations.
The Legendre transforms of a regular Lagrangian L and its exact discrete Lagrangian LdE are related by

F"LE(g0,q1,h) = FL(qo,1(h), 4, (h))
F~L7(q0,q1,h) = FL(g0,1(0),4,(0))

We will show that this is true for [~ LdE )

h{OL Oq1 OL 9Odg;
F~L%(qo, ,h:—/ = de
7(q0,q1,h) ; [ 90 a0 + 9d o

[ (O 4 00] ey, [0 6%,1}’1
o LOg dt 8¢ ] Oqo d¢ Oqo |y

Since go 1(0) = qo, 0.1(h) = q1, we know that



9q0,1 0) =1, 9q0,1
dqo dqo

Therefore,

F LE(qo, g1, h) — Z—;f(qo,l(m,qo,l(o» — FL(g01(0), 0, (0))

since (go,1(h),d1(R)) = F* (90,1(0),41(0)), we can draw this equality as a commutative diagram

(QO'I (h)

F-LE FrLE
(%0, o) (q1,p1)
FL FL
(05 go) ¢ = (q1.41)

L

Combining this with our trapezoid diagram yields the following commutative diagram.

F LE
(g0, q1) ! (q1,92)

T \L / \L
q0, Po - 1, P1 - 2, 2
( ) ! ) (q1,p1) P oor (q2.p

d d
FL FL FL
(90+ do) | 7 (q1.d1) = (92, ¢2)

You can also look at the correspondence between discrete and continuous systems in terms of trajectories. With
Lagrangians, this perspective says that the solutions {g } of the discrete Lagrangian and ¢(t) of the continuous

Lagrangian are related by

qr = q(t) for k=10,...,N
q(t) = qrpi1(t) for t € [ty, ty 1]

(Proof in paper)

Variational Integrators



Idea: use approximations to the exact discrete Lagrangian.
Note: when working on implementation, the functions F7, : @ X Q@ X R - Q@ x Qand Fp, : T"Q x R — T7Q
are pretty much the same. Given a trajectory qo, g1, - - . , k-1, gk, F'1, computes g1 by solving

D2L2(Qk71a gk, h) - _DlLd(qka k41, h‘)
Defining momenta py = DsL4(qk_1, g, h) lets us write the equation as
br = _DlLd(qka qr+1, h)

The defintion pyy1 = Dy Ly(qk, gr+1) and this equation are the defintion of our map Fy, T QXR—-T*Q. 1t
is convenient to implement variational integrators using the map F'r,,.

Forces

Forced Lagrangian Systems

A morphism of fibre bundles ¢ : E — F'is a continuous map such that the following diagram commutes:

A

(i.e. it preserves base points). A Lagrangian force is a morphism of fibre bundles f7, : T'Q) — T Q. In coordinates,
we write

fr:(q,4) — (g, f(g,4))

Given a force, we can modify Hamilton's principle of least action and obtain the Lagrange-d’Alembert principle,
which states that for any variations dq that are 0 at the endpoints,

5 / L(q(t), ()t + / (Fo(a(®), d (1)), 6q(t)) dt

The usual integration by parts trick yields the forced Euler-Lagrange equations

oL , . d oL

8—q(q,Q) Ea_(q’ q) + fr(g,4) =0

Forced Hamiltonian Systems

A Hamiltonian force is amorphism fg : T*Q) — T*(@). We can define an associated horizontal one-form on 7*Q)
by

<.f}[(Qa upq> - <.fH q,p dTrQ(qu)>
In coordinates,

(f1(a,p), (8q,0p)) = (fu(q,p),dq)

Thus, fl’q maps vectors tangent to the fibers of 7() to 0, which means it is horizontal.
We define the forced Hamiltonian vector field by

Lx,Q = dH — §,



In coordinates, we get the forced Hamilton's equations

OH
X,(q,p) = a—p(q,p)
X,(q,p) = —%—Ij(q,p) + fu(q,p)

The fact that only the second equation is changed is a consequence of flIEI being horizontal.

Legendre Transform with Forces

The forced Lagrangian and forced Hamiltonian perspectives are still connected by the standard Legendre
transform

fo=1fuoFL

We'll check a simple case. If L = %q'TMq' —V(¢g)and H = %q'Mq' + V(q), plugging this into the Euler-
Lagrange equation gives

2{; (¢,4) — ;erfH(q, p)=0
d G1%
oP= —8—q(q) + fu(q,p)
ip ] (¢,p) + fu(a,p)

dt 8q
Which is just Hamilton's second equation.
(Lagrangian) Noether's Theorem with Forces

Suppose @ : G x @ — @ is a symmetry of L. We still define the momentum map Jr, : TQ) — g* by
<JL(Q7 ’U), 5) = <®L(q7 ’U), gTQ(% U)>

We consider a variation of the form dq(t) = £¢(g(t)). This variation does not necessarily vanish at the endpoints,

so we cannot directly apply the Lagrange d'Alembert principle. We can evaluate the integral on the left hand side
of the Lagrange-d'Alembert equation in two ways. Since the group action is a symmetry of L

5/ Ldt+/ (fr,8q) dt = /(dLgTQ>dt+/ (fr,€0)dt = /OT<fL,§Q>dt

We can also do the standard integration by parts on the interval to find that

T r T/oL 4 oL
5/0 Ldt-i—/0 (fL,éq)dt:/O <8—q_53 + fr, €Q>+<@L fTQ>|

The first term is 0 since g is a solution to the forced Euler-Lagrange equations. Thus,

5/0 Ldt+/0 (fr,0q) dt = <@L,5TQ>|§
= ((Jr o F})(q(0),4(0)) — J(9(0),4(0)),¢)

Therefore,



(92 F)a(0),4(0) ~ Jo(a(0):d(0)€) = [ (Fulal0) (1), Eola(®)

So in general, the momentum map is not preserved. However, if the force is orthogonal to the group action, then
the momenum map is preserved.
Note: when external forces are present, Lagrangian and Hamiltonian flows are no longer symplectic.

