
Hamiltonian Mechanics

Simple Case

We call the total energy of a system  the Hamiltonian. For example, a harmonic oscillator

has Hamiltonian . The dynamics of this system are described by Hamilton's equations
of motion

In the case of the harmonic oscillator, this gives us the familiar result

Preliminary De�nitions

Given a con�guration space , we de�ne phase space to be the cotangent bundle . The Hamiltonian is a
function . We can de�ne a canonical one-form  on  by

In coordinates, . Using , we can de�ne a canonical two-form

In coordinates,

 gives  the structure of a symplectic manifold (i.e.  is closed and nondegenerate). If 
preseves , then  is symplectic. If  preserves , then  is special symplectic. Since  is nondegenerate, it
gives us a canonical isomorphism between the space of vector �elds and the space of 1-forms. By analogy with
the Riemannian case, we will de�ne musical isomorphisms by

Then given a Hamiltonian  we can de�ne a unique Hamiltonian vector �eld  by

This vector �eld describes time evolution according to the Hamiltonian. In coordinates, this equation gives us
Hamilton's equations of motion. If , then
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Equating the components yields

The Hamiltonian �ow is symplectic:

Hamiltonian Momentum Maps

Suppose we have a left action of a Lie group  on , . This induces an action of  on  given
by . In coordinates, this is

This action gives us an in�nitesimal generator

We say that  is a symmetry of the Hamiltonian  if . In this case, it is also an in�nitesimal
symmetry. i.e. .

Actions of  lifted to  are always special symplectic maps, so  for all . This implies the
in�nitesimal statement that . Furthermore,  is always equivatiant.
Suppose our in�nitesimal generator is a Hamiltonian vector �eld, i.e.

for some . We note that this  is conserved.

What's going on here, and how can we generalize it to more group actions? What we have is a conserved quantity
for each element . We could unify this by saying that instead of one conserved scalar for each , we have a
conserved map . So our conserved quantity is really an element of . De�ne  by
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This is our Hamiltonian momentum map. It is itself a conserved category. If  is a symmetry transformation, and 
 is the Hamilton �ow of hamiltonian .

Now, how do we generalize this? In the proof of conservation, we didn't actually need  to be a Hamilton �ow,
since we took the  of the Hamiltonian anyway. All we needed is that . So we can generalize
the idea of a momentum map by saying a momentum map is a map  that satis�es

These more general momentum maps are still conserved by Hamilton �ow. We can de�ne a Hamiltonian
momentum map  by

We can verify that this is indeed a momentum map

Examples

 acting on  by translation

Consider the additive action of  on . We let , , . Our action is

We can dualize to �nd the cotangent lift.

So .

 acting on  by rotation

First, we explore .  is the space of  orthogonal matrices with determinant 1. The Lie algebra 
 is the space of matrices  such that . The orthogonal condition on  means that 

must be skew-symmetric. The determinant constraint means that  must have trace 0. So
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This is just the cross product matrix. So for each , we have a vector  such that . Consider the
action of  on .

Again, we dualize the tangent lift to �nd the cotangent lift

Therefore, . Differentiating tells us that

To �nd , we need to solve Hamilton's equations

This is solved by . So our momentum map is

(The dual of standard angular momentum).

Equivariance

One importatant property of montum maps is -equivariance. A momentum map is -equivariant if 
 (i.e. it commutes with the -action on  and ).

Since , the Lagrangian momenum map is -equivariant iff

Before we show this, we need a lemma: .
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Computing the right hand side of our desired identity yields

Lagrangian Mechanics

Preliminary de�nitions

We will work with a con�guration manifold  with associated state space  and a Lagrangian . We
let  be the canonical projection onto . We de�ne the path space to be

and we de�ne the action map  by

 is a smooth manifold, and the tangent space  is the set of  maps  such that 
. We can describe the second derivatives of curves on  by the second-oder submanifold of  to

be
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The Lagrangian One-Form

Given a Lagrangian , there exists a unique map  (the Euler-Lagrange map) and a unique one-
form  (the Lagrangian one-form) on  such that for all variations  of , we have

where

We can compute these maps by computing the variation of the action map.

This gives us expressions for  and  in coordinates.

Lagrangian Vector Fields and Flows

A Lagrangian Vector Field is a vector �eld  on  such that

and the Lagrangian �ow  is the �ow of . We will denote the �ow at time  by . A curve 
 is said to be a solution of the Euler-Lagrange equations if

for all variations . This is equivalent to  being an integral curve of  and means that  must
satisfy the Euler-Lagrange equations

for all .

The Lagrangian Symplectic Form

We de�ne the solution space  to be the set of solutions to the Euler-Lagrange equations. Since an
element  is an integral curve of a vector �eld, it is uniquely determined by the initial conditions 
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. Therefore, we can identify  with , the space of initial conditions. We de�ne the
restricted action map  by

Since  is a solution of the Euler-Lagrange equations,  for any variation .

Given , pick  such that . (Recall that . Picking
 like this ensures that ). Then

Since , differentiating both sides reveals that

Thus, Lagrangian �ow preserves the 2-form . We de�ne the Lagrangian symplectic form . It is
given in coordinates by

The Lagrangian Momentum Map

Suppose we have a Lie group  with a left action on , . Let  be the Lie algebra of  and  be
its dual. We can lift  to an action  by

In coordinates,

Any tangent vector  in  induces a vector �eld  on  by

Similarly,  induces a vector �eld  on  by

These induced vector �elds are called in�nitesimal generators.
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We de�ne the Lagrangian momentum map  by

In coordinates,

Symmetries of the Lagrangian

If  for all , then  is invariant under  and the group action is a symmetry of the
Lagrangian. Invariance of the Lagrangian implies in�nitesimal invariance

If  is invariant under a  action, then

Differentiating both sides with respect to  in the  direction yields

Noether's Theorem for Lagrangian Mechanics

If the action of  on  is a symmetry of the Lagrangian, the Lagrangian �ow preserves the momentum map. We
can see this in the following computation:
The action of  on  induces a pointwise action of  on  (i.e. ). This gives us an
in�nitesimal generator on .

Since  is invariant under the -action, so is . Since  is invariant under the -action, we also know that 
maps solution curves to solution curves. So . So we can look at the restricted action map and
�nd that
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We tie Hamiltonian and Lagrangian mechanics together using the Legendre transform (or �bre derivative) 
.

In coordinates, this is

We call  regular if  is a local isomorphism and hyperregular if  is a global isomorphism.
The �bre derivative of the Hamiltonian is the map .

In coordinates, this is given by

Like with the Lagrangian, we say that  is regular if  is a local isomorphism and hyperregular if it is a global
isomorphism.
The canonical one- and two-forms and Hamiltonian momentum maps are related to the Lagrangian one- and two-
forms and the Lagrangian momentum maps by the �bre derivative.

Fact: If  is hyperregular, then  will also be hyperregular and .

Discrete Mechanics

Discrete Variational Mechanics: Lagrangian Viewpoint
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Starting from a con�guration space , we can de�ne the discrete state space to be . A discrete Lagrangian
is a function . If we �x a series of times , we can de�ne the discrete
path space as

The discrete action map  is de�ned to be

The discrete path space is a product manifold and its tangent space  is

The discrete analogue of  is . We de�ne  as the projection onto the �rst copy of 
 and  as the projection onto the second copy of . The discrete second-order submanifold is the

subset of points of the form .
Given this discrete Lagrangian structure, we have discrete versions of the Euler-Lagrange map and the
Lagrangian one-form. We can compute them by using discrete integration by parts (rearranging terms) on the
discrete action map.

So our discrete Euler-Lagrange map is given by

And we have two discrete Lagrangian one-forms

And

Note that . Since , , so we have a well-de�ned discrete Lagrangian two-
form.