Discrete Variational Mechanics with Forces

We define two discrete Lagrangian forces fd+, f;7 1 Q x @ — T*Q.In coordinates, we write them as

fi (@0, q1) = (a1, £ (90, q1))
fd_(ro,(h) = (QO7fd_(q0aQ1))

We can combine the two discrete forces into a one-form f; : Q@ x Q@ — T*(Q x Q)

(fa(a0, @1), (80, 0q1)) = (f; (20, @1), 0a1) + (f; (20, 1), 6q0)

We use this to form the discrete Lagrange-d/Alembert principle

N-1 N—-1
8> La(gr, @ri1) + Y, (Fa(gr arr1, (5, qri1)) = 0
k=0 k=0
Discrete integration by parts yields the forced discrete Euler-Lagrange equations
Dy Lg(qr—1, k) + D1La(qr, @r1) + F (@h-1,ax) + f; (@ @rs1) =0

Like in the continuous case, this is the (discrete) Euler-Lagrange equations with a forcing term added. This
defines a forced discrete Lagrangianmap Fr,, : Q x Q — Q x Q.

Discrete Legendre Transform with Forces

In the discrete setting, we need to modify the Legendre transform to make it work with forces. We define the
forced discrete Legendre transforms

F Ly : (90, 01) — (q1,p1) = (@1, DaLa(q0, q1) + £ (q0,q1))
F/ Lq: (g0, 1) — (90,P0) = (g0, —D1La(g0, q1) — fi (q0,q1))

We can use the forced discrete Legendre transform to define the forced discrete Hamiltonian map

~ — — + ~
Fr, =T LyoFr, o (F' Ly)~*. (You could also use F/ ). This map is defined by 'z, : (qo,po) — (q1,p1)
where

po = —D1L4(q0,q1) — f; (q0,q1)
p1 = DaL(q0, q1) + £ (90, 1)

This is the regular discrete Hamiltonian map with an extra discrete force term.

Constrained Systems

Constrained Lagrangian Systems



We will work with holonomic constraints. Given a constraint function ¢ : ) — R, we consider dynamics on the
constraint submanifold N = ¢~ 1(0). TN naturally embeds in T'Q, so we can restrict a Lagrangian L on TQ to
LV =Ll : TN >R

Let g, gr € N.Let C(Q) be the space of paths in @) from g to g7 and C(N) be the space of paths in N from g to
qr. We write S for the action map on C(Q) and S for the action map restricted to C(IN). We define the constrait
function @ : C(Q) — C(R?) by ®(q)(t) = H(g(t)).

TFAE:

1. g € C(N) extremizes S”.

2. (g, \) € C(Q x R?Y) extremizes §(g,\) = S(q) — (X, ®(q)) and hence solves the Euler-Lagrange equations
for the augmented Lagrangian

L(g,\d,A) = L(g,d) — (X, ¢(q))

3.¢ € C(Q) and X € C(R?) satisfy the constrained Euler-Lagrange equations

oL : d (oL : 9%
o (@(0.4(0) ~ ( = <q<t>,q<t>>> = (30 2% @)

¢(q(t)) =0

Proof sketch: By the Lagrange multiplier theorem, (1) is equivalent to (g, A) being an extremum of
S(g,A) = 8(q) — (A, ®(q)) (for A € C(RY)).

SN =80 - M)
- [ pa.ama- [ oo s@o)a

0

_ / [L(q(t),d () — (A\(®), $(a(2)))] dt

This is (2).
Setting dS = 0 and doing the standard integration by parts trick shows that (2) and (3) are equivalent.

Definitions from the Paper

Continuous Hamiltonians

Juo :T*Q
1(g, ), &)

||¢

g
(©(q,0),ér-0(9,0)) = 1£,.,©

(J

Continuous Lagrangians



(Decl): = dg  dt gy
oL . .
— g
O YT q
Q= do;
379(g, X) = % ®(g, exp(tX))
t=0
§o:Q—TQ
d
old) = 5 t_o‘ﬁ(exp(tf),q)
¢ro : TQ — T(TQ)
érola,0) = 57| #"%(exp(t9),(4,0)
Jr : TQ — g*
(J(g,v),€) = (O1(q,v),€r0(g,v)) = (1¢,,01) (g, v)
Ad,:g—9g

Discrete Lagrangians

Lg . .
©;,.(g0,q1) = D2La(q0, 1)dq1 = ?dqi
1

L,
©, (90, q1) = —D1L2(qo, q1)dqo = ——qu

9y
<JL+d’§> :< Lo €exe(0, @1 >
(T0€) = (01, €avalan )

Legendre Transform

FL:TQ — T*Q
oL

FL(q,q) = ( ¢, —
(¢,9) (q 6q>

Discrete Hamiltonians

F*Ly,F Ly: Q x Q — T*Q
(F"La(q0, q1),6¢1) = (D2La(q0,q1), 6a1)
(F~La(q0,91),990) = (—D1La(q0,q1),q0)
F*Lq(q0, q1) = (¢1, D2La(q0,q1))
F~La(q0,q1) = (90, —D1La(qo, q1))
Prgsr =P (@ @rr1) = F La(qr, Gis1)
P =P (@ @hi1) = F La(gr, qer1)
Fr,:T*Q — T*Q
Fr, =F"LyoF, oF Ly

Forced Systems



fo:TQ —TQ
fa:T"Q - T*Q