Discrete Lagrangian Time Evolution

A discrete evolution operator  is a map  such that . The discrete
map is . We will require that  (i.e.  has the form ). A
discrete Lagrangian operator  is a second-order discrete evolution operator such that
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DDELLd((qk−1, qk), (qk, qk+1)) = D2Ld(qk−1, qk) + D1L2(qk, qk+1)

Θ+
Ld

(q0, q1) = D2Ld(q0, q1)dq1 = dqi1

Θ−
Ld

(q0, q1) = −D1L2(q0, q1)dq0 = − dqi0

Ld

qi
1

Ld

qi
0

⟨dS(qd), δqd⟩ =
N−1

∑
k=1

DDELLd((qk−1, qk), (qk, qk+1))δqk + Θ+
Ld

(qN−1, qN) ⋅ (δqN−1, δqN) − Θ−
Ld

(q0, q1) ⋅ (δq0, δq1)

dLd = Θ+
Ld

− Θ−
Ld

d2 = 0 dΘ+
Ld

= dΘ−
Ld

X X : Q × Q → (Q × Q) × (Q × Q) π ∘ X = id

F = σ ∘ X X(Q × Q) ⊂ Q̈d X X(q0, q1) = (q0, q1, q1, q2)

XLd

∘ = 0



The associated discrete Lagrangian map is

We de�ne the discrete solution space  as the set of solutions to the discrete Euler-Lagrange
equations. Again, solutions are uniquely determined by initial conditions (since they can be computed by
applying  repeatedly). So we can identify  with , the space of initial conditions. This gives us a
restriced discrete action map . Let  and . Since
elements of  are solutions to the discrete Euler-Lagrange equations,

Differentiating again and recalling that  yields that

So the discrete Lagrangian map is discretely symplectic

Discrete Lagrangian Noether's Theorem

Let  be a Lie group with a left action  on . The in�nitesimal generator  is de�ned in the
same way as before. The action induces an action on  by acting component-wise 

. This action has in�nitesimal generator

Because we have two discrete Lagrangian one-forms, we get two discrete Lagrangian momentum maps

In coordinates, these are given by

Again, the discrete Lagrangian momentum maps are equivariant if  acts on  by a special discrete
symplectic map. The same proof from before works.
If , then  is invariant under  and  is a symmetry of the discrete Lagrangian. If  is
invariant, then it is also in�nitesimaly invariant (i.e. ). Since , the discrete
momentum maps of a symmetry are equal. For symmetries, we will write  for both disrete
momentum maps.
The proof is Noether's theorem in the discrete case is similar to the proof in the continuous case.

DDELLd ∘ XLd
= 0

FLd
= σ ∘ XLd

CLd
(Q) ⊂ Cd(Q)

FLd
CLd

(Q) Q × Q

Ŝ d : Q × Q → R vd = (q0, q1) ∈ Q × Q wvd ∈ Tvd(Q × Q)
CLd

⟨dŜ (vd),wvd⟩ = Θ+
Ld

(F N−1
Ld

(vd)((F N−1
Ld

)⋆(wvd)) − Θ−
Ld

(vd)(wd)

d2
Ŝ = 0

(F N−1
Ld

)⋆(ΩLd
) = ΩLd

G Φ : G × Q → Q Q ξQ

Q × Q

Φ
Q×Q
g (q0, q1) = (Φg(q0), Φg(q1))

ξQ×Q(q0, q1) =
∣
∣
∣t=0

Φ
Q×Q

exp(tξ)
(q0, q1) =

∣
∣
∣t=0

(Φ
Q

exp(tξ)
(q0), Φ

Q

exp(tξ)
(q1)) = (ξQ(q0), ξQ(q1))

d

dt

d

dt

⟨J+
Ld

, ξ⟩ = ⟨Θ+
Ld

, ξQ×Q(q0, q1)⟩
⟨J−

Ld
, ξ⟩ = ⟨Θ−

Ld
, ξQ×Q(q0, q1)⟩

⟨J+
Ld

, ξ⟩ = ⟨D2Ld(q0, q1), ξQ(q1)⟩

⟨J−
Ld

, ξ⟩ = ⟨−D1Ld(q0, q1), ξQ(q0)⟩

G Q × Q

Ld ∘ Φ
Q×Q
g = Ld Ld Φ Φ Ld

⟨dLd, ξQ×Q⟩ = 0 dLd = Θ+
Ld

− Θ−
Ld

JLd
: Q × Q → g⋆

⟨dSd(qd), ξCd(Q)(qd)⟩ =
N−1

∑
k=0

⟨dLd, ξQ×Q⟩



By in�nitesimal invariance, this is 0, so  maps solution curves to solutinon curves. Using our reduced discrete
action map and the fact that solution curves solve the Euler-Lagrange equations,

So  preserves the discrete momentum map. In particular, this means that  preserves the discrete
momentum map.

Discrete Variational Mechanics: Hamiltonian Viewpoint

We can de�ne discrete Legendre transforms . These are

In coordinates, these are written

The discrete �bre derivatives relate the canonical one- and two-forms and Hamiltonian momentum maps to the
discrete Lagrangian one- and two-forms and the discrete Lagrangian momentum maps. We will often consider
discrete Lagrangians that do not correspond exactly to a Hamiltonian. This means that we will not always have
this nice pull-back relationship.

Momentum Matching

The discrete �bre derivatives provide a different interpretation of the discrete Euler Lagrange equation. De�ne

The discrete Euler-Lagrange equations are

which can be written as

So the discrete Euler-Lagrange equations just say that the momentum at the end of the interval  equals
the momentum at the beginning of the interval . This means that each point on the solution curve has a
well-de�ned momentum .

Discrete Hamiltonian Maps

The discrete �bre derivatives let us translate the discrete Lagrangian map  into the
Hamiltonian setting. We de�ne the discrete Hamiltonian map  by 

. With this de�nition, the following diagram commutes:

Φg

0 = ⟨dSd(qd), ξCd(Q)(qd)⟩

= ⟨dŜ d(q0, q1), ξQ×Q(q0, q1)⟩
= ⟨((F N

L2
)⋆(Θ+

Ld
) − Θ−

Ld
)(q0, q1), ξQ×Q(q0, q1)⟩

F N
Ld

FLd

F
+Ld,F−Ld : Q × Q → T ⋆Q

⟨F+Ld(q0, q1), δq1⟩ = ⟨D2Ld(q0, q1), δq1⟩

⟨F−
Ld(q0, q1), δq0⟩ = ⟨−D1Ld(q0, q1), δq0⟩

F
+Ld(q0, q1) = (q1,D2Ld(q0, q1))

F
−Ld(q0, q1) = (q0, −D1Ld(q0, q1))

p+
k,k+1

= p+(qk, qk+1) = F
+Ld(qk, qk+1)

p−
k,k+1

= p−(qk, qk+1) = F
−Ld(qk, qk+1)

D2Ld(qk−1, qk) = −D1Ld(qk, qk+1)

F
+
Ld(qk−q, qk) = F

−
Ld(qk, qk+1) or F

+
Ld = F

−
Ld ∘ FLd

[k − 1, k]
[k, k + 1]

pk

FLd
: Q × Q → Q × Q

~
F Ld

: T ⋆Q → T ⋆Q
~
F Ld

= F
+Ld ∘ FLd

∘ (F+Ld)−1



The fact that the middle triangle commutes is our previous observation that . The fact that
the right-hand parallelogram commutes is the de�nition of . Thus, the right-hand triangle commutes. Since
the right- and left-hand triangles are identical (up to re-indexing), the left-hand triangle must also commute.
In coordinates, the discrete Hamiltonian maps are given by

We can see this from the diagram. According to the diagram, . Suppose the state starts
out at . Then . By the de�nition of , 

. By the de�nition of , .

Correspondence Between Discrete and Continuous Mechanics

Suppose we have a con�guration space , a regular Lagrangian , points  and a time-step . If 
and  are suf�ciently close and  is suf�ciently small, there exists a unique solution to the Euler-Lagrange
equations such that  and .
We can de�ne the exact discrete Lagrangian as

where  is the unique solution to the Euler-Lagrange equations.
The Legendre transforms of a regular Lagrangian  and its exact discrete Lagrangian  are related by

We will show that this is true for .

Since , we know that

F
+Ld = F

−Ld ∘ FLd~
F Ld

~
F Ld

: (q0, p0) ↦ (q1, p1)

p0 = −D1Ld(q0, q1)

p1 = D2Ld(q0, q1)

~
FLd

= F
+Ld ∘ (F−Ld)−1

(q0, p0) = F
−Ld(q0, q1)

~
F Ld

(q0, p0) = F
+Ld(q0, q1) = (q1, p1) F

−Ld

p0 = −D1Ld(q0, q1) F
+Ld p1 = D2Ld(q0, q1)

Q L q0, q1 ∈ Q h ∈ R q0

q1 h

q(0) = q0 q(h) = q1

LE
d

(q0, q1,h) := ∫ h

0

L(q0,1(t), q̇ 0,1(t))dt

q0,1

L LE
d

F
+LE

d
(q0, q1,h) = FL(q0,1(h), q̇ 0,1(h))

F
−LE

d
(q0, q1,h) = FL(q0,1(0), q̇ 0,1(0))

F
−LE

d

F
−LE

d
(q0, q1,h) = −∫ h

0

[ ⋅ + ⋅ ] dt

= −∫ h

0

[ − ] dt − [ ]
h

0

= −[ ]
h

0

∂L

∂q

∂q0,1

∂q0

∂L

∂q̇

∂q̇ 0,1

∂q0

∂L

∂q

d

dt

∂L

∂q̇

∂q0,1

∂q0

∂L

∂q̇

∂q0,1

∂q0

∂L

∂q̇

∂q0,1

∂q0

q0,1(0) = q0, q0,1(h) = q1

∂ ∂



Therefore,

Since , we can draw this equality as a commutative diagram

Combining this with our trapezoid diagram yields the following commutative diagram.

You can also look at the correspondence between discrete and continuous systems in terms of trajectories. With
Lagrangians, this perspective says that the solutions  of the discrete Lagrangian and  of the continuous
Lagrangian are related by

(Proof in paper)

Variational Integrators

(0) = 1, (h) = 0
∂q0,1

∂q0

∂q0,1

∂q0

F
−LE

d
(q0, q1,h) = (q0,1(0), q̇ 0,1(0)) = FL(q0,1(0), q̇ 0,1(0))

∂L

∂q̇

(q0,1(h), q̇ 0,1(h)) = F
h
L(q0,1(0), q̇ 0,1(0))

{qk} q(t)

qk = q(tk) for k = 0, … ,N

q(t) = qk,k+1(t) for t ∈ [tk, tk+1]



Idea: use approximations to the exact discrete Lagrangian.
Note: when working on implementation, the functions  and 
are pretty much the same. Given a trajectory ,  computes  by solving

De�ning momenta  lets us write the equation as

The de�ntion  and this equation are the de�ntion of our map . It
is convenient to implement variational integrators using the map .

Forces

Forced Lagrangian Systems

A morphism of �bre bundles  is a continuous map such that the following diagram commutes:

(i.e. it preserves base points). A Lagrangian force is a morphism of �bre bundles . In coordinates,
we write

Given a force, we can modify Hamilton's principle of least action and obtain the Lagrange-d'Alembert principle,
which states that for any variations  that are 0 at the endpoints,

The usual integration by parts trick yields the forced Euler-Lagrange equations

Forced Hamiltonian Systems

A Hamiltonian force is a morphism . We can de�ne an associated horizontal one-form on 
by

In coordinates,

Thus,  maps vectors tangent to the �bers of  to 0, which means it is horizontal.
We de�ne the forced Hamiltonian vector �eld by

FLd
: Q × Q × R → Q × Q

~
F Ld

: T ⋆Q × R → T ⋆Q

q0, q1, … , qk−1, qk FLd
qk+1

D2L2(qk−1, qk,h) = −D1Ld(qk, qk+1,h)

pk = D2Ld(qk−1, qk,h)

pk = −D1Ld(qk, qk+1,h)

pk+1 = D2Ld(qk, qk+1)
~
F Ld

: T ⋆Q × R → T ⋆Q
~
F Ld

ϕ : E → F

fL : TQ → T ⋆Q

fL : (q, q̇ ) ↦ (q, fL(q, q̇ ))

δq

δ ∫
T

0

L(q(t), q̇ (t))dt + ∫
T

0

⟨fL(q(t), q̇ (t)), δq(t)⟩ dt

(q, q̇ ) − (q, q̇ ) + fL(q, q̇ ) = 0
∂L

∂q

d

dt

∂L

∂q̇

fH : T ⋆Q → T ⋆Q T ⋆Q

⟨f ′
H(q, p),upq⟩ = ⟨fH(q, p), dπQ(upq)⟩

⟨f ′
H(q, p), (δq, δp)⟩ = ⟨fH(q, p), δq⟩

f ′
H T ⋆Q

ιXHΩ = dH − f ′
H



In coordinates, we get the forced Hamilton's equations

The fact that only the second equation is changed is a consequence of  being horizontal.

Legendre Transform with Forces

The forced Lagrangian and forced Hamiltonian perspectives are still connected by the standard Legendre
transform

We'll check a simple case. If  and , plugging this into the Euler-
Lagrange equation gives

Which is just Hamilton's second equation.

(Lagrangian) Noether's Theorem with Forces

Suppose  is a symmetry of . We still de�ne the momentum map  by

We consider a variation of the form . This variation does not necessarily vanish at the endpoints,
so we cannot directly apply the Lagrange d'Alembert principle. We can evaluate the integral on the left hand side
of the Lagrange-d'Alembert equation in two ways. Since the group action is a symmetry of 

We can also do the standard integration by parts on the interval to �nd that

The �rst term is 0 since  is a solution to the forced Euler-Lagrange equations. Thus,

Therefore,

Xq(q, p) = (q, p)

Xp(q, p) = − (q, p) + fH(q, p)

∂H

∂p
∂H

∂q

f ′
H

fL = fH ∘ FL

L = q̇ TMq̇ − V (q)1

2
H = q̇Mq̇ + V (q)1

2

(q, q̇ ) − p + fH(q, p) = 0

p = − (q) + fH(q, p)

p = − (q, p) + fH(q, p)

∂L

∂q

d

dt
d

dt

∂V

∂q
d

dt

∂H

∂q

Φ : G × Q → Q L JL : TQ → g⋆

⟨JL(q, v), ξ⟩ = ⟨ΘL(q, v), ξTQ(q, v)⟩

δq(t) = ξQ(q(t))

L

δ ∫
T

0

Ldt + ∫
T

0

⟨fL, δq⟩ dt = ∫
T

0

⟨dL, ξTQ⟩ dt + ∫
T

0

⟨fL, ξQ⟩ dt = ∫
T

0

⟨fL, ξQ⟩ dt

δ ∫ T

0

Ldt + ∫ T

0

⟨fL, δq⟩ dt = ∫ T

0

⟨ − + fL, ξQ⟩ + ⟨ΘL, ξTQ⟩∣∣
T

0

∂L

∂q

d

dt

∂L

∂q̇

q

δ ∫ T

0

Ldt + ∫ T

0

⟨fL, δq⟩ dt = ⟨ΘL, ξTQ⟩∣∣
T

0

= ⟨(JL ∘ F T
L

)(q(0), q̇ (0)) − JL(q(0), q̇ (0)), ξ⟩

T



So in general, the momentum map is not preserved. However, if the force is orthogonal to the group action, then
the momenum map is preserved.
Note: when external forces are present, Lagrangian and Hamiltonian �ows are no longer symplectic.

Discrete Variational Mechanics with Forces

We de�ne two discrete Lagrangian forces . In coordinates, we write them as

We can combine the two discrete forces into a one-form 

We use this to form the discrete Lagrange-d'Alembert principle

Discrete integration by parts yields the forced discrete Euler-Lagrange equations

Like in the continuous case, this is the (discrete) Euler-Lagrange equations with a forcing term added. This
de�nes a forced discrete Lagrangian map .

Discrete Legendre Transform with Forces

In the discrete setting, we need to modify the Legendre transform to make it work with forces. We de�ne the
forced discrete Legendre transforms

We can use the forced discrete Legendre transform to de�ne the forced discrete Hamiltonian map 
. (You could also use . This map is de�ned by 

where

This is the regular discrete Hamiltonian map with an extra discrete force term.

Constrained Systems

Constrained Lagrangian Systems

⟨(JL ∘ F T
L

)(q(0), q̇ (0)) − JL(q(0), q̇ (0)), ξ⟩ = ∫ T

0

⟨fL(q(t), q̇ (t)), ξQ(q(t))⟩

f+
d

, f−
d

: Q × Q → T ⋆Q

f+
d (q0, q1) = (q1, f+

d (q0, q1))

f−
d

(q0, q1) = (q0, f−
d

(q0, q1))

fd : Q × Q → T ⋆(Q × Q)

⟨fd(q0, q1), (δq0, δq1)⟩ = ⟨f+
d

(q0, q1), δq1⟩ + ⟨f−
d

(q0, q1), δq0⟩

δ

N−1

∑
k=0

Ld(qk, qk+1) +
N−1

∑
k=0

⟨fd(qk, qk+1, (δqk, δqk+1)⟩ = 0

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
d

(qk−1, qk) + f−
d

(qk, qk+1) = 0

FLd
: Q × Q → Q × Q

F
f+

Ld : (q0, q1) ↦ (q1, p1) = (q1,D2Ld(q0, q1) + f+
d

(q0, q1))

F
f−

Ld : (q0, q1) ↦ (q0, p0) = (q0, −D1Ld(q0, q1) − f−
d (q0, q1))

~
F Ld

= F
f−

Ld ∘ FLd
∘ (Ff−

Ld)−1
F
f+

)
~
F Ld

: (q0, p0) ↦ (q1, p1)

p0 = −D1Ld(q0, q1) − f−
d

(q0, q1)

p1 = D2Ld(q0, q1) + f+
d

(q0, q1)

R
d



We will work with holonomic constraints. Given a constraint function , we consider dynamics on the
constraint submanifold .  naturally embeds in , so we can restrict a Lagrangian  on  to 

.
Let . Let  be the space of paths in  from  to  and  be the space of paths in  from  to 

. We write  for the action map on  and  for the action map restricted to . We de�ne the constrait
function  by .
TFAE:

1.  extremizes .
2.  extremizes  and hence solves the Euler-Lagrange equations

for the augmented Lagrangian

3.  and  satisfy the constrained Euler-Lagrange equations

Proof sketch: By the Lagrange multiplier theorem, (1) is equivalent to  being an extremum of 
 (for ).

This is (2).
Setting  and doing the standard integration by parts trick shows that (2) and (3) are equivalent.

De�nitions from the Paper

Continuous Hamiltonians

Continuous Lagrangians

ϕ : Q → R
d

N = ϕ−1(0) TN TQ L TQ

LN = L|TN : TN → R

q0, qT ∈ N C(Q) Q q0 qT C(N) N q0

qT S C(Q) S
N

C(N)

Φ : C(Q) → C(Rd) Φ(q)(t) = ϕ(q(t))

q ∈ C(N) S
N

(q,λ) ∈ C(Q × R
d) S̄ (q,λ) = S(q) − ⟨λ, Φ(q)⟩

L̄(q,λ, q̇ , λ̇) = L(q, q̇ ) − ⟨λ,ϕ(q)⟩

q ∈ C(Q) λ ∈ C(Rd)

(q(t), q̇ (t)) − ( (q(t), q̇ (t))) = ⟨λ(t), (q(t))⟩
ϕ(q(t)) = 0

∂L

∂qi
d

dt

∂L

∂q̇ i

∂ϕ

∂qi

(q,λ)

S̄ (q,λ) = S(q) − ⟨λ, Φ(q)⟩ λ ∈ C(Rd)

S̄(q,λ) = S(q) − ⟨λ, Φ(q)⟩

= ∫
T

0

L(q(t), q̇ (t))dt − ∫
T

0

⟨λ(t), Φ(q)(t)⟩ dt

= ∫
T

0

[L(q(t), q̇ (t)) − ⟨λ(t),ϕ(q(t))⟩] dt

dS̄ = 0

JH : T ⋆Q → g
⋆

⟨JH(q, p), ξ⟩ = ⟨Θ(q, p), ξT ⋆Q(q, p)⟩ = ιξT ⋆Q
Θ

∂ d ∂



Discrete Lagrangians

Legendre Transform

Discrete Hamiltonians

Forced Systems

(DELL)i = −

ΘL = dqi

ΩL = dΘL

ΦTQ(g,X) =
∣
∣
∣t=0

Φ(g, exp(tX))

ξQ : Q → TQ

ξQ(q) =
∣
∣
∣t=0

Φ(exp(tξ), q)

ξTQ : TQ → T (TQ)

ξTQ(q, v) =
∣
∣
∣t=0

ΦTQ(exp(tξ), (q, v))

JL : TQ → g
⋆

⟨JL(q, v), ξ⟩ = ⟨ΘL(q, v), ξTQ(q, v)⟩ = (ιξTQΘL)(q, v)

Adg : g → g

∂L

∂qi
d

dt

∂L

∂q̇ i

∂L

∂q̇ i

d

dt

d

dt

d

dt

Θ+
Ld

(q0, q1) = D2Ld(q0, q1)dq1 = dqi1

Θ−
Ld

(q0, q1) = −D1L2(q0, q1)dq0 = − dqi0

⟨J+
Ld

, ξ⟩ = ⟨Θ+
Ld

, ξQ×Q(q0, q1)⟩
⟨J−

Ld
, ξ⟩ = ⟨Θ−

Ld
, ξQ×Q(q0, q1)⟩

Ld

qi1
Ld

qi
0

FL : TQ → T ⋆Q

FL(q, q̇ ) = (q, )∂L

∂q̇

F
+Ld,F−Ld : Q × Q → T ⋆Q

⟨F+Ld(q0, q1), δq1⟩ = ⟨D2Ld(q0, q1), δq1⟩

⟨F−Ld(q0, q1), δq0⟩ = ⟨−D1Ld(q0, q1), δq0⟩

F
+Ld(q0, q1) = (q1,D2Ld(q0, q1))

F
−Ld(q0, q1) = (q0, −D1Ld(q0, q1))

p+
k,k+1

= p+(qk, qk+1) = F
+Ld(qk, qk+1)

p−
k,k+1

= p−(qk, qk+1) = F
−Ld(qk, qk+1)

~
F Ld

: T ⋆Q → T ⋆Q
~
F Ld

= F
+Ld ∘ FLd

∘ F
+Ld

: → ⋆



fL : TQ → T ⋆Q

fH : T ⋆Q → T ⋆Q


